首页 > 最新文献

SEG Technical Program Expanded Abstracts 2018最新文献

英文 中文
Geoelectrical investigation of the root-soil interaction 根-土相互作用的地电学研究
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2998470.1
L. Peruzzo, C. Chou, Yuxin Wu, B. Riley, P. Petrov, G. Newman, B. Dafflon, Eoin L. Brodie, S. Hubbard, E. Blancaflor, Xue‐Feng Ma, R. Versteeg, M. Schmutz
{"title":"Geoelectrical investigation of the root-soil interaction","authors":"L. Peruzzo, C. Chou, Yuxin Wu, B. Riley, P. Petrov, G. Newman, B. Dafflon, Eoin L. Brodie, S. Hubbard, E. Blancaflor, Xue‐Feng Ma, R. Versteeg, M. Schmutz","doi":"10.1190/SEGAM2018-2998470.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2998470.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131727076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random noise attenuation based on residual learning of deep convolutional neural network 基于残差学习的深度卷积神经网络随机噪声抑制
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2985176.1
Xu Si, Yijun Yuan
{"title":"Random noise attenuation based on residual learning of deep convolutional neural network","authors":"Xu Si, Yijun Yuan","doi":"10.1190/SEGAM2018-2985176.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2985176.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130795210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Dynamic elasticity and the controlling physical properties of New Zealand’s coaly source rocks 新西兰煤源岩动态弹性及控制物性
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2969608.1
Stephen Brennan, L. Adam, L. Strachan
{"title":"Dynamic elasticity and the controlling physical properties of New Zealand’s coaly source rocks","authors":"Stephen Brennan, L. Adam, L. Strachan","doi":"10.1190/SEGAM2018-2969608.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2969608.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"51-52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131003614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Data-oriented strategy and Vp/Vs model-constraint for simultaneous Vp and Vs reconstruction in 3D viscoelastic FWI: Application to the SEAM II Foothill dataset 三维粘弹性FWI同时重建Vp和Vs的数据导向策略和Vp/Vs模型约束:在SEAM II Foothill数据集上的应用
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997555.1
P. Trinh, R. Brossier, L. Métivier, J. Virieux
Full waveform inversion (FWI) of onshore targets is very challenging due to the complex free-surface-related effects and 3D geometry representation. In such areas, the seismic wavefield is dominated by highly energetic and dispersive surface waves, converted waves and back-scattering energy. We use a timedomain spectral-element-based approach for elastic wavefield simulation in foothill areas. The challenges of the elastic multiparameter FWI in complex land areas are highlighted through the inversion of the pseudo-2D dip-line survey of the SEAM Phase II Foothill dataset. As the data is dominated by surface waves, it is mainly sensitive to the S-wave velocity. We then propose a two-steps data-windowing hierarchy to simultaneously invert for Pand S-wave speeds, focusing on early body waves before considering the whole data. By doing so, we aim at exploiting the maximum amount of information in the observed data and getting a reliable model parameters estimation, both in the near-surface and in deeper part. The model constraint that we introduce on the ratio of compressional and shear velocities also plays an important role to mitigate the ill-posedness of the inversion process.
陆上目标的全波形反演(FWI)由于复杂的自由面相关效应和三维几何表示而非常具有挑战性。在这些地区,地震波场以高能量和色散的表面波、转换波和后向散射能量为主。我们使用基于时域谱元的方法对山麓地区的弹性波场进行模拟。通过SEAM II期Foothill数据集的伪2d倾角测量反演,突出了复杂陆地区域弹性多参数FWI的挑战。由于数据以面波为主,因此主要对横波速度敏感。然后,我们提出了一个两步数据窗口层次结构,同时反演横波和纵波速度,在考虑整个数据之前,重点关注早期体波。通过这样做,我们的目的是利用观测数据中的最大信息量,并在近地表和深层获得可靠的模型参数估计。我们对压缩速度和剪切速度之比引入的模型约束也对减轻反演过程的病态性起着重要作用。
{"title":"Data-oriented strategy and Vp/Vs model-constraint for simultaneous Vp and Vs reconstruction in 3D viscoelastic FWI: Application to the SEAM II Foothill dataset","authors":"P. Trinh, R. Brossier, L. Métivier, J. Virieux","doi":"10.1190/SEGAM2018-2997555.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997555.1","url":null,"abstract":"Full waveform inversion (FWI) of onshore targets is very challenging due to the complex free-surface-related effects and 3D geometry representation. In such areas, the seismic wavefield is dominated by highly energetic and dispersive surface waves, converted waves and back-scattering energy. We use a timedomain spectral-element-based approach for elastic wavefield simulation in foothill areas. The challenges of the elastic multiparameter FWI in complex land areas are highlighted through the inversion of the pseudo-2D dip-line survey of the SEAM Phase II Foothill dataset. As the data is dominated by surface waves, it is mainly sensitive to the S-wave velocity. We then propose a two-steps data-windowing hierarchy to simultaneously invert for Pand S-wave speeds, focusing on early body waves before considering the whole data. By doing so, we aim at exploiting the maximum amount of information in the observed data and getting a reliable model parameters estimation, both in the near-surface and in deeper part. The model constraint that we introduce on the ratio of compressional and shear velocities also plays an important role to mitigate the ill-posedness of the inversion process.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131135779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Induced-polarization measurements of sandstones under elevated pressure 高压下砂岩的诱导极化测量
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2998354.1
C. Mapeli, L. Ou, M. Prasad
{"title":"Induced-polarization measurements of sandstones under elevated pressure","authors":"C. Mapeli, L. Ou, M. Prasad","doi":"10.1190/SEGAM2018-2998354.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2998354.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130741235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiscenario, multirealization seismic inversion for probabilistic seismic reservoir characterization 概率地震储层表征的多场景、多实现地震反演
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2992162.1
K. Waters, M. Kemper
{"title":"Multiscenario, multirealization seismic inversion for probabilistic seismic reservoir characterization","authors":"K. Waters, M. Kemper","doi":"10.1190/SEGAM2018-2992162.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2992162.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"1993 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130841834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic facies in the Pearl River Submarine Canyon, northern South China Sea 南海北部珠江海底峡谷地震相研究
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2998482.1
Ke Huang, G. Zhong, Liao-liang Wang, Yiqun Guo
{"title":"Seismic facies in the Pearl River Submarine Canyon, northern South China Sea","authors":"Ke Huang, G. Zhong, Liao-liang Wang, Yiqun Guo","doi":"10.1190/SEGAM2018-2998482.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2998482.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130914530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementing internal interfaces in finite-difference schemes with the Heaviside step function 用Heaviside阶跃函数实现有限差分格式的内部接口
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2994775.1
R. Mittet
Implementing sharp internal interfaces in finite-difference schemes with high spatial accuracy is challenging. The implementations of interfaces are generally considered accurate to at best second order. The natural way to describe an abrupt change in material parameters is by the use of the Heaviside step function. However, the implementation of the Heaviside step function must be consistent with the discrete sampling on the finite-difference grid. Assuming that the step function takes on the value zero up to some node location and then unity from thereon results in an incorrect wavenumber representation of the Heaviside step function so this representation must be incorrect. However, starting with the proper wavenumber representation of the Heaviside step function and then transforming this spectrum to the space domain give much better accuracy. The interface location appears as a proportionality factor in the phase in the wavenumber domain and can be altered continuously. Thus, the interface can be located anywhere between two node locations. This is a key factor for avoiding stair-case effects from the fields when doing 2D and 3D finite-difference simulations. The proposed method can be used for all systems of partial differential equations that formally can be expressed as a material parameter times a dynamic field on one side of the equal sign and with spatial derivatives on the other side of the equal sign. For geophysical simulations the most important cases will be the Maxwell equations and the acoustic and elastic wave equations.
在高空间精度的有限差分格式中实现尖锐的内部接口是具有挑战性的。接口的实现通常被认为最精确到二阶。描述材料参数突变的自然方法是使用Heaviside阶跃函数。但是,Heaviside阶跃函数的实现必须与有限差分网格上的离散采样相一致。假设阶跃函数的值为0,直到某个节点位置,然后从那里统一,导致Heaviside阶跃函数的波数表示不正确,因此这种表示一定是不正确的。然而,从Heaviside阶跃函数的适当波数表示开始,然后将该频谱转换到空间域,可以获得更好的精度。界面位置在波数域中表现为相位中的比例因子,并且可以连续改变。因此,接口可以位于两个节点位置之间的任何位置。在进行2D和3D有限差分模拟时,这是避免来自场的阶梯效应的关键因素。所提出的方法可用于所有的偏微分方程组,这些偏微分方程组的形式可以表示为材料参数乘以等号一侧的动态场,等号另一侧的空间导数。对于地球物理模拟,最重要的情况将是麦克斯韦方程和声波和弹性波方程。
{"title":"Implementing internal interfaces in finite-difference schemes with the Heaviside step function","authors":"R. Mittet","doi":"10.1190/SEGAM2018-2994775.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2994775.1","url":null,"abstract":"Implementing sharp internal interfaces in finite-difference schemes with high spatial accuracy is challenging. The implementations of interfaces are generally considered accurate to at best second order. The natural way to describe an abrupt change in material parameters is by the use of the Heaviside step function. However, the implementation of the Heaviside step function must be consistent with the discrete sampling on the finite-difference grid. Assuming that the step function takes on the value zero up to some node location and then unity from thereon results in an incorrect wavenumber representation of the Heaviside step function so this representation must be incorrect. However, starting with the proper wavenumber representation of the Heaviside step function and then transforming this spectrum to the space domain give much better accuracy. The interface location appears as a proportionality factor in the phase in the wavenumber domain and can be altered continuously. Thus, the interface can be located anywhere between two node locations. This is a key factor for avoiding stair-case effects from the fields when doing 2D and 3D finite-difference simulations. The proposed method can be used for all systems of partial differential equations that formally can be expressed as a material parameter times a dynamic field on one side of the equal sign and with spatial derivatives on the other side of the equal sign. For geophysical simulations the most important cases will be the Maxwell equations and the acoustic and elastic wave equations.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133464508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep-learning seismic facies on state-of-the-art CNN architectures 在最先进的CNN架构上深度学习地震相
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2996783.1
J. Dramsch, M. Lüthje
In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.
在20世纪50年代,神经网络开始作为输入层的几个节点与输出层的几个节点的简单直接连接(Widrow和Lehr, 1990)。在地球物理学中,这使我们引入了地震道叠加(Yilmaz, 2001)。1989年,卷积神经网络的第一个想法诞生了(Lecun, 1989),反向传播被形式化为一种错误传播机制(Rumelhart et al., 1988)。2012年,该论文(Krizhevsky et al., 2012)推动了深度学习领域向前发展,实现了基本组件,即GPU训练、ReLu激活函数(Dahl et al., 2013)和dropout (Srivastava et al., 2014)。它们在ImageNet挑战中的表现优于以前的模型(Deng et al., 2009),预测误差几乎减半。Waldeland and Solberg(2016)表明,神经网络可以用于对三维地震数据中的盐底辟进行分类。Charles Rutherford Ildstad(2017)将这项工作推广到nD和两类盐和“其他”之外。
{"title":"Deep-learning seismic facies on state-of-the-art CNN architectures","authors":"J. Dramsch, M. Lüthje","doi":"10.1190/SEGAM2018-2996783.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2996783.1","url":null,"abstract":"In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126580218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 74
Application of crosscorrelation of angle stacks for velocity quality control in seismic imaging 角叠互相关在地震成像速度质量控制中的应用
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2995563.1
A. Willis, P. Busono
{"title":"Application of crosscorrelation of angle stacks for velocity quality control in seismic imaging","authors":"A. Willis, P. Busono","doi":"10.1190/SEGAM2018-2995563.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2995563.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127845684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SEG Technical Program Expanded Abstracts 2018
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1