The response of antigorite deformation to preexisting fabrics in subduction zones is unclear. We deform antigorite schist with foliation and lineation (X is parallel to the lineation, Y is in the foliation and perpendicular to the lineation, and Z is normal to the foliation) at different angles to the maximum principal stress (σ1) via a Paterson gas-medium apparatus under a confining pressure of 200 MPa, a temperature of 600°C, a strain rate of ∼10−5 s−1, and a preheating time of 6 hr. The mechanical results indicate that σ(Z) ≫ σ(X) ≈σ(Y), indicating nearly transverse isotropy. Observations of the recovered samples revealed that less ductile and more brittle deformation occurred simultaneously, indicative of a brittle-to-semibrittle regime. Microcracks formed parallel to the foliation likely increase anisotropy. The slightly greater strength, more kinks and/or occurrence of slow stick-slip along the Y direction suggest that the a-axis is in a hard-friction direction, supporting the results of an atomic force microscopy (AFM) study by Campione and Capitani (2013, https://www.doi.org/10.1038/ngeo1905) on single-crystal antigorite under ambient conditions. In contrast, our previous deformation at 1.3 GPa shows that the b-axis is in a hard-slip direction, consistent with the results from transmission electron microscopy (TEM) observations by Amiguet et al. (2014, https://www.doi.org/10.1002/2013jb010791) on antigorite deformed under 1 and 4 GPa. This comparison suggests that mechanical anisotropy within the foliation changes with pressure, likely reconciling the opposite results obtained by the two studies and indicating brittle‒ductile transitions near the mantle wedge corner where deep slow earthquakes related to antigorite may have occurred.
{"title":"Pressure-Induced Change in Mechanical Anisotropy Within the Foliation Plane of Antigorite as an Indicator of the Brittle‒Ductile Transition","authors":"Tongbin Shao, Maoshuang Song, Jianfeng Li, Zhexuan Jiang","doi":"10.1029/2025JB031143","DOIUrl":"10.1029/2025JB031143","url":null,"abstract":"<p>The response of antigorite deformation to preexisting fabrics in subduction zones is unclear. We deform antigorite schist with foliation and lineation (<i>X</i> is parallel to the lineation, <i>Y</i> is in the foliation and perpendicular to the lineation, and <i>Z</i> is normal to the foliation) at different angles to the maximum principal stress (σ<sub>1</sub>) via a Paterson gas-medium apparatus under a confining pressure of 200 MPa, a temperature of 600°C, a strain rate of ∼10<sup>−5</sup> s<sup>−1</sup>, and a preheating time of 6 hr. The mechanical results indicate that <i>σ</i>(<i>Z</i>) ≫ <i>σ</i>(<i>X</i>) ≈<i>σ</i>(<i>Y</i>), indicating nearly transverse isotropy. Observations of the recovered samples revealed that less ductile and more brittle deformation occurred simultaneously, indicative of a brittle-to-semibrittle regime. Microcracks formed parallel to the foliation likely increase anisotropy. The slightly greater strength, more kinks and/or occurrence of slow stick-slip along the <i>Y</i> direction suggest that the <i>a</i>-axis is in a hard-friction direction, supporting the results of an atomic force microscopy (AFM) study by Campione and Capitani (2013, https://www.doi.org/10.1038/ngeo1905) on single-crystal antigorite under ambient conditions. In contrast, our previous deformation at 1.3 GPa shows that the <i>b</i>-axis is in a hard-slip direction, consistent with the results from transmission electron microscopy (TEM) observations by Amiguet et al. (2014, https://www.doi.org/10.1002/2013jb010791) on antigorite deformed under 1 and 4 GPa. This comparison suggests that mechanical anisotropy within the foliation changes with pressure, likely reconciling the opposite results obtained by the two studies and indicating brittle‒ductile transitions near the mantle wedge corner where deep slow earthquakes related to antigorite may have occurred.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. D. Kästle, M. Paffrath, A. El-Sharkawy, the AlpArray and Swath-D working groups
An ongoing controversy revolves around the detailed structure of the subducting European and Adriatic plates under the Alps and the adjacent orogens. Mostly based on P-wave travel time tomographic images, slab break-off at different times, reversals of subduction polarity and segmentation of the slab into independent units have been proposed. These processes may have important geodynamic consequences such as rapid surface uplift, past magmatic events or changes in the style of continental collision. However, some of the tomographic results are contradictory, particularly evident in the uppermost mantle where teleseismic P waves traverse the medium almost vertically with few ray crossings and a stronger dependence on the crustal correction. In this work, we present the result of an innovative joint inversion approach using surface- and teleseismic body-wave travel times to mitigate some of the shortcomings in both data types. Applying a reversible-jump Markov chain Monte Carlo approach, we simultaneously constrain the