S. Grigoriev, N. Kuleshov, A. S. Grigoriev, P. Millet
{"title":"Electrochemical Characterization of a High-Temperature Proton Exchange Membrane Fuel Cell Using Doped-Poly Benzimidazole as Solid Polymer Electrolyte","authors":"S. Grigoriev, N. Kuleshov, A. S. Grigoriev, P. Millet","doi":"10.1115/1.4029873","DOIUrl":"https://doi.org/10.1115/1.4029873","url":null,"abstract":"","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"031004"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63489180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Man Yang, Zhigang Xu, S. Desai, Dhananjay Kumar, J. Sankar
{"title":"Fabrication of Micro Single Chamber Solid Oxide Fuel Cell Using Photolithography and Pulsed Laser Deposition","authors":"Man Yang, Zhigang Xu, S. Desai, Dhananjay Kumar, J. Sankar","doi":"10.1115/1.4029094","DOIUrl":"https://doi.org/10.1115/1.4029094","url":null,"abstract":"","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021004"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63488008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dopant Clustering and Correlated Oxygen Migration in Conditionally Stabilized Zirconia Electrolytes","authors":"Steven P. Miller, B. Dunlap, A. Fleischer","doi":"10.1115/1.4029082","DOIUrl":"https://doi.org/10.1115/1.4029082","url":null,"abstract":"","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021003"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63487881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For most of the last four decades, the alkaline fuel cell (AFC) has been largely overlooked in favor of the polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC). However, the persistently high costs and complexities of the PEMFC and the SOFC have led to renewed interest in the AFC in recent times. This work reports the designs of custom test fixtures and electronics instrumentation relevant for AFC electrode testing and system optimization. Features implemented in the designs include a real-time voltage measurement unit (VMU), electronic load circuit, and electrolyte heater system. Validation experiments indicated a close agreement between the VMU’s readings, Nernst equation predictions, and readings from a digital voltmeter. The electrolyte heater system’s temperature measurement module was validated with its ability to replicate a cooling profile of ethanol similar to that obtained from a mercury-in-glass thermometer. Materials selection, design considerations, and fabrication steps for other test station components, such as the button-cell test apparatus and the half-cylinder electrolyte heater, were presented. The test station was used for polarization studies of aluminum-air AFC under different conditions of potassium hydroxide (KOH) electrolyte temperature and concentration. The studies revealed optimum values of electrolyte temperature and concentration for the AFC electrode to be 70 °C and 4 M KOH, respectively.
在过去的四十年中,碱性燃料电池(AFC)在很大程度上被聚合物电解质膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)所忽视。然而,由于PEMFC和SOFC的高成本和复杂性,近年来人们对AFC重新产生了兴趣。这项工作报告了与AFC电极测试和系统优化相关的定制测试夹具和电子仪器的设计。在设计中实现的功能包括实时电压测量单元(VMU),电子负载电路和电解质加热系统。验证实验表明,VMU的读数、能斯特方程预测和数字电压表的读数之间存在密切的一致性。电解质加热器系统的温度测量模块经过验证,其能够复制乙醇的冷却曲线,类似于从玻璃汞温度计获得的冷却曲线。介绍了其他试验台部件的材料选择、设计考虑和制造步骤,如钮扣电池试验装置和半圆柱形电解质加热器。利用该试验站对不同氢氧化钾(KOH)电解液温度和浓度条件下铝-空气AFC的极化特性进行了研究。研究表明,AFC电极的最佳电解液温度和浓度分别为70°C和4 M KOH。
{"title":"A Simplified Test Station for Alkaline Fuel Cell","authors":"B. Aremo, M. O. Adeoye, I. Obioh","doi":"10.1115/1.4029421","DOIUrl":"https://doi.org/10.1115/1.4029421","url":null,"abstract":"For most of the last four decades, the alkaline fuel cell (AFC) has been largely overlooked in favor of the polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC). However, the persistently high costs and complexities of the PEMFC and the SOFC have led to renewed interest in the AFC in recent times. This work reports the designs of custom test fixtures and electronics instrumentation relevant for AFC electrode testing and system optimization. Features implemented in the designs include a real-time voltage measurement unit (VMU), electronic load circuit, and electrolyte heater system. Validation experiments indicated a close agreement between the VMU’s readings, Nernst equation predictions, and readings from a digital voltmeter. The electrolyte heater system’s temperature measurement module was validated with its ability to replicate a cooling profile of ethanol similar to that obtained from a mercury-in-glass thermometer. Materials selection, design considerations, and fabrication steps for other test station components, such as the button-cell test apparatus and the half-cylinder electrolyte heater, were presented. The test station was used for polarization studies of aluminum-air AFC under different conditions of potassium hydroxide (KOH) electrolyte temperature and concentration. The studies revealed optimum values of electrolyte temperature and concentration for the AFC electrode to be 70 °C and 4 M KOH, respectively.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"1 1","pages":"024501"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029421","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63488235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RuSe Electrocatalysts and Single Wall Carbon Nanohorns Supports for the Oxygen Reduction Reaction","authors":"K. M. Eblagon, L. Brandão","doi":"10.1115/1.4029422","DOIUrl":"https://doi.org/10.1115/1.4029422","url":null,"abstract":"","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021006"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63488273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsukasa Nagai, N. Fujiwara, M. Kitta, M. Asahi, S. Yamazaki, Z. Siroma, Tsutomu Ioroi
{"title":"Oxygen Reduction Activity on a Nanosized Perovskite-Type Oxide Prepared by Polyvinyl Pyrrolidone Method","authors":"Tsukasa Nagai, N. Fujiwara, M. Kitta, M. Asahi, S. Yamazaki, Z. Siroma, Tsutomu Ioroi","doi":"10.1115/1.4029424","DOIUrl":"https://doi.org/10.1115/1.4029424","url":null,"abstract":"","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021007"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63488331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a power control strategy for a marine power system made up of a hybrid diesel generator, a fuel cell, and an energy storage unit. For this purpose, a self-tuning fuzzy control is designed to manage the power generation between power sources during different maneuverings and voltage disturbances (both balanced and unbalanced) in an AC system. As a solution, a current control strategy using a voltage source converter is presented. Simulation results show the response of the whole system under a test driving cycle and this variety of voltage disturbance conditions. They illustrate the performance, including power flow control and voltage disturbance ride-through capability, of the proposed control strategy.
{"title":"Fuzzy Control of Supercapacitor Current in Hybrid Diesel Generator/Fuel Cell Marine Power System","authors":"A. Hajizadeh, A. Shahirinia, David C. Yu","doi":"10.1115/1.4029394","DOIUrl":"https://doi.org/10.1115/1.4029394","url":null,"abstract":"This paper presents a power control strategy for a marine power system made up of a hybrid diesel generator, a fuel cell, and an energy storage unit. For this purpose, a self-tuning fuzzy control is designed to manage the power generation between power sources during different maneuverings and voltage disturbances (both balanced and unbalanced) in an AC system. As a solution, a current control strategy using a voltage source converter is presented. Simulation results show the response of the whole system under a test driving cycle and this variety of voltage disturbance conditions. They illustrate the performance, including power flow control and voltage disturbance ride-through capability, of the proposed control strategy.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021009"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029394","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63488514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Abreu-Sepúlveda, N. Harun, Gregory A. Hackett, A. Hagen, D. Tucker
The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical expression for degradation rate was obtained through the analysis of empirical voltage versus time plots for different current densities and fuel utilizations.
{"title":"Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System","authors":"María Abreu-Sepúlveda, N. Harun, Gregory A. Hackett, A. Hagen, D. Tucker","doi":"10.1115/1.4028953","DOIUrl":"https://doi.org/10.1115/1.4028953","url":null,"abstract":"The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical expression for degradation rate was obtained through the analysis of empirical voltage versus time plots for different current densities and fuel utilizations.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021001"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4028953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63487849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhou, Samuel Simon Araya, I. Grigoras, S. J. Andreasen, S. Kær
Degradation tests of two phosphoric acid (PA) doped polybenzimidazole (PBI) membrane based high temperature polymer electrolyte membrane (HT-PEM) fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the oxygen reduction reaction (ORR) kinetic resistance probably due to the redistribution of PA between the membrane and electrodes. EIS measurement of first fuel cell during the start/stop test showed that the mass transfer resistance and ohmic resistance increased which can be attributed to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with simulated reformate as the fuel the ORR kinetic resistance and mass transfer resistance of both single cells increased. The performance of the second single cell experienced a slight decrease during the start/stop test with simulated reformate as the fuel. [DOI: 10.1115/1.4029081]
{"title":"Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells","authors":"Fan Zhou, Samuel Simon Araya, I. Grigoras, S. J. Andreasen, S. Kær","doi":"10.1115/1.4029081","DOIUrl":"https://doi.org/10.1115/1.4029081","url":null,"abstract":"Degradation tests of two phosphoric acid (PA) doped polybenzimidazole (PBI) membrane based high temperature polymer electrolyte membrane (HT-PEM) fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the oxygen reduction reaction (ORR) kinetic resistance probably due to the redistribution of PA between the membrane and electrodes. EIS measurement of first fuel cell during the start/stop test showed that the mass transfer resistance and ohmic resistance increased which can be attributed to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with simulated reformate as the fuel the ORR kinetic resistance and mass transfer resistance of both single cells increased. The performance of the second single cell experienced a slight decrease during the start/stop test with simulated reformate as the fuel. [DOI: 10.1115/1.4029081]","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"021002"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63487871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}