Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.
结直肠癌(CRC)是全球最常见的癌症之一。目前,由于肿瘤发生机制复杂,同时抑制多个靶点是一种重要的抗癌策略。最近的研究表明,受体酪氨酸激酶AXL(AXL)和组蛋白去乙酰化酶2(HDAC2)与结直肠癌密切相关。在此,我们通过虚拟筛选确定了五种同时靶向 AXL 和 HDAC2 的热门化合物。抑制实验显示,这些命中化合物在纳摩尔范围内对AXL和HDAC2具有强效抑制作用。其中,Hit-3的抑制效果最强,优于阳性对照组。此外,MD 试验表明,Hit-3 能与 AXL 和 HDAC2 的活性口袋稳定结合。进一步的 MTT 试验表明,Hit-3 具有很强的抗增殖活性。最重要的是,Hit-3 在异种移植模型中表现出显著的体内抗肿瘤疗效。总之,这项研究首次发现了用于结直肠癌治疗的 AXL/HDAC2 双靶向抑制剂。
{"title":"Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation.","authors":"Xiao Qiao, Xiangyu Wu, Shutong Chen, Miao-Miao Niu, Huilian Hua, Yan Zhang","doi":"10.1080/14756366.2023.2295241","DOIUrl":"10.1080/14756366.2023.2295241","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant <i>in vivo</i> antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2295241"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138885025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-28DOI: 10.1080/14756366.2024.2313055
Md Habibur Rahaman, Sara J Thygesen, Michael J Maxwell, Hyoyoung Kim, Prerna Mudai, Jeffrey D Nanson, Xinying Jia, Parimala R Vajjhala, Andrew Hedger, Irina Vetter, Thomas Haselhorst, Avril A B Robertson, Brian Dymock, Thomas Ve, Mehdi Mobli, Katryn J Stacey, Bostjan Kobe
Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.
Toll 样受体(Toll-like receptor,TLR)先天性免疫信号可保护人体免受病原体的侵害,但过度或长时间的信号传导会导致一系列炎症。有关 TLR 细胞质 TIR(Toll/白细胞介素-1 受体)结构域和下游适配蛋白的结构信息有助于我们开发针对这一途径的抑制剂。据报道,小分子邻香兰素是 TLR2 信号的抑制剂。为了研究其作用机制,我们测试了它与 TLR 适配蛋白 MAL/TIRAP (MALTIR)的 TIR 结构域的结合情况。我们发现邻香兰素能与 MALTIR 结合,并在体外抑制其高阶组装。通过核磁共振方法,我们发现邻香兰素与 MAL 的赖氨酸 210 形成了共价键。我们在小鼠和人体细胞中证实,邻香兰素能抑制 TLR2 信号,但不能抑制 TLR4 信号,这与 MAL 无关,表明邻香兰素可能直接共价修饰 TLR2 信号复合物。邻香兰素等含反应醛的小分子可能以细胞中的多种蛋白质为靶标。
{"title":"o-Vanillin binds covalently to MAL/TIRAP Lys-210 but independently inhibits TLR2.","authors":"Md Habibur Rahaman, Sara J Thygesen, Michael J Maxwell, Hyoyoung Kim, Prerna Mudai, Jeffrey D Nanson, Xinying Jia, Parimala R Vajjhala, Andrew Hedger, Irina Vetter, Thomas Haselhorst, Avril A B Robertson, Brian Dymock, Thomas Ve, Mehdi Mobli, Katryn J Stacey, Bostjan Kobe","doi":"10.1080/14756366.2024.2313055","DOIUrl":"10.1080/14756366.2024.2313055","url":null,"abstract":"<p><p>Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MAL<sup>TIR</sup>). We show that o-vanillin binds to MAL<sup>TIR</sup> and inhibits its higher-order assembly <i>in vitro</i>. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2313055"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-22DOI: 10.1080/14756366.2024.2377586
Juan Carlos García-Soriano, Héctor de Lucio, Daniel Elvira-Blázquez, Mercedes Alcón-Calderón, Natalia Sanz Del Olmo, Pedro A Sánchez-Murcia, Paula Ortega, Francisco Javier de la Mata, Antonio Jiménez-Ruiz
Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.
利什曼原虫属和锥虫属是相关寄生虫病的病原体。要在宿主体内生存,就必须有强大的抗氧化酶机制。在锥虫中已描述了四种铁超氧化物歧化酶(FeSODA、FeSODB1、FeSODB2 和 FeSODC),它们有可能成为治疗目标。然而,利用这些纯化酶进行的研究还很少。此外,FeSODC 在利什曼原虫中仍未定性。在这项工作中,我们首次描述了重组的四种利什曼原虫 FeSOD 同工酶的纯化和酶活性,并建立了开发抑制剂的改进策略。我们提出了一个新的参数[(V*cyt. c - Vcyt. c)/Vcyt. c],与经典的细胞色素 c 还原测定中使用的参数不同,该参数与酶浓度呈线性相关。作为概念验证,我们确定了两种钌碳硅烷金属二聚体对这些异构体的 IC50 值。
{"title":"The repertoire of iron superoxide dismutases from <i>Leishmania infantum</i> as targets in the search for therapeutic agents against leishmaniasis.","authors":"Juan Carlos García-Soriano, Héctor de Lucio, Daniel Elvira-Blázquez, Mercedes Alcón-Calderón, Natalia Sanz Del Olmo, Pedro A Sánchez-Murcia, Paula Ortega, Francisco Javier de la Mata, Antonio Jiménez-Ruiz","doi":"10.1080/14756366.2024.2377586","DOIUrl":"10.1080/14756366.2024.2377586","url":null,"abstract":"<p><p>Species of <i>Leishmania</i> and <i>Trypanosoma</i> genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in <i>Leishmania</i>. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four <i>Leishmania</i> FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(<i>V</i>*<sub>cyt. c</sub> - <i>V</i><sub>cyt. c</sub>)/<i>V</i><sub>cyt. c</sub>] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC<sub>50</sub> values of two ruthenium carbosilane metallodendrimers against these isoforms.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2377586"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A series of novel benzimidazole derivatives were designed and synthesised based on the structures of reported oral available ALK inhibitor and HDAC inhibitor, pracinostat. In enzymatic assays, compound 3b, containing a 2-acyliminobenzimidazole moiety and hydroxamic acid side chain, could inhibit both ALK and HDAC6 (IC50 = 16 nM and 1.03 µM, respectively). Compound 3b also inhibited various ALK mutants known to be involved in crizotinib resistance, including mutant L1196M (IC50, 4.9 nM). Moreover, 3b inhibited the proliferation of several cancer cell lines, including ALK-addicted H2228 cells. To evaluate its potential for treating cancers in vivo, 3b was used in a human A549 xenograft model with BALB/c nude mice. At 20 mg/kg, 3b inhibited tumour growth by 85% yet had a negligible effect on mean body weight. These results suggest a attracting route for the further research and optimisation of dual ALK/HDAC inhibitors.
{"title":"Discovery of novel anaplastic lymphoma kinase (ALK) and histone deacetylase (HDAC) dual inhibitors exhibiting antiproliferative activity against non-small cell lung cancer.","authors":"Kang-Li Wang, Tsung-Yu Yeh, Pei-Chen Hsu, Tzu-Hsuan Wong, Jia-Rong Liu, Ji-Wang Chern, Miao-Hsia Lin, Chao-Wu Yu","doi":"10.1080/14756366.2024.2318645","DOIUrl":"10.1080/14756366.2024.2318645","url":null,"abstract":"<p><p>A series of novel benzimidazole derivatives were designed and synthesised based on the structures of reported oral available ALK inhibitor and HDAC inhibitor, pracinostat. In enzymatic assays, compound <b>3b</b>, containing a 2-acyliminobenzimidazole moiety and hydroxamic acid side chain, could inhibit both ALK and HDAC6 (IC<sub>50</sub> = 16 nM and 1.03 µM, respectively). Compound <b>3b</b> also inhibited various ALK mutants known to be involved in crizotinib resistance, including mutant L1196M (IC<sub>50</sub>, 4.9 nM). Moreover, <b>3b</b> inhibited the proliferation of several cancer cell lines, including ALK-addicted H2228 cells. To evaluate its potential for treating cancers <i>in vivo</i>, <b>3b</b> was used in a human A549 xenograft model with BALB/c nude mice. At 20 mg/kg, <b>3b</b> inhibited tumour growth by 85% yet had a negligible effect on mean body weight. These results suggest a attracting route for the further research and optimisation of dual ALK/HDAC inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2318645"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-29DOI: 10.1080/14756366.2024.2383886
Leyuan Chen, Zhonghao Ren, Yunze Zhang, Wenbin Hou, Yiliang Li
Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.
{"title":"Design, synthesis, and evaluation of novel stilbene derivatives that degrade acidic nucleoplasmic DNA-binding protein 1 (And1) and synergize with PARP1 inhibitor in NSCLC cells.","authors":"Leyuan Chen, Zhonghao Ren, Yunze Zhang, Wenbin Hou, Yiliang Li","doi":"10.1080/14756366.2024.2383886","DOIUrl":"10.1080/14756366.2024.2383886","url":null,"abstract":"<p><p>Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance <i>in vitro</i> and <i>in vivo</i>. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, <b>A15</b> with a \"V\" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of <b>A15</b> significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2383886"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-29DOI: 10.1080/14756366.2024.2315227
Liuzeng Chen, Ke Wang, Xiaohan Liu, Lifan Wang, Hui Zou, Shuying Hu, Lingling Zhou, Rong Li, Shiying Cao, Banfeng Ruan, Quanren Cui
Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound E2 was the most active (against NO: IC50 = 0.7 μM) than celecoxib. Further studies showed that compound E2 exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. In vivo experiments revealed that compound E2 had a good alleviating effect on acute colitis in mice. In conclusion, compound E2 may be a promising anti-inflammatory lead compound.
{"title":"Design, synthesis, <i>in vitro</i> and <i>in vivo</i> biological evaluation of pterostilbene derivatives for anti-inflammation therapy.","authors":"Liuzeng Chen, Ke Wang, Xiaohan Liu, Lifan Wang, Hui Zou, Shuying Hu, Lingling Zhou, Rong Li, Shiying Cao, Banfeng Ruan, Quanren Cui","doi":"10.1080/14756366.2024.2315227","DOIUrl":"10.1080/14756366.2024.2315227","url":null,"abstract":"<p><p>Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound <b>E2</b> was the most active (against NO: IC<sub>50</sub> = 0.7 μM) than celecoxib. Further studies showed that compound <b>E2</b> exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. <i>In vivo</i> experiments revealed that compound <b>E2</b> had a good alleviating effect on acute colitis in mice. In conclusion, compound <b>E2</b> may be a promising anti-inflammatory lead compound.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2315227"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-21DOI: 10.1080/14756366.2024.2367139
Jiří Řehulka, Michal Jurášek, Pavel Dráber, Aleksandra Ivanová, Soňa Gurská, Kateřina Ječmeňová, Olena Mokshyna, Marián Hajdúch, Pavel Polishchuk, Pavel B Drašar, Petr Džubák
Estradiol dimers (EDs) possess significant anticancer activity by targeting tubulin dynamics. In this study, we synthesised 12 EDs variants via copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, focusing on structural modifications within the aromatic bridge connecting two estradiol moieties. In vitro testing of these EDs revealed a marked improvement in selectivity towards cancerous cells, particularly for ED1-8. The most active compounds, ED3 (IC50 = 0.38 μM in CCRF-CEM) and ED5 (IC50 = 0.71 μM in CCRF-CEM) demonstrated cytotoxic effects superior to 2-methoxyestradiol (IC50 = 1.61 μM in CCRF-CEM) and exhibited anti-angiogenic properties in an endothelial cell tube-formation model. Cell-based experiments and in vitro assays revealed that EDs interfere with mitotic spindle assembly. Additionally, we proposed an in silico model illustrating the probable binding modes of ED3 and ED5, suggesting that dimers with a simple linker and a single substituent on the aromatic central ring possess enhanced characteristics compared to more complex dimers.
{"title":"Click estradiol dimers with novel aromatic bridging units: synthesis and anticancer evaluation.","authors":"Jiří Řehulka, Michal Jurášek, Pavel Dráber, Aleksandra Ivanová, Soňa Gurská, Kateřina Ječmeňová, Olena Mokshyna, Marián Hajdúch, Pavel Polishchuk, Pavel B Drašar, Petr Džubák","doi":"10.1080/14756366.2024.2367139","DOIUrl":"10.1080/14756366.2024.2367139","url":null,"abstract":"<p><p>Estradiol dimers (EDs) possess significant anticancer activity by targeting tubulin dynamics. In this study, we synthesised 12 EDs variants via copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, focusing on structural modifications within the aromatic bridge connecting two estradiol moieties. <i>In vitro</i> testing of these EDs revealed a marked improvement in selectivity towards cancerous cells, particularly for ED1-8. The most active compounds, ED3 (IC<sub>50</sub> = 0.38 μM in CCRF-CEM) and ED5 (IC<sub>50</sub> = 0.71 μM in CCRF-CEM) demonstrated cytotoxic effects superior to 2-methoxyestradiol (IC<sub>50</sub> = 1.61 μM in CCRF-CEM) and exhibited anti-angiogenic properties in an endothelial cell tube-formation model. Cell-based experiments and <i>in vitro</i> assays revealed that EDs interfere with mitotic spindle assembly. Additionally, we proposed an <i>in silico</i> model illustrating the probable binding modes of ED3 and ED5, suggesting that dimers with a simple linker and a single substituent on the aromatic central ring possess enhanced characteristics compared to more complex dimers.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2367139"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-14DOI: 10.1080/14756366.2024.2388209
Hassan Gamal, Khadiga A Ismail, A-Mohsen M E Omar, Mohamed Teleb, Marwa M Abu-Serie, Sun Huang, Abdalla S Abdelsattar, Gerald W Zamponi, Hesham Fahmy
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
{"title":"Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors.","authors":"Hassan Gamal, Khadiga A Ismail, A-Mohsen M E Omar, Mohamed Teleb, Marwa M Abu-Serie, Sun Huang, Abdalla S Abdelsattar, Gerald W Zamponi, Hesham Fahmy","doi":"10.1080/14756366.2024.2388209","DOIUrl":"10.1080/14756366.2024.2388209","url":null,"abstract":"<p><p>Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that <b>6d</b> has a balanced profile of cytotoxicity (IC<sub>50</sub> = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC<sub>50</sub> = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that <b>6d</b> synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC<sub>50</sub> by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2388209"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-15DOI: 10.1080/14756366.2024.2412865
Yujuan Li, Luyou Yelv, Xiaoqiu Wu, Ning Liu, Yamin Zhu
1'-Hydroxy-4',8,8'-trimethoxy-[2,2'-binaphthalene]-1,4-dione (compound 5), a secondary metabolite recently discovered in marine fungi, demonstrates promising cytotoxic and anticancer potential. However, knowledge regarding the anticancer activities and biological mechanisms of its derivatives remains limited. Herein, a series of novel naphthoquinone-naphthol derivatives were designed, synthesised, and evaluated for their anticancer activity against cancer cells of different origins. Among these, Compound 13, featuring an oxopropyl group at the ortho-position of quinone group, exhibited the most potent inhibitory effects on HCT116, PC9, and A549 cells, with IC50 values decreasing from 5.27 to 1.18 μM (4.5-fold increase), 6.98 to 0.57 μM (12-fold increase), and 5.88 to 2.25 μM (2.6-fold increase), respectively, compared to compound 5. Further mechanistic studies revealed that compound 13 significantly induced cell apoptosis by increasing the expression levels of cleaved caspase-3 and reducing Bcl-2 proteins through downregulating the EGFR/PI3K/Akt signalling pathway, leading to the inhibition of proliferation in HCT116 and PC9 cells. The present findings suggest this novel naphthoquinone-naphthol derivative may hold potential as an anticancer therapeutic lead.
{"title":"Design, synthesis and biological evaluation of marine naphthoquinone-naphthol derivatives as potential anticancer agents.","authors":"Yujuan Li, Luyou Yelv, Xiaoqiu Wu, Ning Liu, Yamin Zhu","doi":"10.1080/14756366.2024.2412865","DOIUrl":"https://doi.org/10.1080/14756366.2024.2412865","url":null,"abstract":"<p><p>1'-Hydroxy-4',8,8'-trimethoxy-[2,2'-binaphthalene]-1,4-dione (compound <b>5</b>), a secondary metabolite recently discovered in marine fungi, demonstrates promising cytotoxic and anticancer potential. However, knowledge regarding the anticancer activities and biological mechanisms of its derivatives remains limited. Herein, a series of novel naphthoquinone-naphthol derivatives were designed, synthesised, and evaluated for their anticancer activity against cancer cells of different origins. Among these, Compound <b>13</b>, featuring an oxopropyl group at the <i>ortho</i>-position of quinone group, exhibited the most potent inhibitory effects on HCT116, PC9, and A549 cells, with IC<sub>50</sub> values decreasing from 5.27 to 1.18 μM (4.5-fold increase), 6.98 to 0.57 μM (12-fold increase), and 5.88 to 2.25 μM (2.6-fold increase), respectively, compared to compound <b>5</b>. Further mechanistic studies revealed that compound <b>13</b> significantly induced cell apoptosis by increasing the expression levels of cleaved caspase-3 and reducing Bcl-2 proteins through downregulating the EGFR/PI3K/Akt signalling pathway, leading to the inhibition of proliferation in HCT116 and PC9 cells. The present findings suggest this novel naphthoquinone-naphthol derivative may hold potential as an anticancer therapeutic lead.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2412865"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-08DOI: 10.1080/14756366.2024.2423174
Christine A Morcos, Nesreen S Haiba, Rafik W Bassily, Marwa M Abu-Serie, Amira F El-Yazbi, Omar A Soliman, Sherine N Khattab, Mohamed Teleb
A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. 7a and 7g surpassed doxorubicin against HCT-116 cells regarding potency (IC50 = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). 7g was potent against liver cancer (HepG-2; IC50 = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). 7g surpassed NNGH against MMP-10 (IC50 = 0.205 μM) and MMP-13 (IC50 = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.
{"title":"Structure optimization and molecular dynamics studies of new tumor-selective <i>s</i>-triazines targeting DNA and MMP-10/13 for halting colorectal and secondary liver cancers.","authors":"Christine A Morcos, Nesreen S Haiba, Rafik W Bassily, Marwa M Abu-Serie, Amira F El-Yazbi, Omar A Soliman, Sherine N Khattab, Mohamed Teleb","doi":"10.1080/14756366.2024.2423174","DOIUrl":"10.1080/14756366.2024.2423174","url":null,"abstract":"<p><p>A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. <b>7a</b> and <b>7g</b> surpassed doxorubicin against HCT-116 cells regarding potency (IC<sub>50</sub> = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). <b>7g</b> was potent against liver cancer (HepG-2; IC<sub>50</sub> = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). <b>7g</b> surpassed NNGH against MMP-10 (IC<sub>50</sub> = 0.205 μM) and MMP-13 (IC<sub>50</sub> = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2423174"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}