首页 > 最新文献

Journal of Extracellular Vesicles最新文献

英文 中文
MISEV2023: An updated guide to EV research and applications MISEV2023:电动汽车研究与应用最新指南。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-23 DOI: 10.1002/jev2.12416
Joshua A. Welsh, Deborah C. Goberdhan, Lorraine O'Driscoll, Clotilde Théry, Kenneth W. Witwer

MISEV2023 has been written and revised to stand on its own as a guide to EV studies . Starting with an introduction with a historical perspective and ‘user guide’, MISEV2023 next takes the reader through all of the main aspects of an EV study. Community-sourced, it has something to offer beginners and veterans alike. The nomenclature section introduces the diversity of EVs and the need to avoid misusing the term ‘exosome’. It also highlights the ‘non-vesicular extracellular particles’ (NVEPs) that abound in most EV preparations. Collection and pre-processing underscores the importance of pre-analytical variables, with input on specific EV sources from ISEV task forces. EV separation and concentration and EV characterization have new details on key approaches. A new section on technique-specific reporting for EV characterization focuses on leading commercially available methods. EV release and uptake examines opportunities and pitfalls, while functional studies reminds us of important controls that are needed to help attribute an outcome to EVS. Finally, there is a new section on studying EVs in vivo.

Despite the stand-alone nature of MISEV2023, it is nevertheless instructive to read and interpret this new document in the context of the previous MISEV publications, MISEV2014 and MISEV2018 (Lötvall et al., 2014; Théry et al., 2018). MISEV2014 was an editorial of the ISEV board, while MISEV2018 first gathered community input, with nearly 400 contributors. Interspersed with the previous MISEVs, numerous ISEV position papers, along with collaborative reviews and editorials, have guided the field in important ways. The ISEV position papers are summarized in Table 1 of MISEV2023.

MISEV2023 began, as did MISEV2018, with a pre-drafting survey (Witwer et al., 2021). The input from this 2020 survey identified existing aspects to emphasize and new areas to explore. After reviewing the results of the survey, the ISEV board met at the end of 2020 and assigned a five-author committee (J.A. Welsh, D.C. Goberdhan, L. O'Driscoll, C. Théry and K.W. Witwer) to prepare a draft and guide the community input for the next MISEV. Numerous drafts and refinements were then prepared and shared with the ISEV board for feedback. Approximately 70 authors contributed to section drafts during this phase. Then, in 2022, an intermediate draft and a survey were shared with the ISEV community, resulting in >1000 responses. The three co-first authors worked hard and long to update MISEV based on this input. Multiple rounds of internal review and additional invited contributions/revisions ensued, along with style ‘unification’. In mid-2023, the article received pre-submission comments from JEV, followed by more revisions, formal submission, and three post-submission rounds of scrutiny (the first, main round including comments from more than 30 individuals). A near-final dra

MISEV2023 经过编写和修订,可独立成为电动汽车研究指南。MISEV2023 从历史视角和 "用户指南 "的导言开始,带领读者了解电动汽车研究的所有主要方面。该手册来源于社区,无论是新手还是老手都能从中受益。术语部分介绍了EV的多样性以及避免误用 "外泌体 "一词的必要性。它还强调了在大多数 EV 制剂中都存在的 "非囊泡细胞外颗粒"(NVEPs)。收集和预处理强调了分析前变量的重要性,ISEV 工作组就特定 EV 来源提出了意见。EV 分离和浓缩以及 EV 表征的关键方法有了新的细节。有关 EV 表征的特定技术报告的新章节重点介绍了主要的商用方法。EV 释放和吸收研究了机会和陷阱,而功能研究则提醒我们需要进行重要的控制,以帮助将结果归因于 EVS。尽管 MISEV2023 具有独立的性质,但结合之前的 MISEV 出版物 MISEV2014 和 MISEV2018(Lötvall 等人,2014 年;Théry 等人,2018 年)来阅读和解读这份新文件还是很有启发的。MISEV2014 是 ISEV 董事会的社论,而 MISEV2018 则首次收集了社区的意见,有近 400 人投稿。在之前的 MISEV 中,还穿插了许多 ISEV 立场文件,以及合作评论和社论,它们以重要的方式为该领域提供了指导。与 MISEV2018 一样,MISEV2023 开始时也进行了起草前调查(Witwer 等人,2021 年)。2020 年的调查确定了需要强调的现有方面和需要探索的新领域。在对调查结果进行审查后,ISEV 董事会于 2020 年底召开会议,并指派一个由五位作者组成的委员会(J.A. Welsh、D.C. Goberdhan、L. O'Driscoll、C. Théry 和 K.W. Witwer)为下一届 MISEV 编写草案并指导社区意见。随后又编写了许多草案和修订稿,并与 ISEV 董事会分享,以征求反馈意见。在这一阶段,约有 70 位作者为各部分草案提供了意见。然后,在 2022 年与 ISEV 社区分享了中间草案和调查问卷,共收到 1000 份回复。三位共同第一作者根据这些意见,努力工作了很长时间,以更新 MISEV。随后进行了多轮内部审查和额外的特邀投稿/修订,并进行了风格 "统一"。2023 年年中,文章收到了 JEV 的投稿前意见,随后进行了更多的修改,正式投稿,并进行了三轮投稿后审查(第一轮,主要一轮,包括来自 30 多人的意见)。与所有共同作者分享了接近最终的草案,以进行确认和共识调查。MISEV2023 于 2023 年 12 月 13 日正式获准由 JEV 出版。74 位科学家提供了原始文本,并作为起草作者出现在文章的 "首页 "上。最终发表的手稿有 1051 位共同作者,他们几乎都填写了几份内容广泛的反馈问卷。根据主要所属单位,作者至少代表了 53 个国家(图 1a,表 1),前五名中包括 ISEV 三个地理分会中每个分会的至少一个国家:美国、澳大利亚、意大利、英国和法国。斯洛文尼亚的作者密度(人均)最高,其次是卢森堡、瑞典、匈牙利和澳大利亚(图 1b)。作者平均花费多个小时完成 2022 年 MISEV 调查。同样,完成2023年作者身份确认和共识调查的平均时间也超过2小时。我们不可能知道作者在2023年MISEV调查中投入的总时间,但我们知道,对于大多数作者来说,在完成调查之前,他们在调查中花费了更多的时间阅读和思考稿件。在 MISEV2023 的众多优势中,也存在局限性。我们承认,MISEV 不是也从未打算成为电动汽车研究和翻译的万能文件。这一点在 "MISEV'是'和'不是'"的专门导言部分有所阐述。在此,我们明确指出,MISEV 应有助于建立严谨性和可重复性,并作为知识来源,帮助教育电动汽车领域的新人。MISEV 不应成为不合理的准入门槛,也不应扼杀创新。虽然一些章节主要关注哺乳动物的 EV,但 MISEV 原则普遍适用于所有来源的 EV。 我们还强调,MISEV 与转化和治疗应用高度相关:其方法有助于确定特定生物标志物或治疗结果实际上与 EVs 相关或由 EVs 促进。同样,MISEV 也不是一篇全面的文献综述。正如引言中所述,论文中的 500 篇引文并不一定都是支持相关声明的第一篇或最佳论文。大多数引文是由起草专题的专家建议的,而其他引文则是根据社区调查和审稿人的意见添加的。与 2022 年与社区共享的初稿相比,MISEV 的出版版本增加了约 200 条引文。尽管试图统一方法,但 MISEV 的某些部分与其他部分的引用密度甚至引用质量都不尽相同。事实上,并非所有被引用的论文都符合现行指南。引文并不代表对任何研究方法或结论的认可,没有引文也不一定意味着某篇论文已被评估和拒绝。我们感谢社会各界提出的引文建议,并对任何遗漏和未能充分公正地引用文献表示歉意。在 MISEV2014 编辑时,个人电动汽车专家仍有可能对电动汽车文献保持相当全面的了解,而这些文献仅限于几百篇关键的主要研究出版物。到 MISEV2018 年,这种情况已经结束。目前,每年都有成千上万的电动汽车出版物出现,因此,对其主要性和质量进行分类是一项挑战。MISEV 被广泛接受且非常有用,但它并不完美。诚然,MISEV 的大部分内容都可以用一句话来代替:'告诉我们你到底做了什么'。不过,我们希望并相信,除此以外的文字对读者还是有帮助的,不会过于教条。每项大型科学事业都会有诋毁者。但最终,大多数社区成员都高度支持 MISEV 的过程和产品。我们邀请其余的怀疑论者以我们一些最严厉、最有原则的批评者为榜样,他们强烈地表达了自己的观点和反对意见,从而帮助 MISEV 成为一份更好的文件。齐心协力,我们可以做得更好!做得更好是否意味着未来的 MISEV?MISEV2018 与 MISEV2014 相隔 4 年,而 MISEV2023 又在 5 年后发布。还需要另一个 MISEV 吗?MISEV 的发布过程变得复杂而冗长,可能会让人望而却步。MISEV2014 基本上是一篇社论,由少数科学家在几个月内撰写并发布。MISEV2018 涉及的内容更多,引入了社区参与,从初步决定到出版耗时一年。MISEV2023 是一个更漫长的过程,历时 3 年。完整的手稿经历了 30 多次不同的草稿。尽管最终的结果让我们收获颇丰,但如果我们知道真正需要投入的时间,我们还会同意这项任务吗?今后,可能很难期望任何志愿科学家为如此大规模的项目投入 3 年或更长时间的无偿密集努力。在 MISEV 今后的任何迭代之前,我们鼓励仔细评估是否真的需要更新,如果需要,则采用更有条理的方法来构建。未来的指南可能更有助于关注特定的方法、试剂、实验设计或应用,而无需对 MISEV 进行全领域的更新。这些产品可由 ISEV 特别工作组和特别兴趣小组或特设委员会领导,或与合作伙伴组织合作。也许,MISEV 还可以转为 "活文件",比如维基风格的方法,其中的不同部分可以根据需要随时进行更新:MISEV 是分钟级的,而不是半个十年级的。包括人工智能在内的新工具,如果继续发展并可用于未来与 MISEV 相关的倡议,可能会被用来达成更强的共识,例如,比任何
{"title":"MISEV2023: An updated guide to EV research and applications","authors":"Joshua A. Welsh,&nbsp;Deborah C. Goberdhan,&nbsp;Lorraine O'Driscoll,&nbsp;Clotilde Théry,&nbsp;Kenneth W. Witwer","doi":"10.1002/jev2.12416","DOIUrl":"10.1002/jev2.12416","url":null,"abstract":"<p>MISEV2023 has been written and revised to stand on its own as a guide to EV studies . Starting with an introduction with a historical perspective and ‘user guide’, MISEV2023 next takes the reader through all of the main aspects of an EV study. Community-sourced, it has something to offer beginners and veterans alike. The <b>nomenclature</b> section introduces the diversity of EVs and the need to avoid misusing the term ‘exosome’. It also highlights the ‘non-vesicular extracellular particles’ (NVEPs) that abound in most EV preparations. <b>Collection and pre-processing</b> underscores the importance of pre-analytical variables, with input on specific EV sources from ISEV task forces. <b>EV separation and concentration</b> and <b>EV characterization</b> have new details on key approaches. A new section on <b>technique-specific reporting for EV characterization</b> focuses on leading commercially available methods. <b>EV release and uptake</b> examines opportunities and pitfalls, while <b>functional studies</b> reminds us of important controls that are needed to help attribute an outcome to EVS. Finally, there is a new section on <b>studying EVs in vivo</b>.</p><p>Despite the stand-alone nature of MISEV2023, it is nevertheless instructive to read and interpret this new document in the context of the previous MISEV publications, MISEV2014 and MISEV2018 (Lötvall et al., <span>2014</span>; Théry et al., <span>2018</span>). MISEV2014 was an editorial of the ISEV board, while MISEV2018 first gathered community input, with nearly 400 contributors. Interspersed with the previous MISEVs, numerous ISEV position papers, along with collaborative reviews and editorials, have guided the field in important ways. The ISEV position papers are summarized in Table 1 of MISEV2023.</p><p>MISEV2023 began, as did MISEV2018, with a pre-drafting survey (Witwer et al., <span>2021</span>). The input from this 2020 survey identified existing aspects to emphasize and new areas to explore. After reviewing the results of the survey, the ISEV board met at the end of 2020 and assigned a five-author committee (J.A. Welsh, D.C. Goberdhan, L. O'Driscoll, C. Théry and K.W. Witwer) to prepare a draft and guide the community input for the next MISEV. Numerous drafts and refinements were then prepared and shared with the ISEV board for feedback. Approximately 70 authors contributed to section drafts during this phase. Then, in 2022, an intermediate draft and a survey were shared with the ISEV community, resulting in &gt;1000 responses. The three co-first authors worked hard and long to update MISEV based on this input. Multiple rounds of internal review and additional invited contributions/revisions ensued, along with style ‘unification’. In mid-2023, the article received pre-submission comments from JEV, followed by more revisions, formal submission, and three post-submission rounds of scrutiny (the first, main round including comments from more than 30 individuals). A near-final dra","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publishing the MISEV guidelines; The editorial process 出版 MISEV 指南;编辑过程。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-15 DOI: 10.1002/jev2.12415
Jan Lötvall

Extracellular vesicle (EV) research has expanded exponentially over the last 10–15 years, with less than 100 entries in PubMed in 2007 but almost 8000 in 2022, depending on the specifics of the search terms applied. As this meteoric rise began, the field moved at a high pace, with methodology and technology evolving swiftly. This evolution has had notable impact on the stringency of the research produced. When ISEV was established in 2011, it was evident that researchers in the field needed some guidance to improve the quality of published science, as well as advice regarding the technologies being developed to support their work.

The aim of the ISEV leadership has always been to support the positive development of EV research in general. To assist with this, ISEV has published the so-called MISEV guidelines (Lotvall et al., 2014 and Thery et al., 2018). In the first version, MISEV2014, the word “requirement” was used in the title of the document, which resulted in some criticism, and therefore in 2018 the term “information” was used to better represent the overall goal of MISEV. MISEV guidelines aim to represent the consensus of the field regarding the current state of the art, and they are NOT a set of requirements for EV researchers. MISEV2014 was a short and succinct advisory text on how EV research can provide relatively conclusive results, as well as identifying some caveats that can be avoided in this field of research. Four years later, in 2018, a vast technology development had occurred, with new methods and analytical tools having been introduced to the field. The MISEV guidelines grew significantly, and many authors were recruited to contribute to the document. This effort evolved to the massive MISEV 2018 publication, which is extensively referenced, sometimes as a handbook of EV research. Indeed, if the advice in this document is applied by researchers, the likelihood that the results observed in any study depend on the EVs, are relatively likely.

Since MISEV2018, there have been even further developments in the field, including new methods of EV isolation and technologies to characterize EVs at the single-EV level. ISEV initiated a process to develop a new and updated MISEV several years ago, and an enormous effort has been employed to develop texts and advice for the version being published in the current issue of Journal of Extracellular Vesicles. The document has 1051 authors, and the whole process of compiling the document has been immense and very challenging but ultimately rewarding.

The editorial approach taken towards the MISEV document, much like the process of compiling the manuscript itself, has been extensive. In the spring of 2023, a full draft of the MISEV 2023 guidelines had been compiled, and discussions between the ISEV board and the Editorial leadership of JEV on how, and when, to submit the document for consideration by the journal ensued. The journal clarified that,

细胞外囊泡(EV)研究在过去 10-15 年间呈指数级增长,2007 年,PubMed 上的条目还不到 100 个,而到 2022 年,根据搜索条件的不同,条目数量已接近 8000 个。随着这一领域的飞速发展,方法和技术也在迅速演变。这种演变对研究成果的严谨性产生了显著影响。2011年ISEV成立之初,该领域的研究人员显然需要一些指导,以提高发表的科学论文的质量,并就正在开发的技术提出建议,以支持他们的工作。为协助实现这一目标,ISEV 发布了所谓的 MISEV 指南(Lotvall 等人,2014 年和 Thery 等人,2018 年)。在第一版 MISEV2014 中,文件标题中使用了 "要求 "一词,这引起了一些批评,因此在 2018 年使用了 "信息 "一词,以更好地代表 MISEV 的总体目标。MISEV 指南旨在代表该领域对当前技术水平的共识,而不是对电动汽车研究人员的一系列要求。MISEV2014 是一份简明扼要的咨询文本,介绍了电动汽车研究如何提供相对确凿的结果,并指出了这一研究领域可以避免的一些注意事项。四年后的2018年,技术发生了巨大的发展,新的方法和分析工具被引入该领域。MISEV 指南有了长足的发展,许多作者应邀为该文件撰稿。这一努力演变成了大规模的 MISEV 2018 出版物,该出版物被广泛引用,有时被视为电动汽车研究手册。事实上,如果研究人员应用该文件中的建议,那么任何研究中观察到的结果都相对可能取决于电动汽车。自 MISEV2018 以来,该领域有了更多发展,包括电动汽车隔离的新方法和在单个电动汽车层面表征电动汽车的技术。ISEV 在几年前就启动了开发新的和更新的 MISEV 的进程,并花费了大量精力为本期《细胞外囊泡杂志》(Journal of Extracellular Vesicles)上发表的版本编写文本和建议。该文件共有 1051 位作者,整个编撰过程非常艰巨,极具挑战性,但最终收获颇丰。2023 年春,MISEV 2023 准则的完整草案已经编纂完成,ISEV 董事会和 JEV 编辑领导层就如何以及何时将该文件提交期刊审议进行了讨论。期刊明确表示,虽然社会政策文件的出版不需要正式的审查程序,但在接受稿件之前会采用一个程序来确保稿件的质量。这包括几个步骤。首先,ISEV 和 JEV 的专职科学编辑 Sarah Williams 帮助学会统一了稿件的文本和不同部分。这就需要在不丢失文本信息的前提下,对一些章节进行大量改写。此外,我作为 JEV 的主编,在这一阶段也为文本的某些部分(包括某些章节和摘要)的进展做出了贡献。之后,文本草案回到 ISEV 委员会,委员会对其进行了进一步处理,然后于 2023 年 6 月 20 日向 JEV 提交了原始版本。正如在早期讨论中阐明的那样,EiC在管理编辑过程中发挥了主导作用,其中包括一个广泛的质量控制程序,有30多人对整个文件或其中的特定部分进行了评估(表S1)。其中许多人以及编辑团队都是该文件的共同作者,但这并不妨碍他们对提交版本中的不足之处发表意见,本社论补充表格中公布的反馈意见就证明了这一点。2023 年 7 月 21 日,EiC 要求根据评审过程中收到的意见对文件进行大量修改。2023 年 11 月 3 日星期五,学会重新提交了经过大幅修改的作品版本,并进行了第二轮评审,这次有 10 人在 1 周内反馈了意见。2023 年 11 月 10 日,期刊根据这些人提出的一些质量控制建议,要求对文件作进一步的细微修改(表 S2)。
{"title":"Publishing the MISEV guidelines; The editorial process","authors":"Jan Lötvall","doi":"10.1002/jev2.12415","DOIUrl":"10.1002/jev2.12415","url":null,"abstract":"<p>Extracellular vesicle (EV) research has expanded exponentially over the last 10–15 years, with less than 100 entries in PubMed in 2007 but almost 8000 in 2022, depending on the specifics of the search terms applied. As this meteoric rise began, the field moved at a high pace, with methodology and technology evolving swiftly. This evolution has had notable impact on the stringency of the research produced. When ISEV was established in 2011, it was evident that researchers in the field needed some guidance to improve the quality of published science, as well as advice regarding the technologies being developed to support their work.</p><p>The aim of the ISEV leadership has always been to support the positive development of EV research in general. To assist with this, ISEV has published the so-called MISEV guidelines (Lotvall et al., <span>2014</span> and Thery et al., <span>2018</span>). In the first version, MISEV2014, the word “requirement” was used in the title of the document, which resulted in some criticism, and therefore in 2018 the term “information” was used to better represent the overall goal of MISEV. MISEV guidelines aim to represent the consensus of the field regarding the current state of the art, and they are NOT a set of requirements for EV researchers. MISEV2014 was a short and succinct advisory text on how EV research can provide relatively conclusive results, as well as identifying some caveats that can be avoided in this field of research. Four years later, in 2018, a vast technology development had occurred, with new methods and analytical tools having been introduced to the field. The MISEV guidelines grew significantly, and many authors were recruited to contribute to the document. This effort evolved to the massive MISEV 2018 publication, which is extensively referenced, sometimes as a handbook of EV research. Indeed, if the advice in this document is applied by researchers, the likelihood that the results observed in any study depend on the EVs, are relatively likely.</p><p>Since MISEV2018, there have been even further developments in the field, including new methods of EV isolation and technologies to characterize EVs at the single-EV level. ISEV initiated a process to develop a new and updated MISEV several years ago, and an enormous effort has been employed to develop texts and advice for the version being published in the current issue of Journal of Extracellular Vesicles. The document has 1051 authors, and the whole process of compiling the document has been immense and very challenging but ultimately rewarding.</p><p>The editorial approach taken towards the MISEV document, much like the process of compiling the manuscript itself, has been extensive. In the spring of 2023, a full draft of the MISEV 2023 guidelines had been compiled, and discussions between the ISEV board and the Editorial leadership of JEV on how, and when, to submit the document for consideration by the journal ensued. The journal clarified that, ","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk 孕期循环胎盘细胞外囊泡的脂质特征可确定胎儿生长受限的风险。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-14 DOI: 10.1002/jev2.12413
Miira M. Klemetti, Ante B. V. Pettersson, Aafaque Ahmad Khan, Leonardo Ermini, Tyler R. Porter, Michael L. Litvack, Sruthi Alahari, Stacy Zamudio, Nicholas P. Illsley, Hannes Röst, Martin Post, Isabella Caniggia

Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.

小于胎龄(SGA)新生儿围产期发病率和死亡率增加,成年后罹患慢性疾病的风险也更高。目前,还没有有效的基于母体血液的筛查方法来确定 SGA 风险。我们采用高分辨率 MS/MSALL 枪式脂质组学方法来研究从胎盘释放到孕妇血液循环中的细胞外小泡(sEV)的脂质特征。研究人员采集了 195 例正常妊娠和 41 例 SGA 妊娠的样本。对整个孕期的脂质特征进行了连续测定。我们确定了胎盘 sEV 的特定脂质特征,这些特征定义了正常妊娠的轨迹及其与母体特征(奇偶性和种族)和出生体重百分位数相关的变化。我们构建了一个多变量模型,证明循环胎盘 sEVs 的特定脂质特征(尤其是在妊娠早期)可高度预测 SGA 婴儿。基于脂质体的生物标志物的开发有望改善对有发生 SGA 风险的孕妇的早期检测,而这正是产科尚未满足的临床需求。
{"title":"Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk","authors":"Miira M. Klemetti,&nbsp;Ante B. V. Pettersson,&nbsp;Aafaque Ahmad Khan,&nbsp;Leonardo Ermini,&nbsp;Tyler R. Porter,&nbsp;Michael L. Litvack,&nbsp;Sruthi Alahari,&nbsp;Stacy Zamudio,&nbsp;Nicholas P. Illsley,&nbsp;Hannes Röst,&nbsp;Martin Post,&nbsp;Isabella Caniggia","doi":"10.1002/jev2.12413","DOIUrl":"10.1002/jev2.12413","url":null,"abstract":"<p>Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MS<sup>ALL</sup> shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineered small extracellular vesicles deliver multiple SARS-CoV-2 antigenic fragments and drive a broad immunological response 生物工程小细胞外囊泡可传递多种 SARS-CoV-2 抗原片段,并产生广泛的免疫反应。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-09 DOI: 10.1002/jev2.12412
Hannah K. Jackson, Heather M. Long, Juan Carlos Yam-Puc, Roberta Palmulli, Tracey A. Haigh, Pehuén Pereyra Gerber, Jin S. Lee, Nicholas J. Matheson, Lesley Young, John Trowsdale, Mathew Lo, Graham S. Taylor, James E. Thaventhiran, James R. Edgar

The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.

COVID-19 大流行突显了人畜共患病毒对全球健康和经济构成的明显风险。科学界对此作出了反应,开发出了几种有效的疫苗,并因全球对疫苗的需求而加速了疫苗的开发。SARS-CoV-2 突破性感染的出现突出表明,需要更多的疫苗模式来提供更强、更持久的保护性免疫。在此,我们报告了作为多亚基疫苗的小细胞外囊泡 (sEV) 的设计和临床前测试。我们对细胞系进行了改造,以产生含有 SARS-CoV-2 Spike 受体结合域或 SARS-CoV-2 Nucleocapsid 抗原区或两者结合的 sEVs,并测试了它们在体外和体内诱发免疫反应的能力。与生物工程 sEV 培育的 B 细胞是抗原特异性 T 细胞克隆的有效激活剂。用含有 sRBD 和核苷酸抗原的 sEV 对小鼠进行免疫,可产生 sRBD 特异性 IgG 和核苷酸特异性 IgG,从而中和 SARS-CoV-2 感染。
{"title":"Bioengineered small extracellular vesicles deliver multiple SARS-CoV-2 antigenic fragments and drive a broad immunological response","authors":"Hannah K. Jackson,&nbsp;Heather M. Long,&nbsp;Juan Carlos Yam-Puc,&nbsp;Roberta Palmulli,&nbsp;Tracey A. Haigh,&nbsp;Pehuén Pereyra Gerber,&nbsp;Jin S. Lee,&nbsp;Nicholas J. Matheson,&nbsp;Lesley Young,&nbsp;John Trowsdale,&nbsp;Mathew Lo,&nbsp;Graham S. Taylor,&nbsp;James E. Thaventhiran,&nbsp;James R. Edgar","doi":"10.1002/jev2.12412","DOIUrl":"10.1002/jev2.12412","url":null,"abstract":"<p>The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches 细胞外囊泡研究的最基本信息(MISEV2023):从基本方法到高级方法。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-07 DOI: 10.1002/jev2.12404
Joshua A. Welsh, Deborah C. I. Goberdhan, Lorraine O'Driscoll, Edit I. Buzas, Cherie Blenkiron, Benedetta Bussolati, Houjian Cai, Dolores Di Vizio, Tom A. P. Driedonks, Uta Erdbrügger, Juan M. Falcon-Perez, Qing-Ling Fu, Andrew F. Hill, Metka Lenassi, Sai Kiang Lim, Mỹ G. Mahoney, Sujata Mohanty, Andreas Möller, Rienk Nieuwland, Takahiro Ochiya, Susmita Sahoo, Ana C. Torrecilhas, Lei Zheng, Andries Zijlstra, Sarah Abuelreich, Reem Bagabas, Paolo Bergese, Esther M. Bridges, Marco Brucale, Dylan Burger, Randy P. Carney, Emanuele Cocucci, Federico Colombo, Rossella Crescitelli, Edveena Hanser, Adrian L. Harris, Norman J. Haughey, An Hendrix, Alexander R. Ivanov, Tijana Jovanovic-Talisman, Nicole A. Kruh-Garcia, Vroniqa Ku'ulei-Lyn Faustino, Diego Kyburz, Cecilia Lässer, Kathleen M. Lennon, Jan Lötvall, Adam L. Maddox, Elena S. Martens-Uzunova, Rachel R. Mizenko, Lauren A. Newman, Andrea Ridolfi, Eva Rohde, Tatu Rojalin, Andrew Rowland, Andras Saftics, Ursula S. Sandau, Julie A. Saugstad, Faezeh Shekari, Simon Swift, Dmitry Ter-Ovanesyan, Juan P. Tosar, Zivile Useckaite, Francesco Valle, Zoltan Varga, Edwin van der Pol, Martijn J. C. van Herwijnen, Marca H. M. Wauben, Ann M. Wehman, Sarah Williams, Andrea Zendrini, Alan J. Zimmerman,  MISEV Consortium, Clotilde Théry, Kenneth W. Witwer

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.

细胞外囊泡(EVs)通过其复杂的载体,可以反映其来源细胞的状态,并改变其他细胞的功能和表型。这些特征显示了强大的生物标记和治疗潜力,并引起了广泛的兴趣,有关 EVs 的科学出版物数量逐年稳步增长就是证明。在 EV 计量以及理解和应用 EV 生物学方面取得了重要进展。然而,EVs 在基础生物学到临床应用等领域的潜力仍然难以发挥,原因在于 EVs 的命名、与非囊泡细胞外颗粒的分离、表征和功能研究等方面存在挑战。为了应对这一快速发展领域的挑战和机遇,国际细胞外囊泡学会(ISEV)更新了《细胞外囊泡研究的最基本信息》,该文件首次发布于2014年,随后于2018年发布,分别为MISEV2014和MISEV2018。本文件(MISEV2023)的目标是为研究人员提供关于现有方法及其优势和局限性的最新快照,以便从细胞培养、体液和固体组织等多种来源生产、分离和表征 EVs。除了介绍 EV 研究基本原理的最新进展外,本文件还涵盖了目前正在扩展该领域边界的先进技术和方法。MISEV2023 还包括有关 EV 释放和吸收的新章节,以及对研究 EV 的体内方法的简要讨论。本文件汇集了 ISEV 专家工作组和 1000 多名研究人员的反馈意见,传达了电动汽车研究的现状,以促进有力的科学发现,推动该领域更快发展。
{"title":"Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches","authors":"Joshua A. Welsh,&nbsp;Deborah C. I. Goberdhan,&nbsp;Lorraine O'Driscoll,&nbsp;Edit I. Buzas,&nbsp;Cherie Blenkiron,&nbsp;Benedetta Bussolati,&nbsp;Houjian Cai,&nbsp;Dolores Di Vizio,&nbsp;Tom A. P. Driedonks,&nbsp;Uta Erdbrügger,&nbsp;Juan M. Falcon-Perez,&nbsp;Qing-Ling Fu,&nbsp;Andrew F. Hill,&nbsp;Metka Lenassi,&nbsp;Sai Kiang Lim,&nbsp;Mỹ G. Mahoney,&nbsp;Sujata Mohanty,&nbsp;Andreas Möller,&nbsp;Rienk Nieuwland,&nbsp;Takahiro Ochiya,&nbsp;Susmita Sahoo,&nbsp;Ana C. Torrecilhas,&nbsp;Lei Zheng,&nbsp;Andries Zijlstra,&nbsp;Sarah Abuelreich,&nbsp;Reem Bagabas,&nbsp;Paolo Bergese,&nbsp;Esther M. Bridges,&nbsp;Marco Brucale,&nbsp;Dylan Burger,&nbsp;Randy P. Carney,&nbsp;Emanuele Cocucci,&nbsp;Federico Colombo,&nbsp;Rossella Crescitelli,&nbsp;Edveena Hanser,&nbsp;Adrian L. Harris,&nbsp;Norman J. Haughey,&nbsp;An Hendrix,&nbsp;Alexander R. Ivanov,&nbsp;Tijana Jovanovic-Talisman,&nbsp;Nicole A. Kruh-Garcia,&nbsp;Vroniqa Ku'ulei-Lyn Faustino,&nbsp;Diego Kyburz,&nbsp;Cecilia Lässer,&nbsp;Kathleen M. Lennon,&nbsp;Jan Lötvall,&nbsp;Adam L. Maddox,&nbsp;Elena S. Martens-Uzunova,&nbsp;Rachel R. Mizenko,&nbsp;Lauren A. Newman,&nbsp;Andrea Ridolfi,&nbsp;Eva Rohde,&nbsp;Tatu Rojalin,&nbsp;Andrew Rowland,&nbsp;Andras Saftics,&nbsp;Ursula S. Sandau,&nbsp;Julie A. Saugstad,&nbsp;Faezeh Shekari,&nbsp;Simon Swift,&nbsp;Dmitry Ter-Ovanesyan,&nbsp;Juan P. Tosar,&nbsp;Zivile Useckaite,&nbsp;Francesco Valle,&nbsp;Zoltan Varga,&nbsp;Edwin van der Pol,&nbsp;Martijn J. C. van Herwijnen,&nbsp;Marca H. M. Wauben,&nbsp;Ann M. Wehman,&nbsp;Sarah Williams,&nbsp;Andrea Zendrini,&nbsp;Alan J. Zimmerman,&nbsp; MISEV Consortium,&nbsp;Clotilde Théry,&nbsp;Kenneth W. Witwer","doi":"10.1002/jev2.12404","DOIUrl":"10.1002/jev2.12404","url":null,"abstract":"<p>Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of specific markers for human pluripotent stem cell-derived small extracellular vesicles 鉴定人类多能干细胞衍生的细胞外小囊泡的特异性标记。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-06 DOI: 10.1002/jev2.12409
Zhengsheng Chen, Lei Luo, Teng Ye, Jiacheng Zhou, Xin Niu, Ji Yuan, Ting Yuan, Dehao Fu, Haiyan Li, Qing Li, Yang Wang

Pluripotent stem cell-derived small extracellular vesicles (PSC-sEVs) have demonstrated great clinical translational potential in multiple aging-related degenerative diseases. Characterizing the PSC-sEVs is crucial for their clinical applications. However, the specific marker pattern of PSC-sEVs remains unknown. Here, the sEVs derived from two typical types of PSCs including induced pluripotent stem cells (iPSC-sEVs) and embryonic stem cells (ESC-sEVs) were analysed using proteomic analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and surface marker phenotyping analysis by nanoparticle flow cytometry (NanoFCM). A group of pluripotency-related proteins were found to be enriched in PSC-sEVs by LC-MS/MS and then validated by Western Blot analysis. To investigate whether these proteins were specifically expressed in PSC-sEVs, sEVs derived from seven types of non-PSCs (non-PSC-sEVs) were adopted for analysis. The results showed that PODXL, OCT4, Dnmt3a, and LIN28A were specifically enriched in PSC-sEVs but not in non-PSC-sEVs. Then, commonly used surface antigens for PSC identification (SSEA4, Tra-1-60 and Tra-1-81) and PODXL were gauged at single-particle resolution by NanoFCM for surface marker identification. The results showed that the positive rates of PODXL (>50%) and SSEA4 (>70%) in PSC-sEVs were much higher than those in non-PSC-sEVs (<10%). These results were further verified with samples purified by density gradient ultracentrifugation. Taken together, this study for the first time identified a cohort of specific markers for PSC-sEVs, among which PODXL, OCT4, Dnmt3a and LIN28A can be detected with Western Blot analysis, and PODXL and SSEA4 can be detected with NanoFCM analysis. The application of these specific markers for PSC-sEVs identification may advance the clinical translation of PSCs-sEVs.

多能干细胞衍生的小细胞外囊泡(PSC-sEVs)在多种与衰老相关的退行性疾病中显示出巨大的临床转化潜力。鉴定PSC-sEVs对其临床应用至关重要。然而,PSC-sEVs 的特定标记模式仍然未知。在此,我们利用液相色谱-串联质谱(LC-MS/MS)的蛋白质组学分析和纳米粒子流式细胞术(NanoFCM)的表面标记表型分析,对两种典型类型的多能干细胞(包括诱导多能干细胞(iPSC-sEVs)和胚胎干细胞(ESC-sEVs))衍生的sEVs进行了分析。通过 LC-MS/MS 发现一组与多能性相关的蛋白质在 PSC-sEVs 中富集,然后通过 Western 印迹分析进行了验证。为了研究这些蛋白是否在PSC-sEVs中特异性表达,研究人员采用了来自七种非PSCs(非PSC-sEVs)的sEVs进行分析。结果显示,PODXL、OCT4、Dnmt3a和LIN28A在PSC-sEVs中特异性富集,而在非PSC-sEVs中则没有。然后,利用 NanoFCM 以单颗粒分辨率检测了用于鉴定 PSC 的常用表面抗原(SSEA4、Tra-1-60 和 Tra-1-81)和 PODXL,以进行表面标记鉴定。结果表明,PSC-sEV 中 PODXL(>50%)和 SSEA4(>70%)的阳性率远高于非 PSC-sEV (
{"title":"Identification of specific markers for human pluripotent stem cell-derived small extracellular vesicles","authors":"Zhengsheng Chen,&nbsp;Lei Luo,&nbsp;Teng Ye,&nbsp;Jiacheng Zhou,&nbsp;Xin Niu,&nbsp;Ji Yuan,&nbsp;Ting Yuan,&nbsp;Dehao Fu,&nbsp;Haiyan Li,&nbsp;Qing Li,&nbsp;Yang Wang","doi":"10.1002/jev2.12409","DOIUrl":"10.1002/jev2.12409","url":null,"abstract":"<p>Pluripotent stem cell-derived small extracellular vesicles (PSC-sEVs) have demonstrated great clinical translational potential in multiple aging-related degenerative diseases. Characterizing the PSC-sEVs is crucial for their clinical applications. However, the specific marker pattern of PSC-sEVs remains unknown. Here, the sEVs derived from two typical types of PSCs including induced pluripotent stem cells (iPSC-sEVs) and embryonic stem cells (ESC-sEVs) were analysed using proteomic analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and surface marker phenotyping analysis by nanoparticle flow cytometry (NanoFCM). A group of pluripotency-related proteins were found to be enriched in PSC-sEVs by LC-MS/MS and then validated by Western Blot analysis. To investigate whether these proteins were specifically expressed in PSC-sEVs, sEVs derived from seven types of non-PSCs (non-PSC-sEVs) were adopted for analysis. The results showed that PODXL, OCT4, Dnmt3a, and LIN28A were specifically enriched in PSC-sEVs but not in non-PSC-sEVs. Then, commonly used surface antigens for PSC identification (SSEA4, Tra-1-60 and Tra-1-81) and PODXL were gauged at single-particle resolution by NanoFCM for surface marker identification. The results showed that the positive rates of PODXL (&gt;50%) and SSEA4 (&gt;70%) in PSC-sEVs were much higher than those in non-PSC-sEVs (&lt;10%). These results were further verified with samples purified by density gradient ultracentrifugation. Taken together, this study for the first time identified a cohort of specific markers for PSC-sEVs, among which PODXL, OCT4, Dnmt3a and LIN28A can be detected with Western Blot analysis, and PODXL and SSEA4 can be detected with NanoFCM analysis. The application of these specific markers for PSC-sEVs identification may advance the clinical translation of PSCs-sEVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12409","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis 通过细胞外囊泡从 M1 型巨噬细胞转移炎性线粒体可诱导急性胰腺炎中胰腺β细胞的铁突变。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-02-06 DOI: 10.1002/jev2.12410
Yuhua Gao, Ningning Mi, Wenxiang Wu, Yuxuan Zhao, Fangzhou Fan, Wangwei Liao, Yongliang Ming, Weijun Guan, Chunyu Bai

Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.

细胞外囊泡(EVs)不仅对疾病的发病机制有重要影响,而且对疾病的治疗干预也有重要影响,这取决于在其来源细胞中观察到的差异。线粒体可通过EVs在细胞间运输,从而促进病理变化。在这项研究中,我们发现源自 M1 巨噬细胞(M1-EVs)的 EVs 包裹着炎性线粒体,可以穿透胰腺 beta 细胞。炎性线粒体与胰腺β细胞的线粒体融合,导致脂质过氧化和线粒体破坏。此外,线粒体 DNA(mtDNA)片段释放到细胞膜中,激活 STING 通路,最终诱导细胞凋亡。脂肪源性干细胞(ADSC)释放的EV在抑制M1巨噬细胞反应方面的潜力令人期待。随后,我们利用ADSC-EV,并用F4/80抗体对其进行修饰,以特异性地靶向巨噬细胞,从而治疗体内胰腺β细胞的铁沉着病。总之,我们的数据进一步证明了 M1 表型巨噬细胞分泌的 EVs 在β细胞铁凋亡中起着重要作用,而经过修饰的 ADSC-EVs 作为一种向巨噬细胞定向递送的载体具有相当大的发展潜力。
{"title":"Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis","authors":"Yuhua Gao,&nbsp;Ningning Mi,&nbsp;Wenxiang Wu,&nbsp;Yuxuan Zhao,&nbsp;Fangzhou Fan,&nbsp;Wangwei Liao,&nbsp;Yongliang Ming,&nbsp;Weijun Guan,&nbsp;Chunyu Bai","doi":"10.1002/jev2.12410","DOIUrl":"10.1002/jev2.12410","url":null,"abstract":"<p>Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour tissue-derived small extracellular vesicles reflect molecular subtypes of bladder cancer 肿瘤组织衍生的小细胞外囊泡反映了膀胱癌的分子亚型。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-01-31 DOI: 10.1002/jev2.12402
Liang Dong, Mingxiao Feng, Morgan D. Kuczler, Kengo Horie, Chi-Ju Kim, Zehua Ma, Kara Lombardo, Heather Lyons, Sarah R. Amend, Max Kates, Trinity J. Bivalacqua, David McConkey, Wei Xue, Woonyoung Choi, Kenneth J. Pienta

mRNA-based molecular subtypes have implications for bladder cancer prognosis and clinical benefit from certain therapies. Whether small extracellular vesicles (sEVs) can reflect bladder cancer molecular subtypes is unknown. We performed whole transcriptome RNA sequencing for formalin fixed paraffin embedded (FFPE) tumour tissues and sEVs separated from matched tissue explants, urine and plasma in patients with bladder cancer. sEVs were separated using size-exclusion chromatography, and characterized by transmission electron microscopy, nano flow cytometry and western blots, respectively. High yield of sEVs were obtained using approximately 1 g of tissue, incubated with media for 30 min. FFPE tumour tissue and tumour tissue-derived sEVs demonstrated good concordance in molecular subtype classification. All urinary sEVs were classified as luminal subtype, while all plasma sEVs were classified as Ba/Sq subtype, regardless of the molecular subtypes indicated by their matched FFPE tumour tissue. The comparison within urine sEVs, which may exclude the sample type specific background, could pick up the different biology between NMIBC and MIBC, as well as the signature genes related to molecular subtypes. Four candidate sEV-related bladder cancer-specific mRNA biomarkers, FAM71E2, OR4K5, FAM138F and KRTAP26-1, were identified by analysing matched urine sEVs, tumour tissue derived sEVs, and adjacent normal tissue derived sEVs. Compared to sEVs separated from biofluids, tissue-derived sEVs may reflect more tissue- or disease-specific biological features. Urine sEVs are promising biomarkers to be used for liquid biopsy-based molecular subtype classification, but the current algorithm needs to be modified/adjusted. Future work is needed to validate the four new bladder cancer-specific biomarkers in large cohorts.

基于 mRNA 的分子亚型对膀胱癌的预后和某些疗法的临床疗效有影响。细胞外小泡(sEVs)能否反映膀胱癌分子亚型尚不清楚。我们对膀胱癌患者的福尔马林固定石蜡包埋(FFPE)肿瘤组织以及从匹配的组织切片、尿液和血浆中分离出的小细胞外囊泡进行了全转录组 RNA 测序。用大约 1 克组织与培养基培养 30 分钟,即可获得高产率的 sEVs。FFPE 肿瘤组织和肿瘤组织衍生的 sEVs 在分子亚型分类方面表现出良好的一致性。所有尿液 sEV 都被归类为管腔亚型,而所有血浆 sEV 都被归类为 Ba/Sq 亚型,而与其匹配的 FFPE 肿瘤组织所显示的分子亚型无关。尿液 sEV 中的比较可能排除了样本类型的特定背景,可以发现 NMIBC 和 MIBC 之间不同的生物学特性,以及与分子亚型相关的特征基因。通过分析匹配的尿液 sEV、肿瘤组织衍生的 sEV 和邻近正常组织衍生的 sEV,确定了四个候选 sEV 相关的膀胱癌特异性 mRNA 生物标记物:FAM71E2、OR4K5、FAM138F 和 KRTAP26-1。与从生物流体中分离出的 sEVs 相比,组织衍生的 sEVs 可能更能反映组织或疾病的特异性生物学特征。尿液中的 sEVs 是很有希望用于基于液体活检的分子亚型分类的生物标记物,但目前的算法需要修改/调整。未来还需要在大型队列中验证四种新的膀胱癌特异性生物标记物。
{"title":"Tumour tissue-derived small extracellular vesicles reflect molecular subtypes of bladder cancer","authors":"Liang Dong,&nbsp;Mingxiao Feng,&nbsp;Morgan D. Kuczler,&nbsp;Kengo Horie,&nbsp;Chi-Ju Kim,&nbsp;Zehua Ma,&nbsp;Kara Lombardo,&nbsp;Heather Lyons,&nbsp;Sarah R. Amend,&nbsp;Max Kates,&nbsp;Trinity J. Bivalacqua,&nbsp;David McConkey,&nbsp;Wei Xue,&nbsp;Woonyoung Choi,&nbsp;Kenneth J. Pienta","doi":"10.1002/jev2.12402","DOIUrl":"10.1002/jev2.12402","url":null,"abstract":"<p>mRNA-based molecular subtypes have implications for bladder cancer prognosis and clinical benefit from certain therapies. Whether small extracellular vesicles (sEVs) can reflect bladder cancer molecular subtypes is unknown. We performed whole transcriptome RNA sequencing for formalin fixed paraffin embedded (FFPE) tumour tissues and sEVs separated from matched tissue explants, urine and plasma in patients with bladder cancer. sEVs were separated using size-exclusion chromatography, and characterized by transmission electron microscopy, nano flow cytometry and western blots, respectively. High yield of sEVs were obtained using approximately 1 g of tissue, incubated with media for 30 min. FFPE tumour tissue and tumour tissue-derived sEVs demonstrated good concordance in molecular subtype classification. All urinary sEVs were classified as luminal subtype, while all plasma sEVs were classified as Ba/Sq subtype, regardless of the molecular subtypes indicated by their matched FFPE tumour tissue. The comparison within urine sEVs, which may exclude the sample type specific background, could pick up the different biology between NMIBC and MIBC, as well as the signature genes related to molecular subtypes. Four candidate sEV-related bladder cancer-specific mRNA biomarkers, FAM71E2, OR4K5, FAM138F and KRTAP26-1, were identified by analysing matched urine sEVs, tumour tissue derived sEVs, and adjacent normal tissue derived sEVs. Compared to sEVs separated from biofluids, tissue-derived sEVs may reflect more tissue- or disease-specific biological features. Urine sEVs are promising biomarkers to be used for liquid biopsy-based molecular subtype classification, but the current algorithm needs to be modified/adjusted. Future work is needed to validate the four new bladder cancer-specific biomarkers in large cohorts.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles 对胎儿牛血清热灭活后进行的校正会影响细胞外囊泡的蛋白质组。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-01-31 DOI: 10.1002/jev2.12411

Urzì, O., Bergqvist, M., Lässer, C., Moschetti, M., Johansson, J., D´Arrigo, D., Olofsson Bagge, R., & Crescitelli, R. (2024). Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles. Journal of Extracellular Vesicles, 13, e12408. https://doi.org/10.1002/jev2.12408

In the originally published article, a portion of Figure 3 was mislabeled. The section labeled “MML1” should be labeled “Medium + FBS”. The corrected figure is shown below. This has been corrected in the online version of the article.

We apologize for this error.

Urzì, O., Bergqvist, M., Lässer, C., Moschetti, M., Johansson, J., D´Arrigo, D., Olofsson Bagge, R., & Crescitelli, R. (2024)。EV消耗后对胎牛血清的热灭活影响细胞外囊泡的蛋白质组。Journal of Extracellular Vesicles, 13, e12408. https://doi.org/10.1002/jev2.12408In 在最初发表的文章中,图 3 的一部分标注错误。标注为 "MML1 "的部分应标注为 "培养基 + FBS"。更正后的图如下所示。我们对这一错误表示歉意。
{"title":"Correction to Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles","authors":"","doi":"10.1002/jev2.12411","DOIUrl":"10.1002/jev2.12411","url":null,"abstract":"<p>Urzì, O., Bergqvist, M., Lässer, C., Moschetti, M., Johansson, J., D´Arrigo, D., Olofsson Bagge, R., &amp; Crescitelli, R. (2024). Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles. <i>Journal of Extracellular Vesicles</i>, 13, e12408. https://doi.org/10.1002/jev2.12408</p><p>In the originally published article, a portion of Figure 3 was mislabeled. The section labeled “MML1” should be labeled “Medium + FBS”. The corrected figure is shown below. This has been corrected in the online version of the article.</p><p>We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies” 对 "脑脊液细胞外囊泡研究的可重复性建议 "的更正。
IF 16 1区 医学 Q1 Medicine Pub Date : 2024-01-24 DOI: 10.1002/jev2.12405

Sandau, U. S., Magaña, S. M., Costa, J., Nolan, J. P., Ikezu, T., Vella, L. J., Jackson, H. K., Moreira, L. R., Palacio, P. L., Hill, A. F., Quinn, J. F., Van Keuren-Jensen, K. R., McFarland, T. J., Palade, J., Sribnick, E. A., Su, H., Vekrellis, K., Coyle, B., Yang, Y., … Saugstad, J. A., International Society for Extracellular Vesicles Cerebrospinal Fluid Task Force. (2024). Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. Journal of Extracellular Vesicles, 13, e12397. https://doi.org/10.1002/jev2.12397

In the originally published article, author You Yang's affiliation is incorrect. The correct affiliation is given below:

You Yang5

5Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA

We apologize for this error.

Sandau, U. S., Magaña, S. M., Costa, J., Nolan, J. P., Ikezu, T., Vella, L. J., Jackson, H. K., Moreira, L. R., Palacio, P. L., Hill, A. F., Quinn, J. F., Van Keuren-Jensen, K. R..、McFarland, T. J., Palade, J., Sribnick, E. A., Su, H., Vekrellis, K., Coyle, B., Yang, Y., ... Saugstad, J. A., International Society for Extracellular Vesicles Cerebrospinal Fluid Task Force.(2024).脑脊液细胞外囊泡研究重现性建议。Journal of Extracellular Vesicles, 13, e12397. https://doi.org/10.1002/jev2.12397In 原发表文章中,作者 You Yang 的单位有误。正确的单位如下:You Yang55Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA我们对此错误深表歉意。
{"title":"Correction to “Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies”","authors":"","doi":"10.1002/jev2.12405","DOIUrl":"10.1002/jev2.12405","url":null,"abstract":"<p>Sandau, U. S., Magaña, S. M., Costa, J., Nolan, J. P., Ikezu, T., Vella, L. J., Jackson, H. K., Moreira, L. R., Palacio, P. L., Hill, A. F., Quinn, J. F., Van Keuren-Jensen, K. R., McFarland, T. J., Palade, J., Sribnick, E. A., Su, H., Vekrellis, K., Coyle, B., Yang, Y., … Saugstad, J. A., International Society for Extracellular Vesicles Cerebrospinal Fluid Task Force. (2024). Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. <i>Journal of Extracellular Vesicles</i>, 13, e12397. https://doi.org/10.1002/jev2.12397</p><p>In the originally published article, author You Yang's affiliation is incorrect. The correct affiliation is given below:</p><p>You Yang<sup>5</sup></p><p><sup>5</sup>Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA</p><p>We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Extracellular Vesicles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1