Jerome Nouvel, Gonzalo Bustos Quevedo, Tony Prinz, Ramsha Masood, George Daaboul, Tanja Gainey-Schleicher, Uwe Wittel, Sophia Chikhladze, Bence Melykuti, Martin Helmstaedter, Karl Winkler, Irina Nazarenko, Gerhard Pütz
Extracellular vesicles (EVs) are valuable targets for liquid biopsy. However, attempts to introduce EV-based biomarkers into clinical practice have not been successful to the extent expected. One of the reasons for this failure is the lack of reliable methods for EV baseline purification from complex biofluids, such as cell-free plasma or serum. Because available one-step approaches for EV isolation are insufficient to purify EVs, the majority of studies on clinical samples were performed either on a mixture of EVs and lipoproteins, whilst the real number of EVs and their individual specific biomarker content remained elusive, or on a low number of samples of sufficient volume to allow elaborate 2-step EV separation by size and density, resulting in a high purity but utmost low recovery. Here we introduce Fast Protein Liquid Chromatography (FPLC) using Superose 6 as a matrix to obtain small EVs from biofluids that are almost free of soluble proteins and lipoproteins. Along with the estimation of a realistic number of small EVs in human samples, we show temporal resolution of the effect of the duration of postprandial phase on the proportion of lipoproteins in purified EVs, suggesting acceptable time frames additionally to the recommendation to use fasting samples for human studies. Furthermore, we assessed a potential value of pure EVs for liquid biopsy, exemplarily examining EV- and tumour-biomarkers in pure FPLC-derived fractions isolated from the serum of patients with pancreatic cancer. Consistent among different techniques, showed the presence of diseases-associated biomarkers in pure EVs, supporting the feasibility of using single-vesicle analysis for liquid biopsy.
细胞外囊泡(EV)是液体活检的重要目标。然而,将基于 EV 的生物标记物引入临床实践的尝试并未取得预期的成功。失败的原因之一是缺乏从复杂生物流体(如无细胞血浆或血清)中进行 EV 基线纯化的可靠方法。由于现有的一步式EV分离方法不足以纯化EV,大多数临床样本研究要么是针对EV和脂蛋白的混合物进行的,而EV的真实数量和它们各自的特定生物标记物含量仍然难以确定;要么是针对数量较少、体积足够大的样本进行的,从而无法按大小和密度进行精细的两步式EV分离,结果是纯度很高,但回收率极低。在这里,我们介绍了使用 Superose 6 作为基质的快速蛋白质液相色谱法(FPLC),以从几乎不含可溶性蛋白质和脂蛋白的生物流体中获得小型 EV。在估算人体样本中小EV的实际数量的同时,我们还展示了餐后阶段持续时间对纯化EV中脂蛋白比例影响的时间分辨率,为建议在人体研究中使用空腹样本提供了可接受的时间框架。此外,我们还评估了纯EVs在液体活检中的潜在价值,例如检测了从胰腺癌患者血清中分离出来的纯FPLC衍生馏分中的EV和肿瘤生物标记物。不同技术的研究结果表明,纯EVs中存在与疾病相关的生物标记物,这支持了将单颗粒分析用于液体活检的可行性。
{"title":"Separation of small extracellular vesicles (sEV) from human blood by Superose 6 size exclusion chromatography","authors":"Jerome Nouvel, Gonzalo Bustos Quevedo, Tony Prinz, Ramsha Masood, George Daaboul, Tanja Gainey-Schleicher, Uwe Wittel, Sophia Chikhladze, Bence Melykuti, Martin Helmstaedter, Karl Winkler, Irina Nazarenko, Gerhard Pütz","doi":"10.1002/jev2.70008","DOIUrl":"10.1002/jev2.70008","url":null,"abstract":"<p>Extracellular vesicles (EVs) are valuable targets for liquid biopsy. However, attempts to introduce EV-based biomarkers into clinical practice have not been successful to the extent expected. One of the reasons for this failure is the lack of reliable methods for EV baseline purification from complex biofluids, such as cell-free plasma or serum. Because available one-step approaches for EV isolation are insufficient to purify EVs, the majority of studies on clinical samples were performed either on a mixture of EVs and lipoproteins, whilst the real number of EVs and their individual specific biomarker content remained elusive, or on a low number of samples of sufficient volume to allow elaborate 2-step EV separation by size and density, resulting in a high purity but utmost low recovery. Here we introduce Fast Protein Liquid Chromatography (FPLC) using Superose 6 as a matrix to obtain small EVs from biofluids that are almost free of soluble proteins and lipoproteins. Along with the estimation of a realistic number of small EVs in human samples, we show temporal resolution of the effect of the duration of postprandial phase on the proportion of lipoproteins in purified EVs, suggesting acceptable time frames additionally to the recommendation to use fasting samples for human studies. Furthermore, we assessed a potential value of pure EVs for liquid biopsy, exemplarily examining EV- and tumour-biomarkers in pure FPLC-derived fractions isolated from the serum of patients with pancreatic cancer. Consistent among different techniques, showed the presence of diseases-associated biomarkers in pure EVs, supporting the feasibility of using single-vesicle analysis for liquid biopsy.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnieszka Razim, Agnieszka Zabłocka, Anna Schmid, Michael Thaler, Viktor Černý, Tamara Weinmayer, Bradley Whitehead, Anke Martens, Magdalena Skalska, Mattia Morandi, Katy Schmidt, Magdalena E. Wysmołek, Akos Végvári, Dagmar Srutkova, Martin Schwarzer, Lukas Neuninger, Peter Nejsum, Jiri Hrdý, Johan Palmfeldt, Marco Brucale, Francesco Valle, Sabina Górska, Lukas Wisgrill, Aleksandra Inic-Kanada, Ursula Wiedermann, Irma Schabussova
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
{"title":"Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells","authors":"Agnieszka Razim, Agnieszka Zabłocka, Anna Schmid, Michael Thaler, Viktor Černý, Tamara Weinmayer, Bradley Whitehead, Anke Martens, Magdalena Skalska, Mattia Morandi, Katy Schmidt, Magdalena E. Wysmołek, Akos Végvári, Dagmar Srutkova, Martin Schwarzer, Lukas Neuninger, Peter Nejsum, Jiri Hrdý, Johan Palmfeldt, Marco Brucale, Francesco Valle, Sabina Górska, Lukas Wisgrill, Aleksandra Inic-Kanada, Ursula Wiedermann, Irma Schabussova","doi":"10.1002/jev2.70004","DOIUrl":"https://doi.org/10.1002/jev2.70004","url":null,"abstract":"<p><i>Escherichia coli</i> A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular vesicles (EVs) are highly heterogeneous, and different EV subpopulations from various origins mediate different biological effects. The separation of different subpopulations of EVs from mixtures is critical but challenging. Epididymosomes are secreted by the epididymal epithelium and play a key role in sperm maturation and function. However, limited access to human epididymal tissue and epididymal fluid has hampered further study of epididymosomes and their potential clinical applications. Here, we established a novel strategy based on flow cytometry sorting to isolate human CD63-positive epididymosomes from ejaculate. We identified CD52, a membrane-located protein expressed exclusively in the epididymis, as the sorting marker for human epididymosomes. Then, CD63-positive epididymosomes were isolated from human semen using a flow cytometry sorting instrument and concentrated. Additionally, we observed that isolated CD63-positive epididymosomes improved sperm function more than other CD63-positive seminal EV subpopulations did, demonstrating the successful isolation of a subpopulation of epididymosomes from human semen and their potential application in the clinic.
{"title":"Isolation of CD63-positive epididymosomes from human semen and its application in improving sperm function","authors":"Jingwen Luo, Shiqing Zhu, Yafei Kang, Xinyu Liu, Xia Tan, Jieyi Zhao, Xiaofang Ding, Honggang Li","doi":"10.1002/jev2.70006","DOIUrl":"https://doi.org/10.1002/jev2.70006","url":null,"abstract":"<p>Extracellular vesicles (EVs) are highly heterogeneous, and different EV subpopulations from various origins mediate different biological effects. The separation of different subpopulations of EVs from mixtures is critical but challenging. Epididymosomes are secreted by the epididymal epithelium and play a key role in sperm maturation and function. However, limited access to human epididymal tissue and epididymal fluid has hampered further study of epididymosomes and their potential clinical applications. Here, we established a novel strategy based on flow cytometry sorting to isolate human CD63-positive epididymosomes from ejaculate. We identified CD52, a membrane-located protein expressed exclusively in the epididymis, as the sorting marker for human epididymosomes. Then, CD63-positive epididymosomes were isolated from human semen using a flow cytometry sorting instrument and concentrated. Additionally, we observed that isolated CD63-positive epididymosomes improved sperm function more than other CD63-positive seminal EV subpopulations did, demonstrating the successful isolation of a subpopulation of epididymosomes from human semen and their potential application in the clinic.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre-Michaël Coly, Shruti Chatterjee, Fariza Mezine, Christelle El Jekmek, Cécile Devue, Thomas Nipoti, Stephane Mazlan, Maribel Lara Corona, Florent Dingli, Damarys Loew, Guillaume van Niel, Xavier Loyer, Chantal M. Boulanger
Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.
{"title":"Low fluid shear stress stimulates the uptake of noxious endothelial extracellular vesicles via MCAM and PECAM-1 cell adhesion molecules","authors":"Pierre-Michaël Coly, Shruti Chatterjee, Fariza Mezine, Christelle El Jekmek, Cécile Devue, Thomas Nipoti, Stephane Mazlan, Maribel Lara Corona, Florent Dingli, Damarys Loew, Guillaume van Niel, Xavier Loyer, Chantal M. Boulanger","doi":"10.1002/jev2.12414","DOIUrl":"https://doi.org/10.1002/jev2.12414","url":null,"abstract":"<p>Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas Wallucks, Philippe DeCorwin-Martin, Molly L. Shen, Andy Ng, David Juncker
Immunofluorescence analysis of individual extracellular vesicles (EVs) in common fluorescence microscopes is gaining popularity due to its accessibility and high fluorescence sensitivity; however, EV number and size are only measurable using fluorescent stains requiring extensive sample manipulations. Here we introduce highly sensitive label-free EV size photometry (SP) based on interferometric scattering (iSCAT) imaging of immersed EVs immobilized on a glass coverslip. We implement SP on a common inverted epifluorescence microscope with LED illumination and a simple 50:50 beamsplitter, permitting seamless integration of SP with fluorescence imaging (SPFI). We present a high-throughput SPFI workflow recording >10,000 EVs in 7 min over ten 88 × 88 µm2 fields of view, pre- and post-incubation imaging to suppress background, along with automated image alignment, aberration correction, spot detection and EV sizing. We achieve an EV sizing range from 37 to ∼220 nm in diameter with a dual 440 and 740 nm SP illumination scheme, and suggest that this range can be extended by more advanced image analysis or additional hardware customization. We benchmark SP to flow cytometry using calibrated silica nanoparticles and demonstrate superior, label-free sensitivity. We showcase SPFI's potential for EV analysis by experimentally distinguishing surface and volumetric EV dyes, observing the deformation of EVs adsorbed to a surface, and by uncovering distinct subpopulations in <100 nm-in-diameter EVs with fluorescently tagged membrane proteins.
在普通荧光显微镜下对单个细胞外囊泡 (EV) 进行免疫荧光分析因其易用性和高荧光灵敏度而越来越受欢迎;然而,EV 的数量和大小只能通过荧光染色剂来测量,需要对样品进行大量操作。在这里,我们介绍了基于干涉散射(iSCAT)成像的高灵敏度无标记 EV 粒度光度法(SP),该成像可对固定在玻璃盖玻片上的浸泡 EV 进行测量。我们在普通的倒置外荧光显微镜上使用 LED 照明和简单的 50:50 分光镜实现了 SP,从而实现了 SP 与荧光成像(SPFI)的无缝集成。我们介绍了一种高通量 SPFI 工作流程,可在 7 分钟内在 10 个 88 × 88 µm2 视场中记录 10,000 个 EV,并在孵育前后成像以抑制背景,同时自动进行图像对齐、像差校正、光斑检测和 EV 大小调整。我们采用 440 和 740 纳米双 SP 照明方案,实现了从直径 37 纳米到 ∼220 纳米的 EV 大小范围,并建议通过更先进的图像分析或额外的硬件定制来扩展这一范围。我们使用校准过的二氧化硅纳米粒子将 SP 与流式细胞仪进行了比对,结果表明 SPFI 具有卓越的无标记灵敏度。我们通过实验区分了表面和体积EV染料,观察了吸附在表面上的EV的变形,并发现了<100 nm直径EV中带有荧光标记膜蛋白的不同亚群,从而展示了SPFI在EV分析方面的潜力。
{"title":"Size photometry and fluorescence imaging of immobilized immersed extracellular vesicles","authors":"Andreas Wallucks, Philippe DeCorwin-Martin, Molly L. Shen, Andy Ng, David Juncker","doi":"10.1002/jev2.12512","DOIUrl":"https://doi.org/10.1002/jev2.12512","url":null,"abstract":"<p>Immunofluorescence analysis of individual extracellular vesicles (EVs) in common fluorescence microscopes is gaining popularity due to its accessibility and high fluorescence sensitivity; however, EV number and size are only measurable using fluorescent stains requiring extensive sample manipulations. Here we introduce highly sensitive label-free EV size photometry (SP) based on interferometric scattering (iSCAT) imaging of immersed EVs immobilized on a glass coverslip. We implement SP on a common inverted epifluorescence microscope with LED illumination and a simple 50:50 beamsplitter, permitting seamless integration of SP with fluorescence imaging (SPFI). We present a high-throughput SPFI workflow recording >10,000 EVs in 7 min over ten 88 × 88 µm<sup>2</sup> fields of view, pre- and post-incubation imaging to suppress background, along with automated image alignment, aberration correction, spot detection and EV sizing. We achieve an EV sizing range from 37 to ∼220 nm in diameter with a dual 440 and 740 nm SP illumination scheme, and suggest that this range can be extended by more advanced image analysis or additional hardware customization. We benchmark SP to flow cytometry using calibrated silica nanoparticles and demonstrate superior, label-free sensitivity. We showcase SPFI's potential for EV analysis by experimentally distinguishing surface and volumetric EV dyes, observing the deformation of EVs adsorbed to a surface, and by uncovering distinct subpopulations in <100 nm-in-diameter EVs with fluorescently tagged membrane proteins.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinran Peng, Yuanjing Luo, Li Yang, Yi Yan Yang, Peiyan Yuan, Xinhai Chen, Guo-Bao Tian, Xin Ding
Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.
{"title":"A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections","authors":"Xinran Peng, Yuanjing Luo, Li Yang, Yi Yan Yang, Peiyan Yuan, Xinhai Chen, Guo-Bao Tian, Xin Ding","doi":"10.1002/jev2.12524","DOIUrl":"https://doi.org/10.1002/jev2.12524","url":null,"abstract":"<p>Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by <i>Pseudomonas aeruginosa</i>. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat <i>P. aeruginosa</i> infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by <i>P. aeruginosa</i>, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madhusudhan Reddy Bobbili, André Görgens, Yan Yan, Stefan Vogt, Dhanu Gupta, Giulia Corso, Samir Barbaria, Carolina Patrioli, Sylvia Weilner, Marianne Pultar, Jaroslaw Jacak, Matthias Hackl, Markus Schosserer, Regina Grillari, Jørgen Kjems, Samir EL Andaloussi, Johannes Grillari
Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.
细胞外囊泡(EVs)是一种脂质纳米颗粒,在细胞与细胞之间的通讯中发挥着重要作用,使其成为潜在的治疗药物,并可用于靶向给药工程。EVs在下一代医学中的应用不断扩大,但仍受限于现有的EV标准化生产、单一EV追踪和分析工具,因此只能提供组织特异性EV货物信息的快照。在这里,我们展示了 Snorkel 标签,我们将 EV 表面标记蛋白 CD81 与一系列标签进行了基因融合,这些标签带有一个额外的跨膜结构域,可以显示在 EV 表面,就像一个潜望镜。该系统能以非破坏性形式从复杂基质中亲和性纯化 EV,同时保持 EV 在表面蛋白特征、相关 miRNA 模式和模型细胞系吸收方面的特性。因此,我们认为Snorkel-tag是一种广泛应用于EV研究的工具,它可以高效地制备EV标准和参考材料,或在体外或体内与其他四蛋白融合时剖析具有不同表面标记的EV。
{"title":"Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification","authors":"Madhusudhan Reddy Bobbili, André Görgens, Yan Yan, Stefan Vogt, Dhanu Gupta, Giulia Corso, Samir Barbaria, Carolina Patrioli, Sylvia Weilner, Marianne Pultar, Jaroslaw Jacak, Matthias Hackl, Markus Schosserer, Regina Grillari, Jørgen Kjems, Samir EL Andaloussi, Johannes Grillari","doi":"10.1002/jev2.12523","DOIUrl":"https://doi.org/10.1002/jev2.12523","url":null,"abstract":"<p>Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitin Kumar Pokhrel, Amanda R. Panfil, Haniya Habib, Shamreethaa Seeniraj, Ancy Joseph, Daniel Rauch, Linda Cox, Robert Sprung, Petra Erdmann Gilmore, Qiang Zhang, Robert Reid Townsend, Lianbo Yu, Ayse Selen Yilmaz, Rajeev Aurora, William Park, Lee Ratner, Katherine N. Weilbaecher, Deborah J. Veis
Adult T cell leukaemia (ATL), caused by infection with human T- lymphotropic virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T leads to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted the formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV from osteoclast-active HTLV/T injected over mouse calvaria in the presence of low-dose RANKL caused more osteolysis than osteoclast-inactive sEV or RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukaemia.
由人类 T 淋巴细胞病毒 1 型(HTLV-1)感染引起的成人 T 细胞白血病(ATL)通常会并发高钙血症和溶骨性病变。因此,我们研究了患者衍生的 ATL 细胞(ATL-PDX)和 HTLV-1 永生化 CD4+ T 细胞系(HTLV/T)与破骨细胞之间的交流及其对小鼠骨量的影响。胫骨内接种一些 HTLV/T,会导致局部骨量显著下降,与骨髓置换 ATL-PDX 相似,尽管事实上很少有 HTLV/T 细胞持续存在于骨骼中。为了研究 HTLV/T 和 ATL-PDX 对破骨细胞的直接影响,将上清液添加到小鼠和人类破骨细胞前体中。来自高钙血症患者的 ATL-PDX 上清液促进了成熟破骨细胞的形成,而来自 HTLV/T 的上清液则有不同程度的刺激作用,但对人类和小鼠培养物的影响基本一致。有趣的是,这种破骨细胞活性与破骨细胞生成细胞因子受体激活剂核因子卡巴-B配体(RANKL)的表达无关,这表明存在另一种机制。HTLV/T和ATL-PDX会产生小细胞外囊泡(sEV),已知这些囊泡会促进HTLV-1感染。我们假设这些 sEV 也会通过靶向破骨细胞来介导骨质流失。我们从 HTLV/T 和 ATL-PDX 中分离出了 sEV,发现它们具有上清液中发现的大部分活性。相比之下,未感染的活化 T 细胞中的 sEV 作用很小。通过质谱法和电子显微镜分析 sEV(包括活性和非活性),证实其中不含 RANKL 和完整的病毒。破骨细胞活性 HTLV/T 的 sEV 在低剂量 RANKL 存在的情况下注射到小鼠小腿上,比破骨细胞活性 sEV 或单独注射 RANKL 引起的溶骨更多。因此,HTLV-1 感染 T 细胞可导致释放具有强烈溶骨潜能的 sEV,提供了一种 RANKL 之外的机制,即使在没有明显白血病的情况下也能改变骨微环境。
{"title":"HTLV-1 infected T cells cause bone loss via small extracellular vesicles","authors":"Nitin Kumar Pokhrel, Amanda R. Panfil, Haniya Habib, Shamreethaa Seeniraj, Ancy Joseph, Daniel Rauch, Linda Cox, Robert Sprung, Petra Erdmann Gilmore, Qiang Zhang, Robert Reid Townsend, Lianbo Yu, Ayse Selen Yilmaz, Rajeev Aurora, William Park, Lee Ratner, Katherine N. Weilbaecher, Deborah J. Veis","doi":"10.1002/jev2.12516","DOIUrl":"10.1002/jev2.12516","url":null,"abstract":"<p>Adult T cell leukaemia (ATL), caused by infection with human T- lymphotropic virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T leads to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted the formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV from osteoclast-active HTLV/T injected over mouse calvaria in the presence of low-dose RANKL caused more osteolysis than osteoclast-inactive sEV or RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukaemia.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian M. Sánchez-López, Carla Soler, Elisa Garzo, Alberto Fereres, Pedro Pérez-Bermúdez, Antonio Marcilla
The morphogenesis of higher plants requires communication among distant organs throughout vascular tissues (xylem and phloem). Numerous investigations have demonstrated that phloem also act as a distribution route for signalling molecules being observed that different macromolecules translocated by the sap, including nucleic acids and proteins, change under stress situations. The participation of extracellular vesicles (EVs) in this communication has been suggested, although little is known about their role. In fact, in the last decade, the presence of EVs in plants has originated a great controversy, where major concerns arose from their origin, isolation methods, and even the appropriate nomenclature for plant nanovesicles. Phloem sap exudates from melon plants, either aphid-free or infested with Aphis gossypii, were collected by stem incision. After sap concentration (Amicon), phloem EVs (PhlEVs) were isolated by size exclusion chromatography. PhlEVs were characterised using Nanoparticle Tracking Analysis, Transmission electron microscopy and proteomic analysis. Here we confirm the presence of EVs in phloem sap in vivo and the detection of changes in the particles/protein ratio and composition of PhlEVs in response to insect feeding, revealing the presence of typical defence proteins in their cargo as well as components of the proteasome complex. PhlEVs from infested plants showed lower particles/protein ratio and almost two times more proteolytic activity than PhlEVs from aphid-free plants. In both cases, such activity was inhibited in a dose-dependent manner by the proteasome inhibitor MG132. Our results suggest that plants may use this mechanism to prepare themselves to receive infectious agents and open up the possibility of an evolutionary conserved mechanism of defence against pathogens/stresses in eukaryotic organisms.
{"title":"Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation","authors":"Christian M. Sánchez-López, Carla Soler, Elisa Garzo, Alberto Fereres, Pedro Pérez-Bermúdez, Antonio Marcilla","doi":"10.1002/jev2.12517","DOIUrl":"10.1002/jev2.12517","url":null,"abstract":"<p>The morphogenesis of higher plants requires communication among distant organs throughout vascular tissues (xylem and phloem). Numerous investigations have demonstrated that phloem also act as a distribution route for signalling molecules being observed that different macromolecules translocated by the sap, including nucleic acids and proteins, change under stress situations. The participation of extracellular vesicles (EVs) in this communication has been suggested, although little is known about their role. In fact, in the last decade, the presence of EVs in plants has originated a great controversy, where major concerns arose from their origin, isolation methods, and even the appropriate nomenclature for plant nanovesicles. Phloem sap exudates from melon plants, either aphid-free or infested with <i>Aphis gossypii</i>, were collected by stem incision. After sap concentration (Amicon), phloem EVs (PhlEVs) were isolated by size exclusion chromatography. PhlEVs were characterised using Nanoparticle Tracking Analysis, Transmission electron microscopy and proteomic analysis. Here we confirm the presence of EVs in phloem sap in vivo and the detection of changes in the particles/protein ratio and composition of PhlEVs in response to insect feeding, revealing the presence of typical defence proteins in their cargo as well as components of the proteasome complex. PhlEVs from infested plants showed lower particles/protein ratio and almost two times more proteolytic activity than PhlEVs from aphid-free plants. In both cases, such activity was inhibited in a dose-dependent manner by the proteasome inhibitor MG132. Our results suggest that plants may use this mechanism to prepare themselves to receive infectious agents and open up the possibility of an evolutionary conserved mechanism of defence against pathogens/stresses in eukaryotic organisms.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aijun Liang, Lavisha Korani, Cherlie Lot Sum Yeung, Sze Keong Tey, Judy Wai Ping Yam
Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators between bacteria and host. In addition to being crucial players in host homeostasis, they have recently been implicated in disease pathologies such as cancer. Hence, the study of BEVs represents an intriguing and rapidly evolving field with substantial translational potential. In this review, we briefly introduce the fundamentals of BEV characteristics, cargo and biogenesis. We emphatically summarize the current relationship between BEVs across various cancer types, illustrating their role in tumorigenesis, treatment responses and patient survival. We further discuss the inherent advantages of BEVs, such as stability, abundance and specific cargo profiles, that make them attractive candidates for non-invasive diagnostic and prognostic approaches. The review also explores the potential of BEVs as a strategy for cancer therapy, considering their ability to deliver therapeutic agents, modulate the tumour microenvironment (TME) and elicit immunomodulatory responses. Understanding the clinical significance of BEVs may lead to the development of better-targeted and personalized treatment strategies. This comprehensive review evaluates the current progress surrounding BEVs and poses questions to encourage further research in this emerging field to harness the benefits of BEVs for their full potential in clinical applications against cancer.
{"title":"The emerging role of bacterial extracellular vesicles in human cancers","authors":"Aijun Liang, Lavisha Korani, Cherlie Lot Sum Yeung, Sze Keong Tey, Judy Wai Ping Yam","doi":"10.1002/jev2.12521","DOIUrl":"10.1002/jev2.12521","url":null,"abstract":"<p>Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators between bacteria and host. In addition to being crucial players in host homeostasis, they have recently been implicated in disease pathologies such as cancer. Hence, the study of BEVs represents an intriguing and rapidly evolving field with substantial translational potential. In this review, we briefly introduce the fundamentals of BEV characteristics, cargo and biogenesis. We emphatically summarize the current relationship between BEVs across various cancer types, illustrating their role in tumorigenesis, treatment responses and patient survival. We further discuss the inherent advantages of BEVs, such as stability, abundance and specific cargo profiles, that make them attractive candidates for non-invasive diagnostic and prognostic approaches. The review also explores the potential of BEVs as a strategy for cancer therapy, considering their ability to deliver therapeutic agents, modulate the tumour microenvironment (TME) and elicit immunomodulatory responses. Understanding the clinical significance of BEVs may lead to the development of better-targeted and personalized treatment strategies. This comprehensive review evaluates the current progress surrounding BEVs and poses questions to encourage further research in this emerging field to harness the benefits of BEVs for their full potential in clinical applications against cancer.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}