首页 > 最新文献

Journal of Extracellular Vesicles最新文献

英文 中文
Correction to “Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses” 对 "用于包膜病毒疫苗接种的细胞工程病毒仿生纳米颗粒 "的更正。
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-17 DOI: 10.1002/jev2.12452

Han, C., Kim, S., Seo, Y., Lim, M., Kwon, Y., Yi, J., Oh, S.-I., Kang, M., Jeon, S. G., & Park, J. (2024). Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses. Journal of Extracellular Vesicles, 13, e12438. https://doi.org/10.1002/jev2.12438

In the originally published article, the acknowledgements section was incorrect. The correct text is as follows:

Han, C., Kim, S., Seo, Y., Lim, M., Kwon, Y., Yi, J., Oh, S.-I., Kang, M., Jeon, S. G., & Park, J. (2024)。用于包膜病毒疫苗接种的细胞工程病毒仿生纳米囊泡。Journal of Extracellular Vesicles, 13, e12438. https://doi.org/10.1002/jev2.12438In 最初发表的文章中,致谢部分有误。正确内容如下
{"title":"Correction to “Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses”","authors":"","doi":"10.1002/jev2.12452","DOIUrl":"10.1002/jev2.12452","url":null,"abstract":"<p>Han, C., Kim, S., Seo, Y., Lim, M., Kwon, Y., Yi, J., Oh, S.-I., Kang, M., Jeon, S. G., &amp; Park, J. (2024). Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses. Journal of Extracellular Vesicles, 13, e12438. https://doi.org/10.1002/jev2.12438</p><p>In the originally published article, the acknowledgements section was incorrect. The correct text is as follows:</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel multi-stage enrichment workflow and comprehensive characterization for HEK293F-derived extracellular vesicles 新型多级富集工作流程和 HEK293F 衍生细胞外囊泡的综合表征。
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-17 DOI: 10.1002/jev2.12454
Nhan Vo, Chau Tran, Nam H. B. Tran, Nhat T. Nguyen, Thieu Nguyen, Duyen T. K. Ho, Diem D. N. Nguyen, Tran Pham, Tien Anh Nguyen, Hoa T. N. Phan, Hoai-Nghia Nguyen, Lan N. Tu

Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.

细胞外囊泡(EVs)具有良好的生物相容性和靶向给药能力,正在成为一种前景广阔的给药载体。然而,由于缺乏标准化和可扩展的生产规程来持续分离出高产率和高纯度的小EVs(sEVs),EVs的临床转化仍面临挑战。sEVs 的异质性导致生物卡戈的成分不明,从而引发了更多的安全问题。为了解决这些问题,我们开发了一种稳健的多阶段质量控制流程,用于从人类胚胎肾脏 HEK293F 细胞中生产和分离 sEV。然后,我们比较了消除蛋白质杂质和无细胞核酸的不同 2 步和 3 步工作流程,以满足监管机构的可接受限值。我们的结果表明,当 HEK293F 细胞在半连续培养的高密度静止期生长时,sEV 的产量最大。新颖的三步工作流程结合了切向流过滤、蔗糖垫超速离心法和碱性排阻色谱法,在保持高产率和颗粒完整性的同时,在 sEV 纯度方面优于其他方法。我们对纯化的 HEK293F 衍生 sEV 进行了全面的特性鉴定,包括亚群分析、蛋白质组学和 miRNA 测序等内容分析,并在体外和体内测试中证明了其出色的临床前安全性。我们严格的富集工作流程和全面的特征描述将有助于推动 EVs(尤其是 HEK293F 衍生的 sEVs)的发展,使其成为安全可靠的药物载体,用于治疗应用。
{"title":"A novel multi-stage enrichment workflow and comprehensive characterization for HEK293F-derived extracellular vesicles","authors":"Nhan Vo,&nbsp;Chau Tran,&nbsp;Nam H. B. Tran,&nbsp;Nhat T. Nguyen,&nbsp;Thieu Nguyen,&nbsp;Duyen T. K. Ho,&nbsp;Diem D. N. Nguyen,&nbsp;Tran Pham,&nbsp;Tien Anh Nguyen,&nbsp;Hoa T. N. Phan,&nbsp;Hoai-Nghia Nguyen,&nbsp;Lan N. Tu","doi":"10.1002/jev2.12454","DOIUrl":"10.1002/jev2.12454","url":null,"abstract":"<p>Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles as human therapeutics: A scoping review of the literature 作为人类疗法的细胞外囊泡:文献综述。
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-13 DOI: 10.1002/jev2.12433
Clorinda Fusco, Giusy De Rosa, Ilaria Spatocco, Elisabetta Vitiello, Claudio Procaccini, Chiara Frigè, Valeria Pellegrini, Rosalba La Grotta, Roberto Furlan, Giuseppe Matarese, Francesco Prattichizzo, Paola de Candia

Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested. In this scoping review, we searched PubMed and other databases up to 31 December 2023 and, starting from 13,567 records, we selected 40 pertinent published studies testing EVs as therapeutics in humans.

The analysis of those 40 studies shows that they are all small pilot trials with a large heterogeneity in terms of administration route and target disease. Moreover, the absence of a placebo control in most of the studies, the predominant local application of EV formulations and the inconsistent administration dose metric still impede comparison across studies and firm conclusions about EV safety and efficacy. On the other hand, the recording of some promising outcomes strongly calls out for well-designed larger studies to test EVs as an alternative approach to treat human diseases with no or few therapeutic options.

细胞外囊泡 (EV) 由所有细胞释放,有助于细胞间的交流。由于细胞外囊泡具有靶向特定细胞和高效传递功能分子复合特征的能力,世界各地的研究人员都在假设它们作为治疗药物的潜力。尽管在动物模型中对 EV 治疗进行了大量研究,但其对人类的实际临床益处却迟迟未得到验证。在这次范围界定综述中,我们检索了 PubMed 和其他数据库(截至 2023 年 12 月 31 日),从 13,567 条记录中选出了 40 项相关的已发表研究,测试 EVs 作为人类疗法的效果。对这 40 项研究的分析表明,它们都是小型试验,在给药途径和目标疾病方面存在很大的异质性。此外,大多数研究都没有安慰剂对照,EV制剂主要用于局部,给药剂量指标也不一致,这些都妨碍了对不同研究进行比较,也无法就EV的安全性和有效性得出确切结论。另一方面,一些有希望的结果也强烈呼吁进行精心设计的更大规模研究,以测试 EV 作为治疗人类疾病的替代方法,而目前还没有或只有很少的治疗选择。
{"title":"Extracellular vesicles as human therapeutics: A scoping review of the literature","authors":"Clorinda Fusco,&nbsp;Giusy De Rosa,&nbsp;Ilaria Spatocco,&nbsp;Elisabetta Vitiello,&nbsp;Claudio Procaccini,&nbsp;Chiara Frigè,&nbsp;Valeria Pellegrini,&nbsp;Rosalba La Grotta,&nbsp;Roberto Furlan,&nbsp;Giuseppe Matarese,&nbsp;Francesco Prattichizzo,&nbsp;Paola de Candia","doi":"10.1002/jev2.12433","DOIUrl":"10.1002/jev2.12433","url":null,"abstract":"<p>Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested. In this scoping review, we searched PubMed and other databases up to 31 December 2023 and, starting from 13,567 records, we selected 40 pertinent published studies testing EVs as therapeutics in humans.</p><p>The analysis of those 40 studies shows that they are all small pilot trials with a large heterogeneity in terms of administration route and target disease. Moreover, the absence of a placebo control in most of the studies, the predominant local application of EV formulations and the inconsistent administration dose metric still impede comparison across studies and firm conclusions about EV safety and efficacy. On the other hand, the recording of some promising outcomes strongly calls out for well-designed larger studies to test EVs as an alternative approach to treat human diseases with no or few therapeutic options.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches” 更正 "细胞外囊泡研究的最基本信息(MISEV2023):从基本方法到高级方法"。
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-10 DOI: 10.1002/jev2.12451

Welsh, J. A., Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles, 13, e12404. https://doi.org/10.1002/jev2.12404

In the originally published article, Gisela D'Angelo was omitted from the MISEV Consortium. They have been added to the online version of the article. We apologize for this error.

Welsh, J. A., Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U.、Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., ... Witwer, K. W. (2024).细胞外囊泡研究的最基本信息(MISEV2023):从基本方法到高级方法。Journal of Extracellular Vesicles, 13, e12404. https://doi.org/10.1002/jev2.12404In 在最初发表的文章中,Gisela D'Angelo 被 MISEV Consortium 略去。他们已被添加到文章的在线版本中。我们对此错误深表歉意。
{"title":"Correction to “Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches”","authors":"","doi":"10.1002/jev2.12451","DOIUrl":"10.1002/jev2.12451","url":null,"abstract":"<p>Welsh, J. A., Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. <i>Journal of Extracellular Vesicles</i>, 13, e12404. https://doi.org/10.1002/jev2.12404</p><p>In the originally published article, Gisela D'Angelo was omitted from the MISEV Consortium. They have been added to the online version of the article. We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12451","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair: Superiority of embryonic stem cells 对用于心脏修复的细胞外小泡的相关细胞来源进行正面比较:胚胎干细胞的优越性
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-06 DOI: 10.1002/jev2.12445
Hernán González-King, Patricia G. Rodrigues, Tamsin Albery, Benyapa Tangruksa, Ramya Gurrapu, Andreia M. Silva, Gentian Musa, Dominika Kardasz, Kai Liu, Bengt Kull, Karin Åvall, Katarina Rydén-Markinhuhta, Tania Incitti, Nitin Sharma, Cecilia Graneli, Hadi Valadi, Kasparas Petkevicius, Miguel Carracedo, Sandra Tejedor, Alena Ivanova, Sepideh Heydarkhan-Hagvall, Phillipe Menasché, Jane Synnergren, Niek Dekker, Qing-Dong Wang, Karin Jennbacken

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.

在心肌梗塞(MI)的临床前模型中,来自不同细胞来源的小细胞外囊泡(sEV)已被证明能增强心脏功能。本研究的目的是比较不同来源的 sEV 对心脏修复的作用,并确定最有效的 sEV。我们在体外心脏修复模型中全面评估了从人类原代骨髓间充质基质细胞(BM-MSC)、人类永生化间充质干细胞(hTERT-MSC)、人类胚胎干细胞(ESC)、ESC衍生的心脏祖细胞(CPC)、人类ESC衍生的心肌细胞(CM)和人类原代心室成纤维细胞(VCF)中获得的sEV的功效。ESC衍生的sEV(ESC-sEV)在体外表现出最佳的促血管生成和抗纤维化效果。然后,我们在小鼠心肌缺血再灌注损伤(IRI)模型中评估了体外表现最出色的 sEV 的功能,并分析了它们的 RNA 和蛋白质组成。在体内,ESC-sEV 通过下调纤维化和增加血管生成来减少不良的心脏重塑,从而在心肌梗死后提供最有利的结果。此外,从 hTERT-MSC、ESC 和 CPC 中提取的 sEV 的转录组和蛋白质组特征揭示了 ESC-sEV 中可能驱动所观察到的功能的因素。总之,ESC-sEV 作为一种无细胞疗法,在促进心肌梗死后的心脏修复方面大有可为。
{"title":"Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair: Superiority of embryonic stem cells","authors":"Hernán González-King,&nbsp;Patricia G. Rodrigues,&nbsp;Tamsin Albery,&nbsp;Benyapa Tangruksa,&nbsp;Ramya Gurrapu,&nbsp;Andreia M. Silva,&nbsp;Gentian Musa,&nbsp;Dominika Kardasz,&nbsp;Kai Liu,&nbsp;Bengt Kull,&nbsp;Karin Åvall,&nbsp;Katarina Rydén-Markinhuhta,&nbsp;Tania Incitti,&nbsp;Nitin Sharma,&nbsp;Cecilia Graneli,&nbsp;Hadi Valadi,&nbsp;Kasparas Petkevicius,&nbsp;Miguel Carracedo,&nbsp;Sandra Tejedor,&nbsp;Alena Ivanova,&nbsp;Sepideh Heydarkhan-Hagvall,&nbsp;Phillipe Menasché,&nbsp;Jane Synnergren,&nbsp;Niek Dekker,&nbsp;Qing-Dong Wang,&nbsp;Karin Jennbacken","doi":"10.1002/jev2.12445","DOIUrl":"https://doi.org/10.1002/jev2.12445","url":null,"abstract":"<p>Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12445","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermotolerance in S. cerevisiae as a model to study extracellular vesicle biology 将麦角菌的耐热性作为研究细胞外囊泡生物学的模型
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-06 DOI: 10.1002/jev2.12431
Curtis John Logan, Claire C. Staton, Joshua Thomas Oliver, Jeff Bouffard, Thomas David Daniel Kazmirchuk, Melissa Magi, Christopher Leonard Brett

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.

芽殖酵母(Saccharomyces cerevisiae)是一种成熟的模式生物,可用于阐明保守的真核生物生物学,但迄今为止,对其细胞外囊泡(EV)生物学的研究还很不够。在这里,我们展示了酵母通过细胞外介质传递信息,从而在面临热应激时提高存活率,并证明了富含 EV 的样本介导了这种耐热性传递。这些样本含有外泌体大小的囊泡状颗粒,通过靶向运输所需的内泌体分选复合物(ESCRT)机制来破坏外泌体的生物发生,会抑制耐热性的传递。我们发现人类外泌体生物标记物 ALIX 的酵母直向同源物 Bro1 存在于 EV 样本中,并利用标记有绿色荧光蛋白(GFP)的 Bro1 跟踪 EV 的释放和内吞摄取。蛋白质组学分析表明,热休克蛋白 70(HSP70)家族蛋白在提供耐热性的 EV 样品中富集。我们证实了 EV 样本中存在 HSP70 同源物应激-70 亚基 A2(Ssa2),并发现缺乏 SSA2 的突变酵母细胞会产生 EV,但它们无法转移耐热性。我们的结论是,酵母细胞之间共享的外泌体中的Ssa2有助于提高耐热性。通过这项工作,我们将酵母菌作为一种新兴的模式生物,用于阐明真核细胞外泌体生物学的分子细节,并确立了外泌体在热应激和蛋白稳态中的作用,这种作用似乎在进化过程中得到了保护。
{"title":"Thermotolerance in S. cerevisiae as a model to study extracellular vesicle biology","authors":"Curtis John Logan,&nbsp;Claire C. Staton,&nbsp;Joshua Thomas Oliver,&nbsp;Jeff Bouffard,&nbsp;Thomas David Daniel Kazmirchuk,&nbsp;Melissa Magi,&nbsp;Christopher Leonard Brett","doi":"10.1002/jev2.12431","DOIUrl":"https://doi.org/10.1002/jev2.12431","url":null,"abstract":"<p>The budding yeast <i>Saccharomyces cerevisiae</i> is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance <i>Saccharomyces cerevisiae</i> as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to article pagination in the Journal of Extracellular Vesicles 细胞外囊泡杂志》文章页码更正
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-02 DOI: 10.1002/jev2.12443
<p>The following articles in the Journal of Extracellular Vesicles contained an error in pagination. The “e” was left out of the eLocator pagination code. The pagination has been updated in each article. We apologize for this error.</p><p>(2024), Correction to Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles. J Extracell Vesicles., 13: e12411. https://doi.org/10.1002/jev2.12411</p><p>Chen, Z., Luo, L., Ye, T., Zhou, J., Niu, X., Yuan, J., Yuan, T., Fu, D., Li, H., Li, Q., & Wang, Y. (2024). Identification of specific markers for human pluripotent stem cell-derived small extracellular vesicles. Journal of Extracellular Vesicles, 13, e12409. https://doi.org/10.1002/jev2.12409</p><p>Gao, Y., Mi, N., Wu, W., Zhao, Y., Fan, F., Liao, W., Ming, Y., Guan, W., & Bai, C. (2024). Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. Journal of Extracellular Vesicles, 13, e12410. https://doi.org/10.1002/jev2.12410</p><p>Hansen, A. S., Jensen, L. S., Gammelgaard, K. R., Ryttersgaard, K. G., Krapp, C., Just, J., Jønsson, K. L., Jensen, P. B., Boesen, T., Johannsen, M., Etzerodt, A., Deleuran, B. W., & Jakobsen, M. R. (2023). T-cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. Journal of Extracellular Vesicles, 12, e12350. https://doi.org/10.1002/jev2.12350</p><p>Klemetti, M. M., Pettersson, A. B. V., Ahmad Khan, A., Ermini, L., Porter, T. R., Litvack, M. L., Alahari, S., Zamudio, S., Illsley, N. P., Röst, H., Post, M., & Caniggia, I. (2024). Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. Journal of Extracellular Vesicles, 13, e12413. https://doi.org/10.1002/jev2.12413</p><p>Kyykallio, H., Faria, A. V. S., Hartman, R., Capra, J., Rilla, K., & Siljander, P. R.-M. (2022). A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. Journal of Extracellular Vesicles, 11, e12273. https://doi.org/10.1002/jev2.12273</p><p>Lötvall, J. (2024), Publishing the MISEV guidelines; The editorial process. J Extracell Vesicles., 13: e12415. https://doi.org/10.1002/jev2.12415</p><p>Phu, T. A., Ng, M., Vu, N. K., Gao, A. S., & Raffai, R. L. (2023). ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles. Journal of Extracellular Vesicles, 12, e12345. https://doi.org/10.1002/jev2.12345</p><p>Schöne, N., Kemper, M., Menck, K., Evers, G., Krekeler, C., Schulze, A. B., Lenz, G., Wardelmann, E., Binder, C., & Bleckmann, A. (2024). PD-L1 on large extracellular vesicles is a predictive biomarker for therapy response in tissue PD-L1-low and -negative patients with non-small cell lung cancer. Journal of Extracellular Vesicl
细胞外囊泡杂志》中的以下文章在页码编排上出现错误。eLocator 分页代码中漏掉了 "e"。每篇文章的页码均已更新。(2024),更正 "EV-depletion 后对胎牛血清进行热灭活影响细胞外囊泡的蛋白质组"。https://doi.org/10.1002/jev2.12411Chen, Z., Luo, L., Ye, T., Zhou, J., Niu, X., Yuan, J., Yuan, T., Fu, D., Li, H., Li, Q., & Wang, Y. (2024).人多能干细胞衍生小细胞外囊泡特异性标记的鉴定。https://doi.org/10.1002/jev2.12409Gao, Y., Mi, N., Wu, W., Zhao, Y., Fan, F., Liao, W., Ming, Y., Guan, W., & Bai, C. (2024).M1巨噬细胞通过细胞外囊泡转移炎性线粒体诱导急性胰腺炎中胰腺β细胞的铁蛋白沉积。https://doi.org/10.1002/jev2.12410Hansen, A. S., Jensen, L. S., Gammelgaard, K. R., Ryttersgaard, K. G., Krapp, C., Just, J., Jønsson, K. L., Jensen, P. B., Boesen, T., Johannsen, M., Etzerodt, A., Deleuran, B. W., & Jakobsen, M. R. (2023)。T细胞衍生的细胞外囊泡为巨噬细胞提供能量,改善基于 STING 的癌症免疫疗法。https://doi.org/10.1002/jev2.12350Klemetti, M. M., Pettersson, A. B. V., Ahmad Khan, A., Ermini, L., Porter, T. R., Litvack, M. L., Alahari, S., Zamudio, S., Illsley, N. P., Röst, H., Post, M., & Caniggia, I. (2024).怀孕期间循环胎盘细胞外囊泡的脂质特征可确定胎儿生长受限的风险。https://doi.org/10.1002/jev2.12413Kyykallio, H., Faria, A. V. S., Hartman, R., Capra, J., Rilla, K., & Siljander, P. R.-M.(2022).三维细胞培养衍生胞外囊泡的快速分离管道。https://doi.org/10.1002/jev2.12273Lötvall, J. (2024), Publishing the MISEV guidelines; The editorial process.https://doi.org/10.1002/jev2.12415Phu, T. A., Ng, M., Vu, N. K., Gao, A. S., & Raffai, R. L. (2023).巨噬细胞中载脂蛋白的表达通过细胞外囊泡传递免疫代谢信号,从而控制高脂血症驱动的造血和炎症。https://doi.org/10.1002/jev2.12345Schöne, N., Kemper, M., Menck, K., Evers, G., Krekeler, C., Schulze, A. B., Lenz, G., Wardelmann, E., Binder, C., & Bleckmann, A. (2024)。大细胞外囊泡上的 PD-L1 是预测非小细胞肺癌组织 PD-L1 低阴性和阴性患者治疗反应的生物标志物。https://doi.org/10.1002/jev2.12418Vyhlídalová Kotrbová, A., Gömöryová, K., Mikulová, A., Plešingerová, H., Sladeček, S., Kravec, M., Hrachovinová, S.、Potěšil, D., Dunsmore, G., Blériot, C., Bied, M., Kotouček, J., Bednaříková, M., Hausnerová, J., Minář, L., Crha, I., Felsinger, M., Zdráhal, Z., Ginhoux, F., ... Pospíchalová, V. (2024).腹水细胞外囊泡的蛋白质组学分析描述了肿瘤微环境并预测了卵巢癌患者的生存期。https://doi.org/10.1002/jev2.12420Zheng, W., He, R., Liang, X., Roudi, S., Bost, J., Coly, P.-M., van Niel, G., & Andaloussi, S. E. L. (2022)。通过糖萼工程对细胞外囊泡进行细胞特异性靶向。Journal of Extracellular Vesicles, 11, e12290. https://doi.org/10.1002/jev2.12290
{"title":"Correction to article pagination in the Journal of Extracellular Vesicles","authors":"","doi":"10.1002/jev2.12443","DOIUrl":"https://doi.org/10.1002/jev2.12443","url":null,"abstract":"&lt;p&gt;The following articles in the Journal of Extracellular Vesicles contained an error in pagination. The “e” was left out of the eLocator pagination code. The pagination has been updated in each article. We apologize for this error.&lt;/p&gt;&lt;p&gt;(2024), Correction to Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles. J Extracell Vesicles., 13: e12411. https://doi.org/10.1002/jev2.12411&lt;/p&gt;&lt;p&gt;Chen, Z., Luo, L., Ye, T., Zhou, J., Niu, X., Yuan, J., Yuan, T., Fu, D., Li, H., Li, Q., &amp; Wang, Y. (2024). Identification of specific markers for human pluripotent stem cell-derived small extracellular vesicles. Journal of Extracellular Vesicles, 13, e12409. https://doi.org/10.1002/jev2.12409&lt;/p&gt;&lt;p&gt;Gao, Y., Mi, N., Wu, W., Zhao, Y., Fan, F., Liao, W., Ming, Y., Guan, W., &amp; Bai, C. (2024). Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. Journal of Extracellular Vesicles, 13, e12410. https://doi.org/10.1002/jev2.12410&lt;/p&gt;&lt;p&gt;Hansen, A. S., Jensen, L. S., Gammelgaard, K. R., Ryttersgaard, K. G., Krapp, C., Just, J., Jønsson, K. L., Jensen, P. B., Boesen, T., Johannsen, M., Etzerodt, A., Deleuran, B. W., &amp; Jakobsen, M. R. (2023). T-cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. Journal of Extracellular Vesicles, 12, e12350. https://doi.org/10.1002/jev2.12350&lt;/p&gt;&lt;p&gt;Klemetti, M. M., Pettersson, A. B. V., Ahmad Khan, A., Ermini, L., Porter, T. R., Litvack, M. L., Alahari, S., Zamudio, S., Illsley, N. P., Röst, H., Post, M., &amp; Caniggia, I. (2024). Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. Journal of Extracellular Vesicles, 13, e12413. https://doi.org/10.1002/jev2.12413&lt;/p&gt;&lt;p&gt;Kyykallio, H., Faria, A. V. S., Hartman, R., Capra, J., Rilla, K., &amp; Siljander, P. R.-M. (2022). A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. Journal of Extracellular Vesicles, 11, e12273. https://doi.org/10.1002/jev2.12273&lt;/p&gt;&lt;p&gt;Lötvall, J. (2024), Publishing the MISEV guidelines; The editorial process. J Extracell Vesicles., 13: e12415. https://doi.org/10.1002/jev2.12415&lt;/p&gt;&lt;p&gt;Phu, T. A., Ng, M., Vu, N. K., Gao, A. S., &amp; Raffai, R. L. (2023). ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis &amp; inflammation via extracellular vesicles. Journal of Extracellular Vesicles, 12, e12345. https://doi.org/10.1002/jev2.12345&lt;/p&gt;&lt;p&gt;Schöne, N., Kemper, M., Menck, K., Evers, G., Krekeler, C., Schulze, A. B., Lenz, G., Wardelmann, E., Binder, C., &amp; Bleckmann, A. (2024). PD-L1 on large extracellular vesicles is a predictive biomarker for therapy response in tissue PD-L1-low and -negative patients with non-small cell lung cancer. Journal of Extracellular Vesicl","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 5","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed 呼出的气体冷凝物中含有细胞外囊泡 (EV),这些囊泡携带肺组织来源的 miRNA,可选择性地对其进行纯化和分析
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-04-25 DOI: 10.1002/jev2.12440
Megan I. Mitchell, Iddo Z. Ben-Dov, Kenny Ye, Christina Liu, Miao Shi, Ali Sadoughi, Chirag Shah, Taha Siddiqui, Aham Okorozo, Martin Gutierrez, Rashmi Unawane, Lisa Biamonte, Kaushal Parihk, Simon Spivack, Olivier Loudig

Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.

包括肺癌在内的肺部疾病是全球死亡率不断上升的原因。尽管采用了新型成像技术并开发了生物标志物检测方法,但肺癌的检测仍然是一项重大挑战。然而,肺与外界环境直接沟通,在正常潮式呼吸过程中会释放出气溶胶状液滴,这些液滴可作为呼出气体冷凝物(EBC)进行收集、储存和分析。一些研究表明,EBC 中含有细胞外囊泡(EVs),其携带的 microRNA(miRNA)可能有助于评估不同的肺部状况,但这些 EVs 的细胞来源仍然未知。在这项研究中,我们利用纳米粒子追踪、透射电子显微镜、Western 印迹分析和超分辨率纳米成像(ONi)来检测和验证呼出的 EVs(呼出-EVs)的身份。利用我们可定制的抗体纯化检测方法 EV-CATCHER,我们初步确定了利用针对三种四泛蛋白(CD9、CD63 和 CD81)的抗体可以从 EBC 中选择性地富集呼出的 EV。我们还利用 ONi 发现,一些外显子-EV 含有在支气管克拉细胞(克拉细胞分泌蛋白 [CCSP])和肺泡 II 型细胞(表面活性蛋白 C [SFTPC])中表达的肺特异性蛋白。在对从 18 名受试者的五个不同解剖层面(即漱口液、口腔清洗液、支气管刷、支气管肺泡灌洗液 [BAL] 和 EBC)采集的气道样本进行 miRNA 下一代测序(NGS)时,我们发现呼出物-EVs 的 miRNA 图谱与 BAL EVs 的 miRNA 图谱密切相关,但与其他气道样本的 miRNA 图谱不同。用我们的三种四泛素 EV-CATCHER 检测法比较从匹配的 BAL 和 EBC 样本中纯化的 EV 的 miRNA 图谱时,我们捕捉到了与受试者的吸烟、哮喘和肺部肿瘤状态有关的显著 miRNA 表达差异,这些差异在用我们的抗CCSP/SFTPC EV-CATCHER 检测法从相同样本中选择性纯化的 EV 中也可重复检测到,但这证实了它们的肺组织来源。我们的研究结果表明,从 EBC 中富集外源性 EV 亚群可对肺组织产生的 EV 进行非侵入性采样。
{"title":"Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed","authors":"Megan I. Mitchell,&nbsp;Iddo Z. Ben-Dov,&nbsp;Kenny Ye,&nbsp;Christina Liu,&nbsp;Miao Shi,&nbsp;Ali Sadoughi,&nbsp;Chirag Shah,&nbsp;Taha Siddiqui,&nbsp;Aham Okorozo,&nbsp;Martin Gutierrez,&nbsp;Rashmi Unawane,&nbsp;Lisa Biamonte,&nbsp;Kaushal Parihk,&nbsp;Simon Spivack,&nbsp;Olivier Loudig","doi":"10.1002/jev2.12440","DOIUrl":"https://doi.org/10.1002/jev2.12440","url":null,"abstract":"<p>Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 4","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses 用于接种包膜病毒疫苗的细胞工程病毒仿生纳米颗粒
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-04-24 DOI: 10.1002/jev2.12438
Chungmin Han, Suyeon Kim, Youngjoo Seo, Minyeob Lim, Yongmin Kwon, Johan Yi, Seung-Ik Oh, Minsu Kang, Seong Gyu Jeon, Jaesung Park

Enveloped viruses pose a significant threat to human health, as evidenced by the recent COVID-19 pandemic. Although current vaccine strategies have proven effective in preventing viral infections, the development of innovative vaccine technologies is crucial to fortify our defences against future pandemics. In this study, we introduce a novel platform called cell-engineered virus-mimetic nanovesicles (VNVs) and demonstrate their potential as a vaccine for targeting enveloped viruses. VNVs are generated by extruding plasma membrane-derived blebs through nanoscale membrane filters. These VNVs closely resemble enveloped viruses and extracellular vesicles (EVs) in size and morphology, being densely packed with plasma membrane contents and devoid of materials from other membranous organelles. Due to these properties, VNVs express viral membrane antigens more extensively and homogeneously than EVs expressing the same antigen. In this study, we produced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VNVs expressing the SARS-CoV-2 Spike glycoprotein (S) on their surfaces and assessed their preclinical efficacy as a COVID-19 vaccine in experimental animals. The administration of VNVs successfully stimulated the production of S-specific antibodies both systemically and locally, and immune cells isolated from vaccinated mice displayed cytokine responses to S stimulation.

包膜病毒对人类健康构成重大威胁,最近的 COVID-19 大流行就是证明。尽管目前的疫苗策略已被证明能有效预防病毒感染,但创新疫苗技术的开发对于增强我们抵御未来大流行病的能力至关重要。在本研究中,我们介绍了一种名为细胞工程病毒仿生纳米颗粒(VNVs)的新型平台,并展示了其作为针对包膜病毒的疫苗的潜力。VNV 是通过纳米级膜过滤器挤出质膜衍生的出血点而生成的。这些 VNVs 在大小和形态上与包膜病毒和细胞外囊泡 (EVs) 非常相似,密布着质膜内容物,没有来自其他膜细胞器的物质。由于这些特性,VNV 比表达相同抗原的 EV 更广泛、更均匀地表达病毒膜抗原。在本研究中,我们制备了表面表达SARS-CoV-2穗状糖蛋白(S)的严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)VNV,并在实验动物中评估了它们作为COVID-19疫苗的临床前疗效。注射 VNV 成功地刺激了全身和局部 S 特异性抗体的产生,从接种疫苗的小鼠体内分离出的免疫细胞显示出对 S 刺激的细胞因子反应。
{"title":"Cell-engineered virus-mimetic nanovesicles for vaccination against enveloped viruses","authors":"Chungmin Han,&nbsp;Suyeon Kim,&nbsp;Youngjoo Seo,&nbsp;Minyeob Lim,&nbsp;Yongmin Kwon,&nbsp;Johan Yi,&nbsp;Seung-Ik Oh,&nbsp;Minsu Kang,&nbsp;Seong Gyu Jeon,&nbsp;Jaesung Park","doi":"10.1002/jev2.12438","DOIUrl":"https://doi.org/10.1002/jev2.12438","url":null,"abstract":"<p>Enveloped viruses pose a significant threat to human health, as evidenced by the recent COVID-19 pandemic. Although current vaccine strategies have proven effective in preventing viral infections, the development of innovative vaccine technologies is crucial to fortify our defences against future pandemics. In this study, we introduce a novel platform called cell-engineered virus-mimetic nanovesicles (VNVs) and demonstrate their potential as a vaccine for targeting enveloped viruses. VNVs are generated by extruding plasma membrane-derived blebs through nanoscale membrane filters. These VNVs closely resemble enveloped viruses and extracellular vesicles (EVs) in size and morphology, being densely packed with plasma membrane contents and devoid of materials from other membranous organelles. Due to these properties, VNVs express viral membrane antigens more extensively and homogeneously than EVs expressing the same antigen. In this study, we produced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VNVs expressing the SARS-CoV-2 Spike glycoprotein (S) on their surfaces and assessed their preclinical efficacy as a COVID-19 vaccine in experimental animals. The administration of VNVs successfully stimulated the production of S-specific antibodies both systemically and locally, and immune cells isolated from vaccinated mice displayed cytokine responses to S stimulation.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 4","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis” 对 "M1 型巨噬细胞通过细胞外囊泡转移炎性线粒体诱导急性胰腺炎中胰腺β细胞的铁蛋白沉着 "的更正
IF 16 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-04-22 DOI: 10.1002/jev2.12441

Gao Y., Mi N., Wu W., Zhao Y., Fan F., Liao W., Ming Y., Guan W., & Bai C. (2024). Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. Journal of Extracellular Vesicles, 13, e12410. https://doi.org/10.1002/jev2.12410

In the originally published article, there was an error in the address of author Weijun Guan. The correct address is as follows:

Weijun Guan

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences

Yuanmingyuan West Road, Haidian District

Beijing 100193, R.P. China

Email: [email protected]

This information has been updated in the online version of the article.

We apologize for this error.

Gao Y., Mi N., Wu W., Zhao Y., Fan F., Liao W., Ming Y., Guan W., & Bai C..(2024).通过细胞外囊泡从 M1 型巨噬细胞转移炎性线粒体诱导急性胰腺炎中胰腺β细胞的铁蛋白沉积。Journal of Extracellular Vesicles, 13, e12410. https://doi.org/10.1002/jev2.12410In 在最初发表的文章中,作者 Weijun Guan 的地址有误。正确地址如下:Weijun Guan中国农业科学院动物研究所北京市海淀区圆明园西路100193号Email:[email protected]该信息已在文章的网络版中更新,我们对此错误深表歉意。
{"title":"Correction to “Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis”","authors":"","doi":"10.1002/jev2.12441","DOIUrl":"https://doi.org/10.1002/jev2.12441","url":null,"abstract":"<p>Gao Y., Mi N., Wu W., Zhao Y., Fan F., Liao W., Ming Y., Guan W., &amp; Bai C. (2024). Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. Journal of Extracellular Vesicles, 13, e12410. https://doi.org/10.1002/jev2.12410</p><p>In the originally published article, there was an error in the address of author Weijun Guan. The correct address is as follows:</p><p>Weijun Guan</p><p>Institute of Animal Sciences, Chinese Academy of Agricultural Sciences</p><p>Yuanmingyuan West Road, Haidian District</p><p>Beijing 100193, R.P. China</p><p>Email: <span>[email protected]</span></p><p>This information has been updated in the online version of the article.</p><p>We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 4","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Extracellular Vesicles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1