首页 > 最新文献

Journal of Extracellular Vesicles最新文献

英文 中文
Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease 来自人类诱导多能干细胞衍生神经干细胞的细胞外囊泡能减轻阿尔茨海默病中与疾病相关的小胶质细胞内的促炎级联反应
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1002/jev2.12519
Leelavathi N. Madhu, Maheedhar Kodali, Raghavendra Upadhya, Shama Rao, Yogish Somayaji, Sahithi Attaluri, Bing Shuai, Maha Kirmani, Shreyan Gupta, Nathaniel Maness, Xiaolan Rao, James J. Cai, Ashok K. Shetty

As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.

由于目前治疗阿尔茨海默病(AD)的方法缺乏改变疾病的干预措施,因此能够抑制AD进展并维持更好大脑功能的新型疗法具有重要意义。从人类诱导多能干细胞(hiPSC)衍生的神经干细胞(NSCs)中提取的抗炎细胞外囊泡(EVs)有望成为治疗阿尔茨海默病的疾病调节生物制剂。本研究通过检测3个月大的5xFAD小鼠鼻内注射(IN)hiPSC-NSC-EVs的效果,直接解决了这一问题。通过鼻内注射 hiPSC-NSC-EVs 进入小胶质细胞(包括斑块相关的小胶质细胞),并与大脑中的星形胶质细胞体和过程相遇。单细胞 RNA 测序显示,转录组变化表明小胶质细胞和星形胶质细胞的活化程度降低。与疾病相关的小胶质细胞、NOD-、LRR-和含吡咯啉结构域蛋白3(NLRP3)-炎症体和干扰素-1(IFN-1)信号相关的多个基因在小胶质细胞中的表达量减少。向受到淀粉样β寡聚体挑战的人小胶质细胞培养物中添加 hiPSC-NSC-EVs 也会产生类似的效果。星形胶质细胞中与 IFN-1 和白细胞介素-6 信号相关的基因表达也有所减少。此外,hiPSC-NSC-EV对海马小胶质细胞的调节作用在EV处理后2个月仍持续存在,且不影响其吞噬功能。小胶质细胞集群和炎性体复合物的减少、介质浓度的降低、NLRP3炎性体活化终产物的减少、参与激活p38/介原激活蛋白激酶和IFN-1信号的基因和/或蛋白的表达以及吞噬功能的改变都证明了这种作用。海马中的星形胶质细胞肥大程度、淀粉样蛋白-β斑块和 p-tau 也有所减少。hiPSC-NSC-EV的这种调节作用还能改善认知和情绪功能。因此,通过减少不良的神经炎症信号级联、淀粉样蛋白-β斑块负荷和p-tau,对AD进行早期hiPSC-NSC-EV干预可维持更好的大脑功能。这些结果首次证明了hiPSC-NSC-EV通过诱导活化小胶质细胞和反应性星形胶质细胞的转录组变化,在AD模型中抑制神经炎症信号级联的功效。
{"title":"Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease","authors":"Leelavathi N. Madhu,&nbsp;Maheedhar Kodali,&nbsp;Raghavendra Upadhya,&nbsp;Shama Rao,&nbsp;Yogish Somayaji,&nbsp;Sahithi Attaluri,&nbsp;Bing Shuai,&nbsp;Maha Kirmani,&nbsp;Shreyan Gupta,&nbsp;Nathaniel Maness,&nbsp;Xiaolan Rao,&nbsp;James J. Cai,&nbsp;Ashok K. Shetty","doi":"10.1002/jev2.12519","DOIUrl":"https://doi.org/10.1002/jev2.12519","url":null,"abstract":"<p>As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19. 含有 SARS-CoV-2 蛋白质的细胞外囊泡与严重 COVID-19 患者的多器官功能障碍和预后恶化有关。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/jev2.70001
Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.

严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)会导致2019年冠状病毒病(COVID-19),自2019年以来,全球已有700多万人因此死亡。由于高水平的IL-6与重症病例有关,因此早期评估将抗IL6抑制剂托西珠单抗作为一种潜在的治疗方法,但遗憾的是,在许多试验中,这种抑制剂未能改善存活率。此外,人们对 COVID-19 后遗症的发展知之甚少,因此需要生物标志物来了解和预测这些过程。由于细胞外囊泡(EVs)在病毒感染和免疫反应中发挥着重要作用,它们有可能成为预测和预后的生物标志物。我们从 39 名重症 COVID-19 患者中分离出了 EVs,其中 29 人接受了托珠单抗治疗,10 人被视为对照组。在治疗前住院时、治疗第 7 天和随访第 15 天采集的血液样本通过免疫印迹法评估了尖峰蛋白(S)和核头蛋白(N)的纵向表达。对动态表达进行计算,并与临床病理和实验变量进行比较。通过免疫金和成像流式细胞术验证了EV S的表达,发现其在CD9+ EV中富集。因此,在接受托西珠单抗治疗的患者中观察到了EV病毒蛋白表达的减少。此外,在抗体反应较低、高纤维蛋白原血症、呼吸功能较差、血压较高和预后较短的患者中观察到了较高的 EV S 增加。这些发现为今后研究EVs在多器官评估中的作用以及确定严重COVID-19和可能的长COVID患者的生物标志物奠定了基础。
{"title":"Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19.","authors":"Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo","doi":"10.1002/jev2.70001","DOIUrl":"10.1002/jev2.70001","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":"e70001"},"PeriodicalIF":15.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry 利用体内流式细胞仪实时监测细胞外小泡(sEVs)。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1002/jev2.70003
Fuli Zhang, Xin Lu, Xi Zhu, Ziwen Yu, Weiliang Xia, Xunbin Wei

Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.

细胞外囊泡(EVs)是由双层脂膜组成的囊泡结构,由活细胞释放。越来越多的证据表明,小EVs(sEVs)可以介导特定形式的细胞间通信,从而证明了它们的功能。sEVs 未来的应用前景广阔,不仅可以作为诊断标志物,还可以作为治疗药物。然而,sEVs 应用于临床的最大困难在于人们目前对其了解甚少,尤其是对其体内行为的了解。在这项研究中,我们提供了一种基于体内流式细胞术(IVFC)监测血液循环中 sEVs 的新方法。我们证明,IVFC 信号基线的高度与 sEVs 的浓度成正比。此外,我们还发现 IVFC 信号的峰值是由 sEVs 的聚集或细胞摄取产生的。对 sEVs 从血液中清除的体内监测表明,与非 PEG 化 sEVs 相比,PEG 化 sEVs 在血液循环中的停留时间更长,聚集程度更低。这些研究表明,IVFC 能够对循环中的 sEVs 进行实时体内监测,从而为了解 sEVs 的药代动力学和细胞靶向能力提供有价值的信息。
{"title":"Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry","authors":"Fuli Zhang,&nbsp;Xin Lu,&nbsp;Xi Zhu,&nbsp;Ziwen Yu,&nbsp;Weiliang Xia,&nbsp;Xunbin Wei","doi":"10.1002/jev2.70003","DOIUrl":"10.1002/jev2.70003","url":null,"abstract":"<p>Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of small extracellular vesicles (sEV) from human blood by Superose 6 size exclusion chromatography 用 Superose 6 尺寸排阻色谱法分离人血中的小细胞外囊泡 (sEV)。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1002/jev2.70008
Jerome Nouvel, Gonzalo Bustos Quevedo, Tony Prinz, Ramsha Masood, George Daaboul, Tanja Gainey-Schleicher, Uwe Wittel, Sophia Chikhladze, Bence Melykuti, Martin Helmstaedter, Karl Winkler, Irina Nazarenko, Gerhard Pütz

Extracellular vesicles (EVs) are valuable targets for liquid biopsy. However, attempts to introduce EV-based biomarkers into clinical practice have not been successful to the extent expected. One of the reasons for this failure is the lack of reliable methods for EV baseline purification from complex biofluids, such as cell-free plasma or serum. Because available one-step approaches for EV isolation are insufficient to purify EVs, the majority of studies on clinical samples were performed either on a mixture of EVs and lipoproteins, whilst the real number of EVs and their individual specific biomarker content remained elusive, or on a low number of samples of sufficient volume to allow elaborate 2-step EV separation by size and density, resulting in a high purity but utmost low recovery. Here we introduce Fast Protein Liquid Chromatography (FPLC) using Superose 6 as a matrix to obtain small EVs from biofluids that are almost free of soluble proteins and lipoproteins. Along with the estimation of a realistic number of small EVs in human samples, we show temporal resolution of the effect of the duration of postprandial phase on the proportion of lipoproteins in purified EVs, suggesting acceptable time frames additionally to the recommendation to use fasting samples for human studies. Furthermore, we assessed a potential value of pure EVs for liquid biopsy, exemplarily examining EV- and tumour-biomarkers in pure FPLC-derived fractions isolated from the serum of patients with pancreatic cancer. Consistent among different techniques, showed the presence of diseases-associated biomarkers in pure EVs, supporting the feasibility of using single-vesicle analysis for liquid biopsy.

细胞外囊泡(EV)是液体活检的重要目标。然而,将基于 EV 的生物标记物引入临床实践的尝试并未取得预期的成功。失败的原因之一是缺乏从复杂生物流体(如无细胞血浆或血清)中进行 EV 基线纯化的可靠方法。由于现有的一步式EV分离方法不足以纯化EV,大多数临床样本研究要么是针对EV和脂蛋白的混合物进行的,而EV的真实数量和它们各自的特定生物标记物含量仍然难以确定;要么是针对数量较少、体积足够大的样本进行的,从而无法按大小和密度进行精细的两步式EV分离,结果是纯度很高,但回收率极低。在这里,我们介绍了使用 Superose 6 作为基质的快速蛋白质液相色谱法(FPLC),以从几乎不含可溶性蛋白质和脂蛋白的生物流体中获得小型 EV。在估算人体样本中小EV的实际数量的同时,我们还展示了餐后阶段持续时间对纯化EV中脂蛋白比例影响的时间分辨率,为建议在人体研究中使用空腹样本提供了可接受的时间框架。此外,我们还评估了纯EVs在液体活检中的潜在价值,例如检测了从胰腺癌患者血清中分离出来的纯FPLC衍生馏分中的EV和肿瘤生物标记物。不同技术的研究结果表明,纯EVs中存在与疾病相关的生物标记物,这支持了将单颗粒分析用于液体活检的可行性。
{"title":"Separation of small extracellular vesicles (sEV) from human blood by Superose 6 size exclusion chromatography","authors":"Jerome Nouvel,&nbsp;Gonzalo Bustos Quevedo,&nbsp;Tony Prinz,&nbsp;Ramsha Masood,&nbsp;George Daaboul,&nbsp;Tanja Gainey-Schleicher,&nbsp;Uwe Wittel,&nbsp;Sophia Chikhladze,&nbsp;Bence Melykuti,&nbsp;Martin Helmstaedter,&nbsp;Karl Winkler,&nbsp;Irina Nazarenko,&nbsp;Gerhard Pütz","doi":"10.1002/jev2.70008","DOIUrl":"10.1002/jev2.70008","url":null,"abstract":"<p>Extracellular vesicles (EVs) are valuable targets for liquid biopsy. However, attempts to introduce EV-based biomarkers into clinical practice have not been successful to the extent expected. One of the reasons for this failure is the lack of reliable methods for EV baseline purification from complex biofluids, such as cell-free plasma or serum. Because available one-step approaches for EV isolation are insufficient to purify EVs, the majority of studies on clinical samples were performed either on a mixture of EVs and lipoproteins, whilst the real number of EVs and their individual specific biomarker content remained elusive, or on a low number of samples of sufficient volume to allow elaborate 2-step EV separation by size and density, resulting in a high purity but utmost low recovery. Here we introduce Fast Protein Liquid Chromatography (FPLC) using Superose 6 as a matrix to obtain small EVs from biofluids that are almost free of soluble proteins and lipoproteins. Along with the estimation of a realistic number of small EVs in human samples, we show temporal resolution of the effect of the duration of postprandial phase on the proportion of lipoproteins in purified EVs, suggesting acceptable time frames additionally to the recommendation to use fasting samples for human studies. Furthermore, we assessed a potential value of pure EVs for liquid biopsy, exemplarily examining EV- and tumour-biomarkers in pure FPLC-derived fractions isolated from the serum of patients with pancreatic cancer. Consistent among different techniques, showed the presence of diseases-associated biomarkers in pure EVs, supporting the feasibility of using single-vesicle analysis for liquid biopsy.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells 作为鼻内后生物制剂的细菌胞外囊泡:详细表征及与气道细胞的相互作用
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1002/jev2.70004
Agnieszka Razim, Agnieszka Zabłocka, Anna Schmid, Michael Thaler, Viktor Černý, Tamara Weinmayer, Bradley Whitehead, Anke Martens, Magdalena Skalska, Mattia Morandi, Katy Schmidt, Magdalena E. Wysmołek, Akos Végvári, Dagmar Srutkova, Martin Schwarzer, Lukas Neuninger, Peter Nejsum, Jiri Hrdý, Johan Palmfeldt, Marco Brucale, Francesco Valle, Sabina Górska, Lukas Wisgrill, Aleksandra Inic-Kanada, Ursula Wiedermann, Irma Schabussova

Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.

大肠杆菌 A0 34/86(EcO83)是一种益生菌株,用于新生儿预防院内感染和腹泻。这种细菌既能刺激促炎细胞因子的产生,也能刺激抗炎细胞因子的产生,鼻内给药能减轻小鼠过敏性气道炎症。尽管益生菌有很多益处,但由于其潜在的全身感染和基因转移问题,人们对使用活益生菌仍有顾虑。从 EcO83 提取的胞外囊泡 (EVs)(EcO83-EVs)可能是活菌更安全的替代品。本研究描述了 EcO83-EVs 的特征,并研究了它们与宿主细胞的相互作用,突出了它们作为后生物疗法的潜力。EcO83-EVs是按照细胞外囊泡研究的最低信息量(MISEV)指南进行分离、纯化和表征的。在人鼻上皮细胞中进行的体内外研究表明,EcO83-EVs 增加了与氧化应激和炎症有关的蛋白质的表达,这表明 EVs 与宿主细胞之间存在有效的相互作用。在小鼠体内进行的进一步研究表明,EcO83-EV 与鼻腔相关淋巴组织相互作用,被气道巨噬细胞内化,并刺激肺部中性粒细胞的募集。从机理上讲,EcO83-EVs 可激活 NF-κΒ 信号通路,从而产生一氧化氮。EcO83-EVs作为活菌的后生物替代品具有巨大潜力,为治疗应用提供了更安全的选择。要探索其临床应用,特别是在粘膜疫苗接种和靶向免疫疗法策略中的应用,还需要进一步的研究。
{"title":"Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells","authors":"Agnieszka Razim,&nbsp;Agnieszka Zabłocka,&nbsp;Anna Schmid,&nbsp;Michael Thaler,&nbsp;Viktor Černý,&nbsp;Tamara Weinmayer,&nbsp;Bradley Whitehead,&nbsp;Anke Martens,&nbsp;Magdalena Skalska,&nbsp;Mattia Morandi,&nbsp;Katy Schmidt,&nbsp;Magdalena E. Wysmołek,&nbsp;Akos Végvári,&nbsp;Dagmar Srutkova,&nbsp;Martin Schwarzer,&nbsp;Lukas Neuninger,&nbsp;Peter Nejsum,&nbsp;Jiri Hrdý,&nbsp;Johan Palmfeldt,&nbsp;Marco Brucale,&nbsp;Francesco Valle,&nbsp;Sabina Górska,&nbsp;Lukas Wisgrill,&nbsp;Aleksandra Inic-Kanada,&nbsp;Ursula Wiedermann,&nbsp;Irma Schabussova","doi":"10.1002/jev2.70004","DOIUrl":"https://doi.org/10.1002/jev2.70004","url":null,"abstract":"<p><i>Escherichia coli</i> A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation of CD63-positive epididymosomes from human semen and its application in improving sperm function 从人类精液中分离 CD63 阳性附睾体及其在改善精子功能中的应用
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-17 DOI: 10.1002/jev2.70006
Jingwen Luo, Shiqing Zhu, Yafei Kang, Xinyu Liu, Xia Tan, Jieyi Zhao, Xiaofang Ding, Honggang Li

Extracellular vesicles (EVs) are highly heterogeneous, and different EV subpopulations from various origins mediate different biological effects. The separation of different subpopulations of EVs from mixtures is critical but challenging. Epididymosomes are secreted by the epididymal epithelium and play a key role in sperm maturation and function. However, limited access to human epididymal tissue and epididymal fluid has hampered further study of epididymosomes and their potential clinical applications. Here, we established a novel strategy based on flow cytometry sorting to isolate human CD63-positive epididymosomes from ejaculate. We identified CD52, a membrane-located protein expressed exclusively in the epididymis, as the sorting marker for human epididymosomes. Then, CD63-positive epididymosomes were isolated from human semen using a flow cytometry sorting instrument and concentrated. Additionally, we observed that isolated CD63-positive epididymosomes improved sperm function more than other CD63-positive seminal EV subpopulations did, demonstrating the successful isolation of a subpopulation of epididymosomes from human semen and their potential application in the clinic.

细胞外囊泡(EVs)具有高度异质性,来自不同来源的不同 EVs 亚群会介导不同的生物效应。从混合物中分离出不同亚群的EVs至关重要,但也极具挑战性。附睾小体由附睾上皮分泌,在精子成熟和功能方面发挥着关键作用。然而,由于获取人类附睾组织和附睾液的途径有限,阻碍了对附睾小体及其潜在临床应用的进一步研究。在这里,我们建立了一种基于流式细胞术分选的新策略,从射精中分离出 CD63 阳性的人类附睾体。我们确定了 CD52(一种只在附睾中表达的膜定位蛋白)作为人类附睾体的分选标记。然后,我们使用流式细胞术分选仪从人类精液中分离出 CD63 阳性附睾体,并将其浓缩。此外,我们还观察到分离出的 CD63 阳性附睾小体比其他 CD63 阳性精液 EV 亚群更能改善精子功能,这表明我们成功地从人类精液中分离出了附睾小体亚群,并将其应用于临床。
{"title":"Isolation of CD63-positive epididymosomes from human semen and its application in improving sperm function","authors":"Jingwen Luo,&nbsp;Shiqing Zhu,&nbsp;Yafei Kang,&nbsp;Xinyu Liu,&nbsp;Xia Tan,&nbsp;Jieyi Zhao,&nbsp;Xiaofang Ding,&nbsp;Honggang Li","doi":"10.1002/jev2.70006","DOIUrl":"https://doi.org/10.1002/jev2.70006","url":null,"abstract":"<p>Extracellular vesicles (EVs) are highly heterogeneous, and different EV subpopulations from various origins mediate different biological effects. The separation of different subpopulations of EVs from mixtures is critical but challenging. Epididymosomes are secreted by the epididymal epithelium and play a key role in sperm maturation and function. However, limited access to human epididymal tissue and epididymal fluid has hampered further study of epididymosomes and their potential clinical applications. Here, we established a novel strategy based on flow cytometry sorting to isolate human CD63-positive epididymosomes from ejaculate. We identified CD52, a membrane-located protein expressed exclusively in the epididymis, as the sorting marker for human epididymosomes. Then, CD63-positive epididymosomes were isolated from human semen using a flow cytometry sorting instrument and concentrated. Additionally, we observed that isolated CD63-positive epididymosomes improved sperm function more than other CD63-positive seminal EV subpopulations did, demonstrating the successful isolation of a subpopulation of epididymosomes from human semen and their potential application in the clinic.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low fluid shear stress stimulates the uptake of noxious endothelial extracellular vesicles via MCAM and PECAM-1 cell adhesion molecules 低流体剪切应力通过 MCAM 和 PECAM-1 细胞粘附分子刺激有害内皮细胞外囊泡的吸收
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1002/jev2.12414
Pierre-Michaël Coly, Shruti Chatterjee, Fariza Mezine, Christelle El Jekmek, Cécile Devue, Thomas Nipoti, Stephane Mazlan, Maribel Lara Corona, Florent Dingli, Damarys Loew, Guillaume van Niel, Xavier Loyer, Chantal M. Boulanger

Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.

动脉粥样硬化病变主要形成于暴露于低剪切应力(LSS)的动脉区域,那里的内皮细胞表现出衰老和炎症表型。相反,暴露于高剪切应力(HSS)的区域则受到保护,不会形成斑块。内皮细胞外囊泡(EVs)已被证明能调节炎症和衰老,因此在血管稳态中起着至关重要的作用。虽然之前的研究表明血液动力和EV释放之间存在联系,但剪切应力对内皮EVs释放和吸收的影响仍然难以捉摸。我们的目的是破解暴露在动脉粥样硬化或动脉粥样硬化保护性剪切应力下的内皮细胞中这些过程之间的相互作用。汇合的 HUVEC 暴露于 LSS 或 HSS 24 小时后,通过离心和尺寸排阻色谱法从条件培养基中分离出大的和小的 EVs。通过 TEM、Western 印迹、可调电阻脉冲传感、流式细胞仪和蛋白质组学对它们进行了表征。使用荧光标记的 EVs 进行了吸收实验,并通过流式细胞术和共聚焦显微镜评估了组间差异。我们发现,在 HSS 条件下,条件培养基中大型和小型 EV 的水平分别是 LSS 条件下的 50 倍和 5 倍。体内和体外摄取实验显示,暴露于 LSS 条件下的细胞对 EV 的结合率更高。此外,与 HSS-EVs 或来自血小板、红细胞和白细胞的 EVs 相比,内皮 LSS-EVs 对 HUVECs 的亲和力更大。蛋白质组分析表明,LSS-EV富含粘附蛋白(PECAM1、MCAM),参与了内皮细胞对 EV 的吸收。LSS-EV 还携带线粒体物质,这可能与受体细胞中 ROS 水平的升高有关。这些发现表明,剪切应力影响了EV的生物生成和摄取。鉴于EVs和剪切应力在血管健康中的重要作用,破译这些过程之间的关系可能会产生早期检测和治疗内皮功能障碍的创新策略。
{"title":"Low fluid shear stress stimulates the uptake of noxious endothelial extracellular vesicles via MCAM and PECAM-1 cell adhesion molecules","authors":"Pierre-Michaël Coly,&nbsp;Shruti Chatterjee,&nbsp;Fariza Mezine,&nbsp;Christelle El Jekmek,&nbsp;Cécile Devue,&nbsp;Thomas Nipoti,&nbsp;Stephane Mazlan,&nbsp;Maribel Lara Corona,&nbsp;Florent Dingli,&nbsp;Damarys Loew,&nbsp;Guillaume van Niel,&nbsp;Xavier Loyer,&nbsp;Chantal M. Boulanger","doi":"10.1002/jev2.12414","DOIUrl":"https://doi.org/10.1002/jev2.12414","url":null,"abstract":"<p>Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size photometry and fluorescence imaging of immobilized immersed extracellular vesicles 固定沉浸式细胞外囊泡的尺寸光度测量和荧光成像
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1002/jev2.12512
Andreas Wallucks, Philippe DeCorwin-Martin, Molly L. Shen, Andy Ng, David Juncker

Immunofluorescence analysis of individual extracellular vesicles (EVs) in common fluorescence microscopes is gaining popularity due to its accessibility and high fluorescence sensitivity; however, EV number and size are only measurable using fluorescent stains requiring extensive sample manipulations. Here we introduce highly sensitive label-free EV size photometry (SP) based on interferometric scattering (iSCAT) imaging of immersed EVs immobilized on a glass coverslip. We implement SP on a common inverted epifluorescence microscope with LED illumination and a simple 50:50 beamsplitter, permitting seamless integration of SP with fluorescence imaging (SPFI). We present a high-throughput SPFI workflow recording >10,000 EVs in 7 min over ten 88 × 88 µm2 fields of view, pre- and post-incubation imaging to suppress background, along with automated image alignment, aberration correction, spot detection and EV sizing. We achieve an EV sizing range from 37 to ∼220 nm in diameter with a dual 440 and 740 nm SP illumination scheme, and suggest that this range can be extended by more advanced image analysis or additional hardware customization. We benchmark SP to flow cytometry using calibrated silica nanoparticles and demonstrate superior, label-free sensitivity. We showcase SPFI's potential for EV analysis by experimentally distinguishing surface and volumetric EV dyes, observing the deformation of EVs adsorbed to a surface, and by uncovering distinct subpopulations in <100 nm-in-diameter EVs with fluorescently tagged membrane proteins.

在普通荧光显微镜下对单个细胞外囊泡 (EV) 进行免疫荧光分析因其易用性和高荧光灵敏度而越来越受欢迎;然而,EV 的数量和大小只能通过荧光染色剂来测量,需要对样品进行大量操作。在这里,我们介绍了基于干涉散射(iSCAT)成像的高灵敏度无标记 EV 粒度光度法(SP),该成像可对固定在玻璃盖玻片上的浸泡 EV 进行测量。我们在普通的倒置外荧光显微镜上使用 LED 照明和简单的 50:50 分光镜实现了 SP,从而实现了 SP 与荧光成像(SPFI)的无缝集成。我们介绍了一种高通量 SPFI 工作流程,可在 7 分钟内在 10 个 88 × 88 µm2 视场中记录 10,000 个 EV,并在孵育前后成像以抑制背景,同时自动进行图像对齐、像差校正、光斑检测和 EV 大小调整。我们采用 440 和 740 纳米双 SP 照明方案,实现了从直径 37 纳米到 ∼220 纳米的 EV 大小范围,并建议通过更先进的图像分析或额外的硬件定制来扩展这一范围。我们使用校准过的二氧化硅纳米粒子将 SP 与流式细胞仪进行了比对,结果表明 SPFI 具有卓越的无标记灵敏度。我们通过实验区分了表面和体积EV染料,观察了吸附在表面上的EV的变形,并发现了<100 nm直径EV中带有荧光标记膜蛋白的不同亚群,从而展示了SPFI在EV分析方面的潜力。
{"title":"Size photometry and fluorescence imaging of immobilized immersed extracellular vesicles","authors":"Andreas Wallucks,&nbsp;Philippe DeCorwin-Martin,&nbsp;Molly L. Shen,&nbsp;Andy Ng,&nbsp;David Juncker","doi":"10.1002/jev2.12512","DOIUrl":"https://doi.org/10.1002/jev2.12512","url":null,"abstract":"<p>Immunofluorescence analysis of individual extracellular vesicles (EVs) in common fluorescence microscopes is gaining popularity due to its accessibility and high fluorescence sensitivity; however, EV number and size are only measurable using fluorescent stains requiring extensive sample manipulations. Here we introduce highly sensitive label-free EV size photometry (SP) based on interferometric scattering (iSCAT) imaging of immersed EVs immobilized on a glass coverslip. We implement SP on a common inverted epifluorescence microscope with LED illumination and a simple 50:50 beamsplitter, permitting seamless integration of SP with fluorescence imaging (SPFI). We present a high-throughput SPFI workflow recording &gt;10,000 EVs in 7 min over ten 88 × 88 µm<sup>2</sup> fields of view, pre- and post-incubation imaging to suppress background, along with automated image alignment, aberration correction, spot detection and EV sizing. We achieve an EV sizing range from 37 to ∼220 nm in diameter with a dual 440 and 740 nm SP illumination scheme, and suggest that this range can be extended by more advanced image analysis or additional hardware customization. We benchmark SP to flow cytometry using calibrated silica nanoparticles and demonstrate superior, label-free sensitivity. We showcase SPFI's potential for EV analysis by experimentally distinguishing surface and volumetric EV dyes, observing the deformation of EVs adsorbed to a surface, and by uncovering distinct subpopulations in &lt;100 nm-in-diameter EVs with fluorescently tagged membrane proteins.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections 利用杂交膜囊泡抗铜绿假单胞菌感染的多抗原抗菌纳米疫苗
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1002/jev2.12524
Xinran Peng, Yuanjing Luo, Li Yang, Yi Yan Yang, Peiyan Yuan, Xinhai Chen, Guo-Bao Tian, Xin Ding

Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.

细菌感染,尤其是由耐多药病原体引起的细菌感染,对公共卫生构成了严重威胁。疫苗是抗击这些感染的重要工具;然而,对于最常见的细菌感染,如铜绿假单胞菌引起的感染,目前还没有临床可用的疫苗。本文报告了一种多抗原抗菌纳米疫苗(AuNP@HMV@SPs),用于抗击铜绿假单胞菌感染。这种纳米疫苗利用了巨噬细胞膜囊泡与细菌外膜囊泡融合产生的杂交膜囊泡(HMVs)。HMVs 可减轻 OMVs 和吸附在 MMVs 表面的细菌分泌毒素 (SP) 的毒性作用,同时保留其刺激特性。金纳米粒子(AuNPs)可用作佐剂,在不影响安全性的情况下增强免疫反应。纳米疫苗 AuNP@HMV@SPs 可诱导强有力的体液和细胞免疫反应,从而破坏细菌细胞并中和其分泌的毒素。在铜绿假单胞菌引起的小鼠败血症和肺炎模型中,AuNP@HMV@SPs 与包括 OMVs 或 MMVs@SPs 和 HMV@SPs 在内的对照组相比,显示出更优越的预防效果,败血症患者存活率达到 100%,肺炎患者肺部细菌量减少 99.9%。这项研究表明,AuNP@HMV@SPs 是一种安全有效的抗菌纳米疫苗,可同时针对细菌及其分泌的毒素,为开发针对耐多药病原体的多抗原抗菌疫苗提供了一个前景广阔的平台。
{"title":"A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections","authors":"Xinran Peng,&nbsp;Yuanjing Luo,&nbsp;Li Yang,&nbsp;Yi Yan Yang,&nbsp;Peiyan Yuan,&nbsp;Xinhai Chen,&nbsp;Guo-Bao Tian,&nbsp;Xin Ding","doi":"10.1002/jev2.12524","DOIUrl":"https://doi.org/10.1002/jev2.12524","url":null,"abstract":"<p>Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by <i>Pseudomonas aeruginosa</i>. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat <i>P. aeruginosa</i> infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by <i>P. aeruginosa</i>, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and &gt; 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification 基于潜标的亲和层析技术用于重组细胞外囊泡的纯化
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1002/jev2.12523
Madhusudhan Reddy Bobbili, André Görgens, Yan Yan, Stefan Vogt, Dhanu Gupta, Giulia Corso, Samir Barbaria, Carolina Patrioli, Sylvia Weilner, Marianne Pultar, Jaroslaw Jacak, Matthias Hackl, Markus Schosserer, Regina Grillari, Jørgen Kjems, Samir EL Andaloussi, Johannes Grillari

Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.

细胞外囊泡(EVs)是一种脂质纳米颗粒,在细胞与细胞之间的通讯中发挥着重要作用,使其成为潜在的治疗药物,并可用于靶向给药工程。EVs在下一代医学中的应用不断扩大,但仍受限于现有的EV标准化生产、单一EV追踪和分析工具,因此只能提供组织特异性EV货物信息的快照。在这里,我们展示了 Snorkel 标签,我们将 EV 表面标记蛋白 CD81 与一系列标签进行了基因融合,这些标签带有一个额外的跨膜结构域,可以显示在 EV 表面,就像一个潜望镜。该系统能以非破坏性形式从复杂基质中亲和性纯化 EV,同时保持 EV 在表面蛋白特征、相关 miRNA 模式和模型细胞系吸收方面的特性。因此,我们认为Snorkel-tag是一种广泛应用于EV研究的工具,它可以高效地制备EV标准和参考材料,或在体外或体内与其他四蛋白融合时剖析具有不同表面标记的EV。
{"title":"Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification","authors":"Madhusudhan Reddy Bobbili,&nbsp;André Görgens,&nbsp;Yan Yan,&nbsp;Stefan Vogt,&nbsp;Dhanu Gupta,&nbsp;Giulia Corso,&nbsp;Samir Barbaria,&nbsp;Carolina Patrioli,&nbsp;Sylvia Weilner,&nbsp;Marianne Pultar,&nbsp;Jaroslaw Jacak,&nbsp;Matthias Hackl,&nbsp;Markus Schosserer,&nbsp;Regina Grillari,&nbsp;Jørgen Kjems,&nbsp;Samir EL Andaloussi,&nbsp;Johannes Grillari","doi":"10.1002/jev2.12523","DOIUrl":"https://doi.org/10.1002/jev2.12523","url":null,"abstract":"<p>Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Extracellular Vesicles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1