Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.
{"title":"Anilino-1,4-naphthoquinones as potent mushroom tyrosinase inhibitors: <i>in vitro</i> and <i>in silico</i> studies.","authors":"Sahachai Sabuakham, Sutita Nasoontorn, Napat Kongtaworn, Thanyada Rungrotmongkol, Atit Silsirivanit, Ratchanok Pingaew, Panupong Mahalapbutr","doi":"10.1080/14756366.2024.2357174","DOIUrl":"10.1080/14756366.2024.2357174","url":null,"abstract":"<p><p>Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, <i>in vitro</i> and <i>in silico</i> techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (<b>1</b>, <b>5</b>, and <b>10</b>) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds <b>1</b>, <b>5</b>, and particularly <b>10</b> displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2357174"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-19DOI: 10.1080/14756366.2024.2423875
Hongting Li, Mei-Qi Jia, Zhao-Long Qin, Changliang Lu, Weili Chu, Ze Zhang, Jinbo Niu, Jian Song, Sai-Yang Zhang, Lijun Fu
In this work, thirty 2,4-diarylaminopyrimidine-based hydrazones were designed, synthesised, and their anti-thyroid cancer activity were explored. The majority of compounds exhibit moderate to excellent cytotoxic activity against FAK overexpressing TPC-1 cells, with IC50 values ranging from 0.113 to 1.460 μM. Among them, compound 14f displayed exceptional anti-proliferative effect against TPC-1 cells (IC50 = 0.113 μM) and potent FAK inhibitory potency (IC50 = 35 nM). In silico studies indicated that compound 14f could well bind to FAK (Focal Adhesion Kinase) and have favourable pharmacokinetic profiles. In addition, compound 14f could inhibit the phosphorylation of FAK at Tyr397, Tyr576/577 and Tyr925, and did not affect the expression level of FAK in TPC-1 cells. Compound 14f was also effective in inhibiting the proliferation and migration of thyroid cancer cells TPC-1. Thus, these novel 4-arylaminopyrimidine hydrazone derivatives exhibited potent anti-thyroid cancer activities through the inhibition of FAK.
{"title":"Discovery of novel 2,4-diarylaminopyrimidine hydrazone derivatives as potent anti-thyroid cancer agents capable of inhibiting FAK.","authors":"Hongting Li, Mei-Qi Jia, Zhao-Long Qin, Changliang Lu, Weili Chu, Ze Zhang, Jinbo Niu, Jian Song, Sai-Yang Zhang, Lijun Fu","doi":"10.1080/14756366.2024.2423875","DOIUrl":"10.1080/14756366.2024.2423875","url":null,"abstract":"<p><p>In this work, thirty 2,4-diarylaminopyrimidine-based hydrazones were designed, synthesised, and their anti-thyroid cancer activity were explored. The majority of compounds exhibit moderate to excellent cytotoxic activity against FAK overexpressing TPC-1 cells, with IC<sub>50</sub> values ranging from 0.113 to 1.460 μM. Among them, compound <b>14f</b> displayed exceptional anti-proliferative effect against TPC-1 cells (IC<sub>50</sub> = 0.113 μM) and potent FAK inhibitory potency (IC<sub>50</sub> = 35 nM). In <i>silico</i> studies indicated that compound <b>14f</b> could well bind to FAK (Focal Adhesion Kinase) and have favourable pharmacokinetic profiles. In addition, compound <b>14f</b> could inhibit the phosphorylation of FAK at Tyr397, Tyr576/577 and Tyr925, and did not affect the expression level of FAK in TPC-1 cells. Compound <b>14f</b> was also effective in inhibiting the proliferation and migration of thyroid cancer cells TPC-1. Thus, these novel 4-arylaminopyrimidine hydrazone derivatives exhibited potent anti-thyroid cancer activities through the inhibition of FAK.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2423875"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-09DOI: 10.1080/14756366.2024.2431832
Marija Bartolić, Ana Matošević, Nikola Maraković, Valentina Bušić, Sunčica Roca, Dražen Vikić-Topić, Antonio Sabljić, Anita Bosak, Dajana Gašo-Sokač
The growing prevalence of Alzheimer's disease calls for a drug that can simultaneously act towards several targets involved in the pathophysiology of the disease. In our study, we evaluated the potential of hydrazone and N-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde to be used as multi-target directed ligands targeting cholinergic system by inhibiting acetyl- and butyrylcholinesterase, lowering the accumulation of β-amyloid plaques by inhibiting both the β-secretase activity and amyloid self-aggregation, and maintaining the biometal balance by chelating certain biometals. Our results showed that all of the tested hydrazones were potent inhibitors of human cholinesterases with inhibition constants (Ki) in micromolar range able to lower the activity of β-secretase, inhibit amyloid aggregation, chelate biometals and act as antioxidants. Also, most of them were estimated to be able to cross the blood-brain barrier by passive transport and to be absorbed in human intestines as well as with moderate metabolic stability in liver microsomes.
{"title":"Evaluation of hydrazone and <i>N</i>-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde as potential drugs against Alzheimer's disease.","authors":"Marija Bartolić, Ana Matošević, Nikola Maraković, Valentina Bušić, Sunčica Roca, Dražen Vikić-Topić, Antonio Sabljić, Anita Bosak, Dajana Gašo-Sokač","doi":"10.1080/14756366.2024.2431832","DOIUrl":"10.1080/14756366.2024.2431832","url":null,"abstract":"<p><p>The growing prevalence of Alzheimer's disease calls for a drug that can simultaneously act towards several targets involved in the pathophysiology of the disease. In our study, we evaluated the potential of hydrazone and <i>N</i>-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde to be used as multi-target directed ligands targeting cholinergic system by inhibiting acetyl- and butyrylcholinesterase, lowering the accumulation of β-amyloid plaques by inhibiting both the β-secretase activity and amyloid self-aggregation, and maintaining the biometal balance by chelating certain biometals. Our results showed that all of the tested hydrazones were potent inhibitors of human cholinesterases with inhibition constants (<i>K</i>i) in micromolar range able to lower the activity of β-secretase, inhibit amyloid aggregation, chelate biometals and act as antioxidants. Also, most of them were estimated to be able to cross the blood-brain barrier by passive transport and to be absorbed in human intestines as well as with moderate metabolic stability in liver microsomes.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2431832"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-12-07DOI: 10.1080/14756366.2023.2286935
Kaitlyn N Alcorn, Isabelle A Oberhauser, Matthew D Politeski, Todd J Eckroat
Two series of N-alkyl isatins and N-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the N-alkyl isatins 4a-j, the addition of the N-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the N-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was 4i (IC50 = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles 5a-j showed similar inhibition of AChE, the most potent being 5g (IC50 = 35.0 µM), but 5a-j lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of 4i with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.
{"title":"Evaluation of <i>N</i>-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors.","authors":"Kaitlyn N Alcorn, Isabelle A Oberhauser, Matthew D Politeski, Todd J Eckroat","doi":"10.1080/14756366.2023.2286935","DOIUrl":"10.1080/14756366.2023.2286935","url":null,"abstract":"<p><p>Two series of <i>N</i>-alkyl isatins and <i>N</i>-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the <i>N</i>-alkyl isatins <b>4a</b>-<b>j</b>, the addition of the <i>N</i>-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the <i>N</i>-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was <b>4i</b> (IC<sub>50</sub> = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles <b>5a</b>-<b>j</b> showed similar inhibition of AChE, the most potent being <b>5g</b> (IC<sub>50</sub> = 35.0 µM), but <b>5a</b>-<b>j</b> lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of <b>4i</b> with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2286935"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-12-07DOI: 10.1080/14756366.2023.2290458
Chunqiong Li, Quanjun Yang, Li Zhang
Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.
{"title":"Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation.","authors":"Chunqiong Li, Quanjun Yang, Li Zhang","doi":"10.1080/14756366.2023.2290458","DOIUrl":"10.1080/14756366.2023.2290458","url":null,"abstract":"<p><p>Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with K<sub>d</sub> values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2290458"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-02DOI: 10.1080/14756366.2024.2394895
Ashley P Dudey, Jake M Rigby, Gregory R Hughes, G Richard Stephenson, Thomas E Storr, Andrew Chantry, Andrew M Hemmings
The HECT E3 ubiquitin ligases 1 (WWP1) and 2 (WWP2) are responsible for the ubiquitin-mediated degradation of key tumour suppressor proteins and are dysregulated in various cancers and diseases. Here we expand their limited inhibitor space by identification of NSC-217913 displaying a WWP1 IC50 of 158.3 µM (95% CI = 128.7, 195.1 µM). A structure-activity relationship by synthesis approach aided by molecular docking led to compound 11 which displayed increased potency with an IC50 of 32.7 µM (95% CI = 24.6, 44.3 µM) for WWP1 and 269.2 µM (95% CI = 209.4, 347.9 µM) for WWP2. Molecular docking yielded active site-bound poses suggesting that the heterocyclic imidazo[4,5-b]pyrazine scaffold undertakes a π-stacking interaction with the phenolic group of tyrosine, and the ethyl ester enables strong ion-dipole interactions. Given the therapeutic potential of WWP1 and WWP2, we propose that compound 11 may provide a basis for future lead compound development.
{"title":"Expanding the inhibitor space of the WWP1 and WWP2 HECT E3 ligases.","authors":"Ashley P Dudey, Jake M Rigby, Gregory R Hughes, G Richard Stephenson, Thomas E Storr, Andrew Chantry, Andrew M Hemmings","doi":"10.1080/14756366.2024.2394895","DOIUrl":"10.1080/14756366.2024.2394895","url":null,"abstract":"<p><p>The HECT E3 ubiquitin ligases 1 (WWP1) and 2 (WWP2) are responsible for the ubiquitin-mediated degradation of key tumour suppressor proteins and are dysregulated in various cancers and diseases. Here we expand their limited inhibitor space by identification of NSC-217913 displaying a WWP1 IC<sub>50</sub> of 158.3 µM (95% CI = 128.7, 195.1 µM). A structure-activity relationship by synthesis approach aided by molecular docking led to compound <b>11</b> which displayed increased potency with an IC<sub>50</sub> of 32.7 µM (95% CI = 24.6, 44.3 µM) for WWP1 and 269.2 µM (95% CI = 209.4, 347.9 µM) for WWP2. Molecular docking yielded active site-bound poses suggesting that the heterocyclic imidazo[4,5-<i>b</i>]pyrazine scaffold undertakes a π-stacking interaction with the phenolic group of tyrosine, and the ethyl ester enables strong ion-dipole interactions. Given the therapeutic potential of WWP1 and WWP2, we propose that compound 11 may provide a basis for future lead compound development.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2394895"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-23DOI: 10.1080/14756366.2024.2395985
Fatmah Ali S Alasmary, Dalal A Abdullah, Vijay H Masand, Abir Ben Bacha, Abdelsattar Mansour Omar Ebeid, Moustafa E El-Araby, Ahmed M Alafeefy
Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds 5a-d and 6a-d were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound 6a as a potent sPLA2 inhibitor (IC50 = 0.0475 µM), whereas compound 6c most effectively inhibited α-glucosidase (IC50 = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound 6a was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.
{"title":"Synthesis, molecular modelling, and biological evaluation of novel quinoxaline derivatives for treating type II diabetes.","authors":"Fatmah Ali S Alasmary, Dalal A Abdullah, Vijay H Masand, Abir Ben Bacha, Abdelsattar Mansour Omar Ebeid, Moustafa E El-Araby, Ahmed M Alafeefy","doi":"10.1080/14756366.2024.2395985","DOIUrl":"10.1080/14756366.2024.2395985","url":null,"abstract":"<p><p>Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds <b>5a-d</b> and <b>6a-d</b> were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound <b>6a</b> as a potent sPLA2 inhibitor (IC<sub>50</sub> = 0.0475 µM), whereas compound <b>6c</b> most effectively inhibited α-glucosidase (IC<sub>50</sub> = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound <b>6a</b> was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2395985"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An oxidising and substituting one-pot reaction strategy has been developed to synthesise dihydromyricetin derivatives with the aim of enhancing the inhibitory activity of dihydromyricetin against SARS-CoV-2. Different ω-methoxy-ω-oxeylkyl was introduced in C7-OH site and yielded eight analogs, all of them showed good inhibitory activity against SARS-CoV-2 3CLpro with IC50 values ranging from 0.72 to 2.36 μM. In the Vero E6-cell, compound 3 has a good activity of anti-SARS-CoV-2 virus (Omicron virus BA.5) in the prevention model, with an EC50 of 15.84 μM, and so do compound 10 in the therapeutic model, with an EC50 of 11.52 μM. The results suggest that the introduction of long chain ω-oxeylkyl at C7-OH facilitate the inhibition of viral replication in the therapeutic model, which is consistent with the binding energies predicted from molecular docking conclusions. It implies that dihydromyricetin derivatives have the potential to become effective inhibitors of SARS-CoV-2 Omicron and other viruses.
{"title":"Design, synthesis, and biological activity evaluation of dihydromyricetin derivatives against SARS-CoV-2-Omicron virus.","authors":"Cong Wu, Qi Jiang, Hui Zhong, Xudong Zhou, Leping Liu, Tong Pan, Chao Liu, Wei Wang, Wenbing Sheng","doi":"10.1080/14756366.2024.2390909","DOIUrl":"https://doi.org/10.1080/14756366.2024.2390909","url":null,"abstract":"<p><p>An oxidising and substituting one-pot reaction strategy has been developed to synthesise dihydromyricetin derivatives with the aim of enhancing the inhibitory activity of dihydromyricetin against SARS-CoV-2. Different <i>ω</i>-methoxy-<i>ω</i>-oxeylkyl was introduced in C<sub>7</sub>-OH site and yielded eight analogs, all of them showed good inhibitory activity against SARS-CoV-2 3CL<sup>pro</sup> with IC<sub>50</sub> values ranging from 0.72 to 2.36 μM. In the Vero E6-cell, compound <b>3</b> has a good activity of anti-SARS-CoV-2 virus (Omicron virus BA.5) in the prevention model, with an EC<sub>50</sub> of 15.84 μM, and so do compound <b>10</b> in the therapeutic model, with an EC<sub>50</sub> of 11.52 μM. The results suggest that the introduction of long chain <i>ω</i>-oxeylkyl at C<sub>7</sub>-OH facilitate the inhibition of viral replication in the therapeutic model, which is consistent with the binding energies predicted from molecular docking conclusions. It implies that dihydromyricetin derivatives have the potential to become effective inhibitors of SARS-CoV-2 Omicron and other viruses.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2390909"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1080/14756366.2024.2419925
Yong-Sung Choi, Yoon-Jung Kim, Yeram Jeon, Jong Soon Kang, Juhee Lee, Eunmi Hong, Young-Hoon Park, Wantae Kim, Boksik Cha, Raok Jeon
Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket. We anticipate that precise targeting of the polar side pocket could facilitate the discovery of inhibitors with enhanced potencies and properties. Herein, we selected niflumic acid as the core scaffold suitable for targeting the three characteristic components of TEAD palmitate pocket. Reversible and irreversible compounds with substituents capable of directing each part of the palmitate pocket were designed. The newly synthesised compounds inhibited the palmitoylation and transcriptional activity of TEAD and elicited growth-inhibitory effects against several carcinomas, including mesothelioma.
{"title":"Exploring structural and biological insights of TEAD through rational design and synthesis of niflumic acid derivatives.","authors":"Yong-Sung Choi, Yoon-Jung Kim, Yeram Jeon, Jong Soon Kang, Juhee Lee, Eunmi Hong, Young-Hoon Park, Wantae Kim, Boksik Cha, Raok Jeon","doi":"10.1080/14756366.2024.2419925","DOIUrl":"10.1080/14756366.2024.2419925","url":null,"abstract":"<p><p>Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket. We anticipate that precise targeting of the polar side pocket could facilitate the discovery of inhibitors with enhanced potencies and properties. Herein, we selected niflumic acid as the core scaffold suitable for targeting the three characteristic components of TEAD palmitate pocket. Reversible and irreversible compounds with substituents capable of directing each part of the palmitate pocket were designed. The newly synthesised compounds inhibited the palmitoylation and transcriptional activity of TEAD and elicited growth-inhibitory effects against several carcinomas, including mesothelioma.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2419925"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-22DOI: 10.1080/14756366.2024.2301758
Roaa S Bibars, Qosay A Al-Balas
In this study, a fragment-based drug design approach, particularly de novo drug design, was implemented utilising three different crystal structures in order to discover new privileged scaffolds against glyoxalase-I enzyme as anticancer agents. The fragments were evoluted to indicate potential inhibitors with high receptor affinities. The resulting compounds were served as a benchmark for choosing similar compounds from the ASINEX® database by applying different computational ligand-based drug design techniques. Afterwards, the selection of potential hits was further aided by various structure-based approaches. Then, 14 compounds were purchased, and tested in vitro against Glo-I enzyme. Of the tested 14 hits, the biological screening results showed humble activities where the percentage of Glo-I inhibition ranged from 0-18.70 %. Compound 19 and compound 28, whose percentage of inhibitions are 18.70 and 15.80%, respectively, can be considered as hits that need further optimisation in order to be converted into lead-like compounds.
{"title":"Computational fragment-based drug design of potential Glo-I inhibitors.","authors":"Roaa S Bibars, Qosay A Al-Balas","doi":"10.1080/14756366.2024.2301758","DOIUrl":"10.1080/14756366.2024.2301758","url":null,"abstract":"<p><p>In this study, a fragment-based drug design approach, particularly <i>de novo</i> drug design, was implemented utilising three different crystal structures in order to discover new privileged scaffolds against glyoxalase-I enzyme as anticancer agents. The fragments were evoluted to indicate potential inhibitors with high receptor affinities. The resulting compounds were served as a benchmark for choosing similar compounds from the ASINEX® database by applying different computational ligand-based drug design techniques. Afterwards, the selection of potential hits was further aided by various structure-based approaches. Then, 14 compounds were purchased, and tested <i>in vitro</i> against Glo-I enzyme. Of the tested 14 hits, the biological screening results showed humble activities where the percentage of Glo-I inhibition ranged from 0-18.70 %. Compound <b>19</b> and compound <b>28</b>, whose percentage of inhibitions are 18.70 and 15.80%, respectively, can be considered as hits that need further optimisation in order to be converted into lead-like compounds.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2301758"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}