首页 > 最新文献

Journal of Enzyme Inhibition and Medicinal Chemistry最新文献

英文 中文
Novel dual-targeting inhibitors of NSD2 and HDAC2 for the treatment of liver cancer: structure-based virtual screening, molecular dynamics simulation, and in vitro and in vivo biological activity evaluations. 新型NSD2和HDAC2双靶向抑制剂治疗肝癌:基于结构的虚拟筛选、分子动力学模拟和体内外生物活性评价
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2023-12-07 DOI: 10.1080/14756366.2023.2289355
Xing Jin, Yuting Wang, Jing Chen, Miaomiao Niu, Yang Yang, Qiaoxuan Zhang, Guangyu Bao

Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC50 = 0.08 ± 0.03 μM) and HDAC2 (IC50 = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.

肝癌表现出高度的异质性,涉及复杂的机制。最近的研究揭示了组蛋白赖氨酸甲基化和乙酰化在肝癌发生的表观遗传调控中的重要作用。在这项研究中,使用基于结构的虚拟筛选方法鉴定了五种能够同时靶向组蛋白赖氨酸甲基转移酶核受体结合SET结构域2 (NSD2)和组蛋白去乙酰化酶2 (HDAC2)的抑制剂。DT-NH-1对NSD2 (IC50 = 0.08±0.03 μM)和HDAC2 (IC50 = 5.24±0.87 nM)具有明显的抑制作用。DT-NH-1对多种肝癌细胞系,特别是HepG2细胞具有较强的抗增殖活性,具有较高的生物安全性。在HepG2细胞的实验性异种移植模型中,DT-NH-1显示肿瘤生长明显减少。因此,这些发现表明,DT-NH-1将是一种有希望的先导化合物,用于治疗肝癌的表观遗传双靶点抑制剂。
{"title":"Novel dual-targeting inhibitors of NSD2 and HDAC2 for the treatment of liver cancer: structure-based virtual screening, molecular dynamics simulation, and <i>in vitro</i> and <i>in vivo</i> biological activity evaluations.","authors":"Xing Jin, Yuting Wang, Jing Chen, Miaomiao Niu, Yang Yang, Qiaoxuan Zhang, Guangyu Bao","doi":"10.1080/14756366.2023.2289355","DOIUrl":"10.1080/14756366.2023.2289355","url":null,"abstract":"<p><p>Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC<sub>50</sub> = 0.08 ± 0.03 μM) and HDAC2 (IC<sub>50</sub> = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of novel ALOX15 inhibitors combining dual machine learning filtering and fragment substitution optimisation approaches, molecular docking and dynamic simulation methods. 结合双重机器学习过滤和片段置换优化方法、分子对接和动态模拟方法,开发新型 ALOX15 抑制剂。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-01-12 DOI: 10.1080/14756366.2024.2301756
Yinglin Liao, Peng Cao, Lianxiang Luo

The oxidation of unsaturated lipids, facilitated by the enzyme Arachidonic acid 15-lipoxygenase (ALOX15), is an essential element in the development of ferroptosis. This study combined a dual-score exclusion strategy with high-throughput virtual screening, naive Bayesian and recursive partitioning machine learning models, the already established ALOX15 inhibitor i472, and a docking-based fragment substitution optimisation approach to identify potential ALOX15 inhibitors, ultimately leading to the discovery of three FDA-approved drugs that demonstrate optimal inhibitory potential against ALOX15. Through fragment substitution-based optimisation, seven new inhibitor structures have been developed. To evaluate their practicality, ADMET predictions and molecular dynamics simulations were performed. In conclusion, the compounds found in this study provide a novel approach to combat conditions related to ferroptosis-related injury by inhibiting ALOX15.

花生四烯酸-15-脂氧合酶(ALOX15)促进了不饱和脂质的氧化,而不饱和脂质的氧化是铁变态反应发展过程中的一个重要因素。这项研究将双核排除策略与高通量虚拟筛选、天真贝叶斯和递归分区机器学习模型、已经确立的ALOX15抑制剂i472以及基于对接的片段置换优化方法相结合,以确定潜在的ALOX15抑制剂,最终发现了三种FDA批准的药物,它们对ALOX15具有最佳的抑制潜力。通过基于片段置换的优化,开发出了七种新的抑制剂结构。为了评估它们的实用性,进行了 ADMET 预测和分子动力学模拟。总之,本研究中发现的化合物为通过抑制 ALOX15 来对抗与铁突变相关的损伤提供了一种新方法。
{"title":"Development of novel ALOX15 inhibitors combining dual machine learning filtering and fragment substitution optimisation approaches, molecular docking and dynamic simulation methods.","authors":"Yinglin Liao, Peng Cao, Lianxiang Luo","doi":"10.1080/14756366.2024.2301756","DOIUrl":"10.1080/14756366.2024.2301756","url":null,"abstract":"<p><p>The oxidation of unsaturated lipids, facilitated by the enzyme Arachidonic acid 15-lipoxygenase (ALOX15), is an essential element in the development of ferroptosis. This study combined a dual-score exclusion strategy with high-throughput virtual screening, naive Bayesian and recursive partitioning machine learning models, the already established ALOX15 inhibitor i472, and a docking-based fragment substitution optimisation approach to identify potential ALOX15 inhibitors, ultimately leading to the discovery of three FDA-approved drugs that demonstrate optimal inhibitory potential against ALOX15. Through fragment substitution-based optimisation, seven new inhibitor structures have been developed. To evaluate their practicality, ADMET predictions and molecular dynamics simulations were performed. In conclusion, the compounds found in this study provide a novel approach to combat conditions related to ferroptosis-related injury by inhibiting ALOX15.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of thymoquinone and the curcumin analog EF-24 on the activity of the enzyme paraoxonase-1 in human glioblastoma cells U87MG. 胸腺醌和姜黄素类似物 EF-24 对人胶质母细胞瘤细胞 U87MG 中副氧合酶-1 活性的影响。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-06-12 DOI: 10.1080/14756366.2024.2339901
Ender Simsek, Asuman Sunguroglu, Ahmet Kilic, Nurbanu Özgültekin, O Ozensoy Guler

The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (p < 0.0001).

香料和芳香草药不仅用于烹饪,为菜肴增添风味和香气,还可用于药用。Nigella sativa(又称黑孜然)是其中一种含有重要生物活性成分胸腺醌(TQ)的香料,具有抗氧化、抗炎、抗菌和抗糖尿病作用。姜黄也包括姜黄素,具有多种抗癌特性。然而,姜黄素的生物利用率低于其类似物。姜黄素的类似物(EF-24)比姜黄素具有更好的生物利用度,能够发挥很强的抗癌效果。在我们的研究中,我们从胶质母细胞瘤细胞系 U87MG 的裂解物中测定了 PON1 酶活性对使用 TQ 和 EF-24 治疗的胶质母细胞瘤的增殖和侵袭性的影响。结果表明,经 TQ 和 EF-24 处理后,U87MG 细胞系的 PON1 活性增加(p
{"title":"Effects of thymoquinone and the curcumin analog EF-24 on the activity of the enzyme paraoxonase-1 in human glioblastoma cells U87MG.","authors":"Ender Simsek, Asuman Sunguroglu, Ahmet Kilic, Nurbanu Özgültekin, O Ozensoy Guler","doi":"10.1080/14756366.2024.2339901","DOIUrl":"10.1080/14756366.2024.2339901","url":null,"abstract":"<p><p>The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (<i>p</i> < 0.0001).</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloning, expression, and purification of an α-carbonic anhydrase from Toxoplasma gondii to unveil its kinetic parameters and anion inhibition profile. 从弓形虫中克隆、表达和纯化一种α-碳酸酐酶,以揭示其动力学参数和阴离子抑制曲线。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-06-07 DOI: 10.1080/14756366.2024.2346523
Viviana De Luca, Simone Giovannuzzi, Clemente Capasso, Claudiu T Supuran

Toxoplasmosis, induced by the intracellular parasite Toxoplasma gondii, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within T. gondii, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, Trypanosoma cruzi, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the T. gondii genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for T. gondii survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.

由细胞内寄生虫弓形虫诱发的弓形虫病对全球健康具有重大影响。虽然主要针对叶酸途径酶的治疗方案有明显的局限性,但目前的研究工作主要集中在确定对寄生虫生存至关重要的特定代谢途径上。由于碳酸酐酶(CAs,EC 4.2.1.1)在对各种原生动物代谢过程至关重要的基本反应中的作用,它们已成为潜在的药物靶点。在淋球菌中,碳酸酐酶相关蛋白(TgCA_RP)在跳虫的生物发生过程中发挥着关键作用。值得注意的是,来自另一种原生动物克氏锥虫的α-CA(TcCA)对阴离子、磺酰胺类、硫醇类和羟酰胺类等经典 CA 抑制剂(CAIs)表现出相当大的敏感性。本文采用 DNA 重组技术合成并克隆了克鲁兹锥虫基因组中已确定的编码 α-CA 蛋白(Tg_CA)的基因,目的是异源过表达其相应的蛋白。测定了 Tg_CA 的动力学常数,并探索了其与无机金属络合化合物的抑制模式,这对合理设计化合物具有重要意义。这项研究的意义在于有可能开发出创新的治疗策略,破坏对淋球菌的生存和毒力至关重要的代谢途径。这项研究可能会开发出有针对性的治疗方法,为控制弓形虫病提供新的途径。
{"title":"Cloning, expression, and purification of an α-carbonic anhydrase from <i>Toxoplasma gondii</i> to unveil its kinetic parameters and anion inhibition profile.","authors":"Viviana De Luca, Simone Giovannuzzi, Clemente Capasso, Claudiu T Supuran","doi":"10.1080/14756366.2024.2346523","DOIUrl":"10.1080/14756366.2024.2346523","url":null,"abstract":"<p><p>Toxoplasmosis, induced by the intracellular parasite <i>Toxoplasma gondii</i>, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within <i>T. gondii</i>, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, <i>Trypanosoma cruzi</i>, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the <i>T. gondii</i> genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for <i>T. gondii</i> survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, and biological evaluation of (thio)urea derivatives as potent Escherichia coli β-glucuronidase inhibitors. 作为强效大肠杆菌β-葡糖醛酸酶抑制剂的(硫代)脲衍生物的设计、合成和生物学评价。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-14 DOI: 10.1080/14756366.2024.2387415
Keren Xu, Leyi Ying, Titi Ying, Qihao Wu, Lin Du, Yanlei Yu, Youmin Ying, Bin Wei, Hong Wang, Zhikun Yang

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 μM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 μM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 μM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.

EcGUS 因其作为缓解严重 GIAEs 的靶点而备受关注。本研究设计、合成了一系列 72 种(硫)脲衍生物,并对其进行了生物测定。生物测定结果显示,E-9(IC50 = 2.68 μM)对EcGUS具有良好的抑制作用,超过了EcGUS抑制剂D-蔗糖酸-1,4-内酯(DSL,IC50 = 45.8 μM)。此外,抑制动力学研究表明,E-9(Ki = 1.64 μM)是一种对 EcGUS 的非竞争性抑制剂。结构-活性关系显示,在苯环的对位上引入一个取电子基团有利于增强对 EcGUS 的抑制活性。此外,分子对接分析表明,E-9 通过与 Asp 163、Tyr 472 和 Glu 504 残基形成相互作用,对 EcGUS 具有很强的亲和力。总之,这些结果表明E-9可能是一种强效的EcGUS抑制剂,为今后开发针对EcGUS的抑制剂提供了宝贵的见解和指导。
{"title":"Design, synthesis, and biological evaluation of (thio)urea derivatives as potent <i>Escherichia coli β</i>-glucuronidase inhibitors.","authors":"Keren Xu, Leyi Ying, Titi Ying, Qihao Wu, Lin Du, Yanlei Yu, Youmin Ying, Bin Wei, Hong Wang, Zhikun Yang","doi":"10.1080/14756366.2024.2387415","DOIUrl":"10.1080/14756366.2024.2387415","url":null,"abstract":"<p><p>EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that <b>E-9</b> (IC<sub>50</sub> = 2.68 μM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC<sub>50</sub> = 45.8 μM). Additionally, the inhibitory kinetic study indicated that <b>E-9</b> (K<sub>i</sub> = 1.64 μM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the <i>para</i>-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that <b>E-9</b> has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that <b>E-9</b> could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of 1,3-disubstituted prop-2-en-1-one derivatives as inhibitors of neutrophilic inflammation via modulation of MAPK and Akt pathways. 发现通过调节 MAPK 和 Akt 通路作为中性粒细胞炎症抑制剂的 1,3 二甲基丙-2-烯-1-酮衍生物。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-19 DOI: 10.1080/14756366.2024.2402988
Mohammad Abdel-Halim, Dalia S El-Gamil, Mennatallah A Hammam, Mohamed El-Shazly, Yi-Hsuan Wang, Po-Hsiung Kung, Yu-Cheng Chen, Michal Korinek, Ashraf H Abadi, Matthias Engel, Tsong-Long Hwang

Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound 6a being most effective (IC50 values of 1.23 and 1.37 μM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound 26a (IC50 of 1.56 μM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.

以中性粒细胞功能为靶点,作为治疗各种炎症性疾病的一种有利策略,已引起人们的关注。因此,一系列基于烯酮的衍生物被开发出来,用于抑制中性粒细胞介导的炎症,显示出治疗炎症性疾病的前景。这些化合物分为两组,具有不同的作用:一组抑制中性粒细胞超氧化物(SO)阴离子的产生和 N-formyl-Met-Leu-Phe(fMLF)引发的弹性蛋白酶的释放,其中化合物 6a 最有效(IC50 值分别为 1.23 和 1.37 μM),影响 c-Jun N 端激酶(JNK)和 Akt 的磷酸化。第二组化合物抑制了 SO 阴离子的形成,但不影响弹性蛋白酶的水平,化合物 26a 的作用更胜一筹(IC50 值为 1.56 μM),它抑制了各种丝裂原活化蛋白激酶(MAPKs),对 Akt 的影响微乎其微。值得注意的是,所测试的化合物均未对人类中性粒细胞产生细胞毒性,这凸显了它们作为炎症性疾病治疗剂的潜力。
{"title":"Discovery of 1,3-disubstituted prop-2-en-1-one derivatives as inhibitors of neutrophilic inflammation via modulation of MAPK and Akt pathways.","authors":"Mohammad Abdel-Halim, Dalia S El-Gamil, Mennatallah A Hammam, Mohamed El-Shazly, Yi-Hsuan Wang, Po-Hsiung Kung, Yu-Cheng Chen, Michal Korinek, Ashraf H Abadi, Matthias Engel, Tsong-Long Hwang","doi":"10.1080/14756366.2024.2402988","DOIUrl":"10.1080/14756366.2024.2402988","url":null,"abstract":"<p><p>Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound <b>6a</b> being most effective (IC<sub>50</sub> values of 1.23 and 1.37 μM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound <b>26a</b> (IC<sub>50</sub> of 1.56 μM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of ortho-phenyl phenylhydroxamic acids containing phenothiazine with improved selectivity for class IIa histone deacetylases. 对 IIa 类组蛋白去乙酰化酶具有更好选择性的含吩噻嗪的正苯基苯基羟肟酸的合成和生物学评价。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1080/14756366.2024.2406025
Kai-Cheng Hsu, Yun-Yi Huang, Jung-Chun Chu, Yu-Wen Huang, Jing-Lan Hu, Tony Eight Lin, Shih-Chung Yen, Jing-Ru Weng, Wei-Jan Huang

Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid LH4f as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the ortho-phenyl group from the selective HDAC7 inhibitor 1 is incorporated into ortho position of the phenylhydroxamic acid in LH4f. Compared to LH4f, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound 7 g exhibited the strongest HDAC9 inhibition with an IC50 value of 40 nM. Molecular modelling further identified the key interactions of compound 7 g bound to HDAC9. Compound 7 g significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.

IIa类组蛋白去乙酰化酶(HDAC)与多种癌症的肿瘤发生有关。此前,我们设计了苯羟肟酸 LH4f 作为一种强效 IIa 类 HDAC 抑制剂。然而,它对 I 类和 IIb 类 HDAC 也有非选择性抑制作用。为了提高该化合物对 IIa 类 HDAC 的选择性,选择性 HDAC7 抑制剂 1 的正苯基被并入 LH4f 中苯基羟肟酸的正交位置。与 LH4f 相比,大多数所得化合物对 IIa 类 HDAC 的选择性都有大幅提高。值得注意的是,化合物 7 g 对 HDAC9 的抑制作用最强,其 IC50 值为 40 nM。分子建模进一步确定了化合物 7 g 与 HDAC9 结合的关键相互作用。化合物 7 g 能明显抑制多种人类癌细胞,诱导细胞凋亡,调节 Caspase 相关蛋白和 p38,并造成 DNA 损伤。这些发现表明,IIa 类 HDAC 抑制剂有可能成为开发癌症治疗药物的先导化合物。
{"title":"Synthesis and biological evaluation of <i>ortho</i>-phenyl phenylhydroxamic acids containing phenothiazine with improved selectivity for class IIa histone deacetylases.","authors":"Kai-Cheng Hsu, Yun-Yi Huang, Jung-Chun Chu, Yu-Wen Huang, Jing-Lan Hu, Tony Eight Lin, Shih-Chung Yen, Jing-Ru Weng, Wei-Jan Huang","doi":"10.1080/14756366.2024.2406025","DOIUrl":"10.1080/14756366.2024.2406025","url":null,"abstract":"<p><p>Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid <b>LH4f</b> as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the <i>ortho</i>-phenyl group from the selective HDAC7 inhibitor <b>1</b> is incorporated into <i>ortho</i> position of the phenylhydroxamic acid in <b>LH4f</b>. Compared to <b>LH4f</b>, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound <b>7 g</b> exhibited the strongest HDAC9 inhibition with an IC<sub>50</sub> value of 40 nM. Molecular modelling further identified the key interactions of compound <b>7 g</b> bound to HDAC9. Compound <b>7 g</b> significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel PD-1/PD-L1 small molecule inhibitors: virtual screening, synthesis and in vitro characterisation. 新型 PD-1/PD-L1 小分子抑制剂的鉴定:虚拟筛选、合成和体外表征。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-06-17 DOI: 10.1080/14756366.2024.2353711
Tingting Wu, Hu Cheng, Lijie Sima, Zhongyuan Wang, Weiwei Ouyang, Jianta Wang, Yunlei Hou, Dongsheng Zhao, Weike Liao, Chujiao Hu

The PD-1/PD-L1 pathway is considered as one of the most promising immune checkpoints in tumour immunotherapy. However, researchers are faced with the inherent limitations of antibodies, driving them to pursue PD-L1 small molecule inhibitors. Virtual screening followed by experimental validation is a proven approach to discover active compounds. In this study, we employed multistage virtual screening methods to screen multiple compound databases to predict new PD-1/PD-L1 ligands. 35 compounds were proposed by combined analysis of fitness scores, interaction pattern and MM-GBSA binding affinities. Enzymatic assay confirmed that 10 out of 35 ligands were potential PD-L1 inhibitors, with inhibitory rate higher than 50% at the concentration of 30 µM. Among them, ZDS20 was identified as the most effective inhibitor with low micromolar activity (IC50 = 3.27 μM). Altogether, ZDS20 carrying novel scaffold was identified and could serve as a lead for the development of new classes of PD-L1 inhibitors.

PD-1/PD-L1 通路被认为是肿瘤免疫疗法中最有前景的免疫检查点之一。然而,研究人员面临着抗体固有的局限性,这促使他们开始寻求 PD-L1 小分子抑制剂。虚拟筛选和实验验证是发现活性化合物的行之有效的方法。在这项研究中,我们采用了多阶段虚拟筛选方法来筛选多个化合物数据库,以预测新的 PD-1/PD-L1 配体。通过对合适度评分、相互作用模式和 MM-GBSA 结合亲和力的综合分析,提出了 35 个化合物。酶学检测证实,35个配体中有10个是潜在的PD-L1抑制剂,在30 µM浓度下抑制率高于50%。其中,ZDS20以较低的微摩尔活性(IC50 = 3.27 μM)被确定为最有效的抑制剂。总之,携带新型支架的 ZDS20 被鉴定出来,可作为开发新型 PD-L1 抑制剂的先导。
{"title":"Identification of novel PD-1/PD-L1 small molecule inhibitors: virtual screening, synthesis and <i>in vitro</i> characterisation.","authors":"Tingting Wu, Hu Cheng, Lijie Sima, Zhongyuan Wang, Weiwei Ouyang, Jianta Wang, Yunlei Hou, Dongsheng Zhao, Weike Liao, Chujiao Hu","doi":"10.1080/14756366.2024.2353711","DOIUrl":"10.1080/14756366.2024.2353711","url":null,"abstract":"<p><p>The PD-1/PD-L1 pathway is considered as one of the most promising immune checkpoints in tumour immunotherapy. However, researchers are faced with the inherent limitations of antibodies, driving them to pursue PD-L1 small molecule inhibitors. Virtual screening followed by experimental validation is a proven approach to discover active compounds. In this study, we employed multistage virtual screening methods to screen multiple compound databases to predict new PD-1/PD-L1 ligands. 35 compounds were proposed by combined analysis of fitness scores, interaction pattern and MM-GBSA binding affinities. Enzymatic assay confirmed that 10 out of 35 ligands were potential PD-L1 inhibitors, with inhibitory rate higher than 50% at the concentration of 30 µM. Among them, <b>ZDS20</b> was identified as the most effective inhibitor with low micromolar activity (IC<sub>50</sub> = 3.27 μM). Altogether, <b>ZDS20</b> carrying novel scaffold was identified and could serve as a lead for the development of new classes of PD-L1 inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. 拓展喹喔啉-1,4-二-N-氧化物正丁酯和异丁酯衍生物对蓝氏贾第鞭毛虫、阴道毛滴虫和组织溶解恩塔莫阿巴的抗原虫活性和作用机制。体外和硅学方法。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-29 DOI: 10.1080/14756366.2024.2413018
Alonzo González-González, Oscar Sánchez-Sánchez, Lilián Yépez-Mulia, Timoteo Delgado-Maldonado, Lenci K Vázquez-Jiménez, Gabriel López-Velázquez, José Ignacio de la Mora-de la Mora, Sebastian Pacheco-Gutierrez, Laura Chino-Ríos, Diego Arias, Adriana Moreno-Rodríguez, Alma Paz-González, Eyra Ortíz-Pérez, Gildardo Rivera

In this study, n-butyl and iso-butyl quinoxaline-7-carboxylate-1,4-di-N-oxide derivatives were evaluated in vitro against Giardia lamblia (G. lamblia), Trichomonas vaginalis (T. vaginalis), and Entamoeba histolytica (E. histolytica). The potential mechanism of action determination was approached by in silico analysis on G. lamblia and T. vaginalis triosephosphate isomerase (GlTIM and TvTIM, respectively), and on E. histolytica thioredoxin reductase (EhTrxR). Enzyme inactivation assays were performed on recombinant GlTIM and EhTrxR. Compound T-167 showed the best giardicidal activity (IC50 = 25.53 nM) and the highest inactivation efficiency against GlTIM without significantly perturbing its human homolog. Compounds T-142 and T-143 showed the best amoebicidal (IC50 = 9.20 nM) and trichomonacidal (IC50 = 45.20 nM) activity, respectively. Additionally, T-143 had a high activity as giardicial (IC50 = 29.13 nM) and amoebicidal (IC50 = 15.14 nM), proposing it as a broad-spectrum antiparasitic agent. Compounds T-145, and T-161 were the best EhTrxR inhibitors with IC50 of 16 µM, and 18 µM, respectively.

本研究评估了喹喔啉-7-甲酸正丁酯和喹喔啉-7-甲酸异丁酯-1,4-二-N-氧化物衍生物对蓝氏贾第鞭毛虫(G. lamblia)、阴道毛滴虫(T. vaginalis)和组织溶解恩塔米巴虫(E. histolytica)的体外抗药性。通过对羊膜虫和阴道毛滴虫的三糖磷酸异构酶(分别为 GlTIM 和 TvTIM)以及组织溶解性肠虫的硫代氧化还原酶(EhTrxR)进行硅学分析,确定了潜在的作用机制。对重组的 GlTIM 和 EhTrxR 进行了酶失活试验。化合物 T-167 对 GlTIM 显示出最佳的杀菌活性(IC50 = 25.53 nM)和最高的灭活效率,而不会对其人类同源物产生显著干扰。化合物 T-142 和 T-143 分别显示出最佳的杀阿米巴活性(IC50 = 9.20 nM)和杀滴虫活性(IC50 = 45.20 nM)。此外,T-143 还具有较高的杀寄生虫活性(IC50 = 29.13 nM)和杀阿米巴活性(IC50 = 15.14 nM),因此被认为是一种广谱抗寄生虫药物。化合物 T-145 和 T-161 是最好的 EhTrxR 抑制剂,其 IC50 分别为 16 µM 和 18 µM。
{"title":"Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-<i>N</i>-oxide derivatives against <i>Giardia lamblia</i>, <i>Trichomonas vaginalis</i>, and <i>Entamoeba histolytica.</i> An <i>in vitro</i> and <i>in silico</i> approach.","authors":"Alonzo González-González, Oscar Sánchez-Sánchez, Lilián Yépez-Mulia, Timoteo Delgado-Maldonado, Lenci K Vázquez-Jiménez, Gabriel López-Velázquez, José Ignacio de la Mora-de la Mora, Sebastian Pacheco-Gutierrez, Laura Chino-Ríos, Diego Arias, Adriana Moreno-Rodríguez, Alma Paz-González, Eyra Ortíz-Pérez, Gildardo Rivera","doi":"10.1080/14756366.2024.2413018","DOIUrl":"10.1080/14756366.2024.2413018","url":null,"abstract":"<p><p>In this study, n-butyl and iso-butyl quinoxaline-7-carboxylate-1,4-di-<i>N</i>-oxide derivatives were evaluated <i>in vitro</i> against <i>Giardia lamblia</i> (<i>G. lamblia</i>)<i>, Trichomonas vaginalis</i> (<i>T. vaginalis</i>), and <i>Entamoeba histolytica</i> (<i>E. histolytica</i>). The potential mechanism of action determination was approached by <i>in silico</i> analysis on <i>G. lamblia</i> and <i>T. vaginalis</i> triosephosphate isomerase (<i>Gl</i>TIM and <i>Tv</i>TIM, respectively), and on <i>E. histolytica</i> thioredoxin reductase (<i>EhTrxR</i>). Enzyme inactivation assays were performed on recombinant G<i>l</i>TIM and <i>Eh</i>TrxR. Compound T-167 showed the best giardicidal activity (IC<sub>50</sub> = 25.53 nM) and the highest inactivation efficiency against G<i>l</i>TIM without significantly perturbing its human homolog. Compounds T-142 and T-143 showed the best amoebicidal (IC<sub>50</sub> = 9.20 nM) and trichomonacidal (IC<sub>50</sub> = 45.20 nM) activity, respectively. Additionally, T-143 had a high activity as giardicial (IC<sub>50</sub> = 29.13 nM) and amoebicidal (IC<sub>50</sub> = 15.14 nM), proposing it as a broad-spectrum antiparasitic agent. Compounds T-145, and T-161 were the best <i>Eh</i>TrxR inhibitors with IC<sub>50</sub> of 16 µM, and 18 µM, respectively.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. 多环咔唑衍生物:通过拓扑异构酶 II 催化抑制和诱导细胞凋亡揭示其抗增殖作用
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-01-14 DOI: 10.1080/14756366.2024.2302920
Mateusz Olszewski, Natalia Maciejewska, Anoop Kallingal, Agnieszka Chylewska, Aleksandra M Dąbrowska, Małgorzata Biedulska, Mariusz Makowski, José M Padrón, Maciej Baginski

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.

人类 DNA 拓扑异构酶对 DNA 复制、转录、染色质凝结及其结构维护等关键细胞过程至关重要。治疗癌症的重要策略之一是抑制一种特定类型的拓扑异构酶,即拓扑异构酶 II(Topo II)。咔唑衍生物具有多种生物活性,最近已成为肿瘤研究的一个重要焦点。本研究评估了三种对称取代的咔唑衍生物:2,7-二(2-呋喃基)-9H-咔唑(27a)、3,6-二(2-呋喃基)-9H-咔唑(36a)和 3,6-二(2-噻吩基)-9H-咔唑(36b)作为抗癌剂的功效。在所研究的咔唑衍生物中,含有两个呋喃分子的 3,6-二(2-呋喃基)-9H-咔唑化合物成为 Topo II 的新型催化抑制剂。值得注意的是,3,6-二(2-呋喃基)-9H-咔唑能有效地选择性抑制 Topo IIα 的松弛和脱atenation 活性,而对 IIβ 异构体的影响极小。这些发现强调了 3,6-二(2-呋喃基)-9H-咔唑化合物作为一种有潜力的候选先导化合物的潜力,值得在抗癌药物开发领域进行进一步研究。
{"title":"Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction.","authors":"Mateusz Olszewski, Natalia Maciejewska, Anoop Kallingal, Agnieszka Chylewska, Aleksandra M Dąbrowska, Małgorzata Biedulska, Mariusz Makowski, José M Padrón, Maciej Baginski","doi":"10.1080/14756366.2024.2302920","DOIUrl":"10.1080/14756366.2024.2302920","url":null,"abstract":"<p><p>Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (<b>27a</b>), 3,6-Di(2-furyl)-9H-carbazole (<b>36a</b>), and 3,6-Di(2-thienyl)-9H-carbazole (<b>36b</b>) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Enzyme Inhibition and Medicinal Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1