首页 > 最新文献

Journal of Enzyme Inhibition and Medicinal Chemistry最新文献

英文 中文
Discovery of a novel PLK1 inhibitor with high inhibitory potency using a combined virtual screening strategy.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-03-07 DOI: 10.1080/14756366.2025.2467798
Zhen Xu, Lixia Guan, Yuting Wang, Miao-Miao Niu, Yashi Ruan, Cen Xu, Li Yang

PLK1 is essential for cell cycle regulation and proliferation, and its elevated expression in prostate cancer is associated with high tumour grade. Therefore, PLK1 inhibition is considered a promising strategy for the treatment of prostate cancer. Here, we identified five compounds (Hits 1-5) targeting the kinase domain (KD) of PLK1 using a combined virtual screening approach. Hits 1-5 all had picomolar (pM) inhibitory potency against PLK1. Notably, Hit-4 showed the strongest inhibitory activity against PLK1 (IC50 = 22.61 ± 1.12 pM) and displayed high selectivity for PLK1. Meanwhile, molecular dynamics (MD) simulations revealed that the complex formed by Hit-4 and PLK1 remained stable. Importantly, Hit-4 exhibited potent inhibitory effects on the proliferation of DU-145 prostate cancer cells (IC50 = 0.09 ± 0.01 nM). In conclusion, Hit-4 is a potent and highly selective antitumor candidate with therapeutic potential for prostate cancer.

{"title":"Discovery of a novel PLK1 inhibitor with high inhibitory potency using a combined virtual screening strategy.","authors":"Zhen Xu, Lixia Guan, Yuting Wang, Miao-Miao Niu, Yashi Ruan, Cen Xu, Li Yang","doi":"10.1080/14756366.2025.2467798","DOIUrl":"https://doi.org/10.1080/14756366.2025.2467798","url":null,"abstract":"<p><p>PLK1 is essential for cell cycle regulation and proliferation, and its elevated expression in prostate cancer is associated with high tumour grade. Therefore, PLK1 inhibition is considered a promising strategy for the treatment of prostate cancer. Here, we identified five compounds (Hits 1-5) targeting the kinase domain (KD) of PLK1 using a combined virtual screening approach. Hits 1-5 all had picomolar (pM) inhibitory potency against PLK1. Notably, Hit-4 showed the strongest inhibitory activity against PLK1 (IC<sub>50</sub> = 22.61 ± 1.12 pM) and displayed high selectivity for PLK1. Meanwhile, molecular dynamics (MD) simulations revealed that the complex formed by Hit-4 and PLK1 remained stable. Importantly, Hit-4 exhibited potent inhibitory effects on the proliferation of DU-145 prostate cancer cells (IC<sub>50</sub> = 0.09 ± 0.01 nM). In conclusion, Hit-4 is a potent and highly selective antitumor candidate with therapeutic potential for prostate cancer.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2467798"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyridine indole hybrids as novel potent CYP17A1 inhibitors.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-14 DOI: 10.1080/14756366.2025.2463014
Tomasz M Wróbel, Angelika Grudzińska, Jibira Yakubu, Therina du Toit, Katyayani Sharma, Jeremiah C Harrington, Fredrik Björkling, Flemming Steen Jørgensen, Amit V Pandey

Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide, and androgen deprivation therapy (ADT) is a primary treatment approach. CYP17A1 inhibitors like abiraterone target the steroidogenic pathway to reduce androgen levels, but their clinical efficacy is limited by drug resistance and adverse effects. This study reports the synthesis and evaluation of novel CYP17A1 inhibitors derived from a previously identified hit compound. Several analogs were synthesised, including an unexpected di-cyano derivative, which demonstrated increased potency against CYP17A1 compared to abiraterone. Biological assays revealed that these compounds significantly inhibited CYP17A1 enzymatic activity and altered steroid biosynthesis. Among the newly synthesised inhibitors, compound 11 showed the highest potency (IC50 = 4 nM) and the related compound 14 presented a template for further development. A combined docking and molecular dynamics approach was used to identify the possible target binding modes of the compounds.

{"title":"Pyridine indole hybrids as novel potent CYP17A1 inhibitors.","authors":"Tomasz M Wróbel, Angelika Grudzińska, Jibira Yakubu, Therina du Toit, Katyayani Sharma, Jeremiah C Harrington, Fredrik Björkling, Flemming Steen Jørgensen, Amit V Pandey","doi":"10.1080/14756366.2025.2463014","DOIUrl":"10.1080/14756366.2025.2463014","url":null,"abstract":"<p><p>Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide, and androgen deprivation therapy (ADT) is a primary treatment approach. CYP17A1 inhibitors like abiraterone target the steroidogenic pathway to reduce androgen levels, but their clinical efficacy is limited by drug resistance and adverse effects. This study reports the synthesis and evaluation of novel CYP17A1 inhibitors derived from a previously identified hit compound. Several analogs were synthesised, including an unexpected di-cyano derivative, which demonstrated increased potency against CYP17A1 compared to abiraterone. Biological assays revealed that these compounds significantly inhibited CYP17A1 enzymatic activity and altered steroid biosynthesis. Among the newly synthesised inhibitors, compound <b>11</b> showed the highest potency (IC<sub>50</sub> = 4 nM) and the related compound <b>14</b> presented a template for further development. A combined docking and molecular dynamics approach was used to identify the possible target binding modes of the compounds.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2463014"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stable GH31 α-glucosidase as a model system for the study of mutations leading to human glycogen storage disease type II.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI: 10.1080/14756366.2025.2468859
Roberta Iacono, Francesca Maria Pia Paragliola, Andrea Strazzulli, Marco Moracci

GH31 glycosidases are widespread across organisms, but remarkably, less than 1% of them have been biochemically characterised to date. Among them, human lysosomal acid α-glucosidase (GAA) stands out due to its link to Pompe disease, a rare lysosomal storage disorder caused by its deficiency. This disease results in glycogen accumulation, severe cellular damage, motor impairment, and premature death. Structural and functional studies of GAA mutants are challenging due to their instability and lack of activity, hindering their expression and purification. The GH31 enzyme MalA from a hyperthermophilic archaeon is explored here as a stable homolog of GAA. MalA is highly expressible, easy to purify, and structurally characterised. The R400H mutant in MalA, corresponding to the pathogenic GAA R600H mutation, revealed here a 1200-fold drop in specificity constant and >8 °C reduction in thermal stability. We propose MalA's as a robust model for studying GAA mutations and developing therapeutic chaperones.

GH31 糖苷酶广泛存在于生物体内,但值得注意的是,迄今为止只有不到 1%的糖苷酶得到了生化鉴定。其中,人类溶酶体酸性α-葡萄糖苷酶(GAA)因其与庞贝病(一种因缺乏该酶而导致的罕见溶酶体贮积症)的联系而脱颖而出。这种疾病会导致糖原累积、严重的细胞损伤、运动障碍和过早死亡。由于 GAA 突变体的不稳定性和缺乏活性,阻碍了它们的表达和纯化,因此对它们进行结构和功能研究具有挑战性。本文探讨了来自嗜热古生物的 GH31 酶 MalA,将其作为 GAA 的稳定同源物。MalA 可高度表达,易于纯化,并具有结构特征。MalA 的 R400H 突变体与致病的 GAA R600H 突变体相对应,其特异性常数下降了 1200 倍,热稳定性降低了 8 °C。我们建议将 MalA 作为研究 GAA 突变和开发治疗伴侣的可靠模型。
{"title":"A stable GH31 α-glucosidase as a model system for the study of mutations leading to human glycogen storage disease type II.","authors":"Roberta Iacono, Francesca Maria Pia Paragliola, Andrea Strazzulli, Marco Moracci","doi":"10.1080/14756366.2025.2468859","DOIUrl":"10.1080/14756366.2025.2468859","url":null,"abstract":"<p><p>GH31 glycosidases are widespread across organisms, but remarkably, less than 1% of them have been biochemically characterised to date. Among them, human lysosomal acid α-glucosidase (GAA) stands out due to its link to Pompe disease, a rare lysosomal storage disorder caused by its deficiency. This disease results in glycogen accumulation, severe cellular damage, motor impairment, and premature death. Structural and functional studies of GAA mutants are challenging due to their instability and lack of activity, hindering their expression and purification. The GH31 enzyme MalA from a hyperthermophilic archaeon is explored here as a stable homolog of GAA. MalA is highly expressible, easy to purify, and structurally characterised. The R400H mutant in MalA, corresponding to the pathogenic GAA R600H mutation, revealed here a 1200-fold drop in specificity constant and >8 °C reduction in thermal stability. We propose MalA's as a robust model for studying GAA mutations and developing therapeutic chaperones.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468859"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecules targeting the eubacterial β-sliding clamp discovered by combined in silico and in vitro screening approaches. 通过硅内和体外联合筛选方法发现了靶向真菌性β-滑动钳的小分子。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI: 10.1080/14756366.2024.2440861
Alessia Caputo, Gian Marco Elisi, Elisabetta Levati, Giulia Barotti, Sara Sartini, Jerome Wagner, Dominique Y Burnouf, Simone Ottonello, Silvia Rivara, Barbara Montanini

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets. Particularly promising is the α-subunit/β-sliding clamp interaction, crucial for the replicative competence of bacterial DNA polymerase III holoenzyme. Through pharmacophore-based virtual screening, we identified 4,000 candidate small molecule inhibitors targeting the β-clamp binding pocket. Subsequently, these candidates underwent evaluation using the BRET assay in yeast cells. Following this, three hits and 28 analogues were validated via Protein Thermal Shift and competitive ELISA assays. Among them, thiazolo[4,5-d]-pyrimidinedione and benzanilide derivatives exhibited micromolar potency in displacing the β-clamp protein partner and inhibiting DNA replication. This screening campaign unveiled new chemical classes of α/β-clamp PPI disruptors capable of inhibiting DNA polymerase III activity, which lend themselves for further optimisation to improve their antibacterial efficacy.

抗生素耐药性是大流行后对公共卫生的最大威胁。迫切需要新的、有效的抗菌治疗是显而易见的。蛋白质-蛋白质相互作用(PPIs),由于其在微生物生理学中的关键作用,成为新的和有吸引力的目标。尤其有希望的是α-亚基/β-滑动钳相互作用,这对细菌DNA聚合酶III全酶的复制能力至关重要。通过基于药物团的虚拟筛选,我们确定了4000个候选的靶向β-clamp结合口袋的小分子抑制剂。随后,在酵母细胞中使用BRET试验对这些候选细胞进行评估。随后,通过Protein Thermal Shift和竞争性ELISA检测验证了3个hit和28个类似物。其中,噻唑[4,5-d]-嘧啶二酮和苯甲苯胺衍生物在取代β-箝位蛋白伴侣和抑制DNA复制方面表现出微摩尔效价。这项筛选活动揭示了能够抑制DNA聚合酶III活性的α/β-箝位PPI干扰物的新化学类别,这些干扰物可以进一步优化以提高其抗菌功效。
{"title":"Small molecules targeting the eubacterial β-sliding clamp discovered by combined <i>in silico</i> and <i>in vitro</i> screening approaches.","authors":"Alessia Caputo, Gian Marco Elisi, Elisabetta Levati, Giulia Barotti, Sara Sartini, Jerome Wagner, Dominique Y Burnouf, Simone Ottonello, Silvia Rivara, Barbara Montanini","doi":"10.1080/14756366.2024.2440861","DOIUrl":"https://doi.org/10.1080/14756366.2024.2440861","url":null,"abstract":"<p><p>Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets. Particularly promising is the α-subunit/β-sliding clamp interaction, crucial for the replicative competence of bacterial DNA polymerase III holoenzyme. Through pharmacophore-based virtual screening, we identified 4,000 candidate small molecule inhibitors targeting the β-clamp binding pocket. Subsequently, these candidates underwent evaluation using the BRET assay in yeast cells. Following this, three hits and 28 analogues were validated via Protein Thermal Shift and competitive ELISA assays. Among them, thiazolo[4,5-<i>d</i>]-pyrimidinedione and benzanilide derivatives exhibited micromolar potency in displacing the β-clamp protein partner and inhibiting DNA replication. This screening campaign unveiled new chemical classes of α/β-clamp PPI disruptors capable of inhibiting DNA polymerase III activity, which lend themselves for further optimisation to improve their antibacterial efficacy.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2440861"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis. 具有良好抑菌活性的新型噻唑烷-2,4-二酮基杂合体:设计、合成、生物学评价和药物相互作用分析。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI: 10.1080/14756366.2024.2442703
Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth

The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties in vitro. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H37Rv and two wild Mycobacterium tuberculosis (Mtb) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.

不断增加的耐药结核病(TB)使人们更加重视发现和开发新的治疗药物和治疗方案。噻唑烷酮类化合物在体外表现出良好的抗结核性能。本文报道了以噻唑烷-2,4-二酮(TZD)的结构为灵感设计和合成了一些新的衍生物。合成了具有硫代氨基脲或吡啶碳腙片段的tzd基杂合体,并对参考菌株H37Rv和2株野生结核分枝杆菌(Mtb)进行了抑菌活性研究。在进一步的研究中,还进行了两种药物相互作用分析,以评估它们与目前用于治疗结核病的一线药物的协同作用。研究发现,其中一些化合物具有较高的抗微生物活性(0.078 ~ 0.283µM),并与异烟肼或利福平具有协同作用,从而显示了它们作为开发有效治疗结核病的新型辅助剂的潜力。
{"title":"The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis.","authors":"Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth","doi":"10.1080/14756366.2024.2442703","DOIUrl":"https://doi.org/10.1080/14756366.2024.2442703","url":null,"abstract":"<p><p>The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties <i>in vitro</i>. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H<sub>37</sub>Rv and two wild <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2442703"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myeloperoxidase as a therapeutic target for oxidative damage in Alzheimer's disease.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-14 DOI: 10.1080/14756366.2025.2456282
Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Mónica A Torres-Ramos, Martha Cecilia Rosales-Hernández

Alzheimer's disease (AD) is a major neurodegenerative disorder more common in older adults. One of the leading AD hypotheses involves the amyloid beta (A) production, it is associated to oxidative stress, neuroinflammation, and neurovascular damage. The interaction of A with the blood vessel wall contributes to the disruption of the blood-brain barrier (BBB), allowing neutrophil infiltration containing the myeloperoxidase enzyme (MPO), which produces hypochlorous acid (HOCl) a potent oxidant. Also, MPO could be released from the microglia cells and interact with the amyloid beta plaques. This review aims to study the role of MPO in the progression of AD, in particular its contribution to oxidative stress and neuroinflammation. Furthermore, to explore the MPO-potential as AD-biomarker to evaluate the therapeutic potential of its inhibitors to mitigate the neurotoxicity. Finally, revise MPO inhibitors that could act as dual inhibitors acting on MPO and acetylcholinesterase and or another target involved in AD.

{"title":"Myeloperoxidase as a therapeutic target for oxidative damage in Alzheimer's disease.","authors":"Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Mónica A Torres-Ramos, Martha Cecilia Rosales-Hernández","doi":"10.1080/14756366.2025.2456282","DOIUrl":"https://doi.org/10.1080/14756366.2025.2456282","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a major neurodegenerative disorder more common in older adults. One of the leading AD hypotheses involves the amyloid beta (A) production, it is associated to oxidative stress, neuroinflammation, and neurovascular damage. The interaction of A with the blood vessel wall contributes to the disruption of the blood-brain barrier (BBB), allowing neutrophil infiltration containing the myeloperoxidase enzyme (MPO), which produces hypochlorous acid (HOCl) a potent oxidant. Also, MPO could be released from the microglia cells and interact with the amyloid beta plaques. This review aims to study the role of MPO in the progression of AD, in particular its contribution to oxidative stress and neuroinflammation. Furthermore, to explore the MPO-potential as AD-biomarker to evaluate the therapeutic potential of its inhibitors to mitigate the neurotoxicity. Finally, revise MPO inhibitors that could act as dual inhibitors acting on MPO and acetylcholinesterase and or another target involved in AD.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2456282"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. A、C和D类丝氨酸β-内酰胺酶底物结合袋的结构比较。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI: 10.1080/14756366.2024.2435365
Hyeonmin Lee, Hyunjae Park, Kiwoong Kwak, Chae-Eun Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang

β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.

β-内酰胺类抗生素一直是最成功的抗生素,但耐多药细菌(MDR)的兴起威胁着它们的有效性。丝氨酸β-内酰胺酶(SBLs)是最常见的耐药原因之一,被分类为A、C和D,其众多变体使结构和底物谱比较复杂化。本研究比较了这些类别中具有代表性的SBP,重点研究了底物结合袋(SBP)。SBP在凹痕表面呈芸豆状,主要由L1、L2和L3环和c类中附加的Lc环组成,β-内酰胺环以保守方向结合,β-内酰胺环朝向L2,附加环朝向L1和L3之间的空间。结构比较表明,每个类具有不同的收缩压结构,但子类共享一个保守的支架。容纳互补β-内酰胺的SBP结构决定了sbl的底物光谱。系统比较sbl,包括β-内酰胺和sbp之间的结构相容性,将有助于了解它们的底物光谱。
{"title":"Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.","authors":"Hyeonmin Lee, Hyunjae Park, Kiwoong Kwak, Chae-Eun Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang","doi":"10.1080/14756366.2024.2435365","DOIUrl":"https://doi.org/10.1080/14756366.2024.2435365","url":null,"abstract":"<p><p>β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2435365"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of novel biphenyl compounds bearing hydroxamic acid moiety as the first PD-L1/class I HDACs dual inhibitors.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI: 10.1080/14756366.2025.2461190
Dandan Yuan, Yali Gao, Lin Xia, Han Liu, Xingye Wu, Xueyan Ding, Yudan Huang, Changchun Deng, Jin Li, Wenqi Dai, Jieqing Liu, Junjie Ma

Herein, we firstly reported a series of biphenyl compounds bearing hydroxamic acid moiety as PD-L1/class I HDACs dual inhibitors. Among them, compound 14 displayed the strongest inhibitory activity in vitro against HDAC2 and HDAC3 with IC50 values of 27.98 nM and 14.47 nM, and had an IC50 value of 88.10 nM for PD-1/PD-L1 interaction. Importantly, 14 could upregulate the expression of PD-L1 and CXCL10 in a PD-L1 low-expression cancer cell line (MCF-7), highlighting the potential to enhance efficacy by recruiting T-cell infiltration into TME and improving the response of PD-1/PD-L1 inhibitor associated with PD-L1 low-expression. Besides, we identified another compound, 22, which possessed the strongest inhibitory activity against PD-1/PD-L1 interaction with an IC50 value of 12.47 nM, and effectively inhibited the proliferation of three cancer cell lines. Our results suggest that compounds 14 and 22 can be served as lead compounds of PD-L1/class I HDACs dual inhibitors for further optimisation.

{"title":"Discovery of novel biphenyl compounds bearing hydroxamic acid moiety as the first PD-L1/class I HDACs dual inhibitors.","authors":"Dandan Yuan, Yali Gao, Lin Xia, Han Liu, Xingye Wu, Xueyan Ding, Yudan Huang, Changchun Deng, Jin Li, Wenqi Dai, Jieqing Liu, Junjie Ma","doi":"10.1080/14756366.2025.2461190","DOIUrl":"10.1080/14756366.2025.2461190","url":null,"abstract":"<p><p>Herein, we firstly reported a series of biphenyl compounds bearing hydroxamic acid moiety as PD-L1/class I HDACs dual inhibitors. Among them, compound <b>14</b> displayed the strongest inhibitory activity <i>in vitro</i> against HDAC2 and HDAC3 with IC<sub>50</sub> values of 27.98 nM and 14.47 nM, and had an IC<sub>50</sub> value of 88.10 nM for PD-1/PD-L1 interaction. Importantly, <b>14</b> could upregulate the expression of PD-L1 and CXCL10 in a PD-L1 low-expression cancer cell line (MCF-7), highlighting the potential to enhance efficacy by recruiting T-cell infiltration into TME and improving the response of PD-1/PD-L1 inhibitor associated with PD-L1 low-expression. Besides, we identified another compound, <b>22</b>, which possessed the strongest inhibitory activity against PD-1/PD-L1 interaction with an IC<sub>50</sub> value of 12.47 nM, and effectively inhibited the proliferation of three cancer cell lines. Our results suggest that compounds <b>14</b> and <b>22</b> can be served as lead compounds of PD-L1/class I HDACs dual inhibitors for further optimisation.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2461190"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a selective PI3Kα inhibitor via structure-based virtual screening for targeted colorectal cancer therapy.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI: 10.1080/14756366.2025.2468852
Hussam Albassam, Omar Almutairi, Majed Alnasser, Faisal Altowairqi, Faris Almutairi, Saad Alobid

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, driving an urgent need for effective therapies. A promising avenue of research focuses on the PI3K/AKT/mTOR signalling pathway, which is frequently disrupted by mutations in the PI3Kα subunit. Our cutting-edge study employed a structure-based virtual screening of ∼3000 compounds, leading to the discovery of F0608-0019, a highly potent and selective PI3Kα inhibitor. F0608-0019 demonstrated remarkable efficacy in suppressing HCT116 colorectal cancer cell proliferation, with an IC50 of 12.14 µM, while maintaining high selectivity by minimising activity against other PI3K isoforms. Advanced molecular dynamics simulations highlighted the stability of F0608-0019's binding interactions with key amino acids, such as TRP:780, ILE:932, and VAL:850, which are critical for its targeted action. These exciting findings reveal F0608-0019 as a leading candidate for innovative CRC therapies that selectively target PI3Kα dysregulation, offering promising new possibilities for effective CRC treatment.

{"title":"Discovery of a selective PI3Kα inhibitor <i>via</i> structure-based virtual screening for targeted colorectal cancer therapy.","authors":"Hussam Albassam, Omar Almutairi, Majed Alnasser, Faisal Altowairqi, Faris Almutairi, Saad Alobid","doi":"10.1080/14756366.2025.2468852","DOIUrl":"10.1080/14756366.2025.2468852","url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, driving an urgent need for effective therapies. A promising avenue of research focuses on the PI3K/AKT/mTOR signalling pathway, which is frequently disrupted by mutations in the PI3Kα subunit. Our cutting-edge study employed a structure-based virtual screening of ∼3000 compounds, leading to the discovery of F0608-0019, a highly potent and selective PI3Kα inhibitor. F0608-0019 demonstrated remarkable efficacy in suppressing HCT116 colorectal cancer cell proliferation, with an IC<sub>50</sub> of 12.14 µM, while maintaining high selectivity by minimising activity against other PI3K isoforms. Advanced molecular dynamics simulations highlighted the stability of F0608-0019's binding interactions with key amino acids, such as TRP:780, ILE:932, and VAL:850, which are critical for its targeted action. These exciting findings reveal F0608-0019 as a leading candidate for innovative CRC therapies that selectively target PI3Kα dysregulation, offering promising new possibilities for effective CRC treatment.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468852"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and evaluation of 5, 6-dihydro-8H-isoquinolino[1, 2-b]quinazolin-8-one derivatives as novel non-lipogenic ABCA1 up-regulators with inhibitory effects on macrophage-derived foam cell formation.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-26 DOI: 10.1080/14756366.2025.2470310
Changhuan Yang, Lin Chen, Yanmei Jiang, Demeng Sun, Yun Hu

Increasing the expression of ATP-binding cassette transporter A1 (ABCA1) can lower cellular cholesterol levels and prevent foam cell formation. In this study, a series of 5, 6-dihydro-8H-isoquinolino[1, 2-b]quinazolin-8-one derivatives were synthesised and assessed for their ability to up-regulate ABCA1 expression. The structure-activity relationship was explored and summarised. Among the 28 derivatives, compound 3 exhibited the most potent activity in activating the ABCA1 promoter (2.50-fold), significantly up-regulating both ABCA1 mRNA and protein levels in RAW264.7 macrophage cells. Mechanism studies revealed that compound 3 acted by targeting the LXR-involved pathway. In a foam cell model, compound 3 reduced ox-LDL-induced lipid accumulation and thereby inhibited foam cell formation. Moreover, compared to the LXR agonist T0901317, compound 3 led to minimal accumulation of unwanted lipids and triglycerides in HepG2 cells. With little cytotoxicity towards all the tested cell lines, compound 3 holds promise as a novel potential anti-atherogenic agent for further exploration.

{"title":"Synthesis and evaluation of 5, 6-dihydro-8<i>H</i>-isoquinolino[1, 2-<i>b</i>]quinazolin-8-one derivatives as novel non-lipogenic ABCA1 up-regulators with inhibitory effects on macrophage-derived foam cell formation.","authors":"Changhuan Yang, Lin Chen, Yanmei Jiang, Demeng Sun, Yun Hu","doi":"10.1080/14756366.2025.2470310","DOIUrl":"10.1080/14756366.2025.2470310","url":null,"abstract":"<p><p>Increasing the expression of ATP-binding cassette transporter A1 (ABCA1) can lower cellular cholesterol levels and prevent foam cell formation. In this study, a series of 5, 6-dihydro-8<i>H</i>-isoquinolino[1, 2-<i>b</i>]quinazolin-8-one derivatives were synthesised and assessed for their ability to up-regulate ABCA1 expression. The structure-activity relationship was explored and summarised. Among the 28 derivatives, compound <b>3</b> exhibited the most potent activity in activating the ABCA1 promoter (2.50-fold), significantly up-regulating both ABCA1 mRNA and protein levels in RAW264.7 macrophage cells. Mechanism studies revealed that compound <b>3</b> acted by targeting the LXR-involved pathway. In a foam cell model, compound <b>3</b> reduced ox-LDL-induced lipid accumulation and thereby inhibited foam cell formation. Moreover, compared to the LXR agonist T0901317, compound <b>3</b> led to minimal accumulation of unwanted lipids and triglycerides in HepG2 cells. With little cytotoxicity towards all the tested cell lines, compound <b>3</b> holds promise as a novel potential anti-atherogenic agent for further exploration.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2470310"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143501949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Enzyme Inhibition and Medicinal Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1