Aqueous zinc-ion batteries are highly favored for grid-level energy storage owing to their low cost and high safety, but their practical application is limited by slow ion migration. To address this, a strategy has been developed to create a cation-accelerating electric field on the surface of the cathode to achieve ultrafast Zn2+ diffusion kinetics. By employing electrodeposition to coat MoS2 on the surface of BaV6O16·3H2O nanowires, the directional built-in electric field generated at the heterointerface acts as a cation accelerator, continuously accelerating Zn2+ diffusion into the active material. The optimized Zn2+ diffusion coefficient in CC@BaV6O16·3H2O@MoS2 (7.5 × 10−8 cm2 s−1) surpasses that of most reported V-based cathodes. Simultaneously, MoS2 serving as a cathodic armor extends the cycling life of the Zn-CC@BaV6O16·3H2O@MoS2 full batteries to over 10000 cycles. This work provides valuable insights into optimizing ion diffusion kinetics for high-performance energy storage devices.
Solid-state lithium batteries (SSLBs) are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density. In particular, SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities, low cost, and sustainability. Despite the great progress in research and development of SSLBs based on conversion-type cathodes, their practical applications still face challenges such as blocked ionic-electronic migration pathways, huge volume change, interfacial incompatibility, and expensive processing costs. This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes (SSEs), as well as state-of-the-art progress in various promising cathodes (e.g., FeS2, CuS, FeF3, FeF2, and S) in SSLBs. Furthermore, representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application. Significantly, the energy density exhibited by the S cathode stands out impressively, while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes. Finally, perspectives on conversion-type cathodes are provided at the material, interface, composite electrode, and battery levels, with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater. However, the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine. In contrast to the oxygen evolution reaction (OER) and chlorin ion oxidation reaction (ClOR), glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative. Herein, a Ru doping cobalt phosphide (Ru-CoP2) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR, for the concurrent productions of hydrogen and value-added formate. The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP2 to Ru-CoOOH, accounting for the superior GOR performance. Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP2 as both anode and cathode, requiring only a low voltage of 1.43 V at 100 mA cm−2, which was 250 mV lower than that in alkaline seawater. This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.
The development of flexible supercapacitors (FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of high-temperature-tolerant FSCs (HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance. This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.
Methane, an abundant one-carbon (C1) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy- and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO2 emissions and coke deposition. Electrochemical conversion of methane (ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4 conversion rates, and minimization of CO2 emission.