Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of CC over CO. Herein, a novel Al2O3/C-u hybrid catalyst, composed of N-modified dendritic carbon networks supporting Al2O3 nanoparticles, was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate, Al3+ and urea. The obtained carbon-supported Al2O3 hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state. The introduction of urea enhances the surface N content, the ratio of pyrrolic N, and specific surface area of catalyst, leading to improved adsorption capacity of CO and the accessibility of active sites. In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor, Al2O3/C-u catalyst achieved a 90% conversion of furfural with 98.0% selectivity to furfuryl alcohol, outperforming that of commercial γ-Al2O3. Moreover, Al2O3/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al2O3 nanoparticles. This work provides an innovative and facile strategy for fabrication of carbon-supported Al2O3 hybrid catalysts with rich AlV species, serving as a high selective hydrogenation catalyst through MPV reaction route.