首页 > 最新文献

燃料化学学报最新文献

英文 中文
Study on the catalytic performance of Fe in-situ modified small crystallite Silicalite-1 zeolite in Chichibabin condensation reaction 铁原位改性小晶粒硅胶-1 沸石在 Chichibabin 缩合反应中的催化性能研究
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60443-3
TAO Jinquan , JIA Yijing , BAI Tianyu , HUANG Wenbin , CUI Yan , ZHOU Yasong , WEI Qiang

Pyridine and its derivatives, collectively referred to as pyridine bases, are widely used in industries such as pesticides and pharmaceuticals, serving as crucial intermediates in the chemical industry. In recent years, with the development of the pesticide and pharmaceutical industries, the demand for pyridine bases has rapidly increased. The Chichibabin condensation reaction is the most commonly route for industrial production of pyridine bases. Currently, the most used ZSM-5 zeolite catalyst is limited by the instability of its silicon-aluminum framework structure, resulting in a short active reaction cycle (5 h). To address this limitation, this study selected the thermally stable and hydrothermally stable Silicalite-1 zeolite. Polyvinylpyrrolidone (PVP) was employed as a colloidal dispersant and Fe was introduced into the MFI framework through in-situ modification during the hydrothermal synthesis of zeolite. The influence of PVP dosage, template agent dosage, and other crystallization conditions on the crystallinity, pore structure, and acidity of Silicalite-1 zeolite products was investigated using XRD, SEM, TG, and N2 adsorption-desorption measurement. The acidity of Fe-modified Silicalite-1 zeolites was characterized using NH3-TPD, Py-FTIR, FT-IR, and XPS. These results indicated that the introduction of seed crystals effectively reduced the particle size of the zeolite to about 200 nm. Fe-modified Silicalite-1 displayed a disk-like morphology with excellent crystal dispersion. The highest relative crystallinity of the zeolite reached 103% with 15% seed crystal input and 3.75% PVP addition. The Fe-modified Silicalite-1 possessed a significantly enhanced abundance of both Lewis (L) and Brønsted (B) acid sites, resulting in an increase in the initial activity from 66% to 85% for the pyridine bases synthesis through the Chichibabin condensation. Compared to ZSM-5, Fe-modified Silicalite-1 exhibited superior catalytic stability, maintaining the total carbon conversion and pyridine bases yield above 66% and 40%, respectively, over a 15 h reaction period. Furthermore, the strategy proposed in this study, employing polyvinylpyrrolidone as a colloidal stabilizer to modify Silicalite-1 zeolite, could significantly broadened the application prospects of weakly acidic pure silica zeolites in the field of acid catalysis. This approach has demonstrated significant scientific value and industrial potential.

吡啶及其衍生物统称为吡啶碱,广泛应用于农药和医药等行业,是化学工业的重要中间体。近年来,随着农药和医药行业的发展,吡啶碱的需求量迅速增加。Chichibabin 缩合反应是工业化生产吡啶碱最常用的途径。目前,最常用的 ZSM-5 沸石催化剂受限于其硅铝框架结构的不稳定性,导致活性反应周期短(5 小时)。为解决这一局限性,本研究选择了热稳定性和水热稳定性均较好的硅铝酸盐-1 沸石。在沸石的水热合成过程中,采用聚乙烯吡咯烷酮(PVP)作为胶体分散剂,并通过原位改性将铁引入 MFI 框架。利用 XRD、SEM、TG 和 N2 吸附-解吸测量法研究了 PVP 用量、模板剂用量和其他结晶条件对 Silicalite-1 沸石产品的结晶度、孔结构和酸度的影响。使用 NH3-TPD、Py-FTIR、FT-IR 和 XPS 对 Fe 改性 Silicalite-1 沸石的酸度进行了表征。这些结果表明,种子晶体的引入有效地将沸石的粒径减小到约 200 纳米。铁改性 Silicalite-1 呈圆盘状形态,晶体分散性极佳。15% 的籽晶和 3.75% 的 PVP 添加量使沸石的最高相对结晶度达到 103%。铁改性硅胶-1 的路易斯(L)酸和布伦斯特(B)酸位点的丰度显著提高,从而使通过 Chichibabin 缩合法合成吡啶碱的初始活性从 66% 提高到 85%。与 ZSM-5 相比,Fe 改性硅胶-1 表现出更高的催化稳定性,在 15 小时的反应时间内,碳的总转化率和吡啶碱的产率分别保持在 66% 和 40% 以上。此外,本研究提出的采用聚乙烯吡咯烷酮作为胶体稳定剂对 Silicalite-1 沸石进行改性的策略,可大大拓宽弱酸性纯硅沸石在酸催化领域的应用前景。这一研究方法具有重要的科学价值和工业潜力。
{"title":"Study on the catalytic performance of Fe in-situ modified small crystallite Silicalite-1 zeolite in Chichibabin condensation reaction","authors":"TAO Jinquan ,&nbsp;JIA Yijing ,&nbsp;BAI Tianyu ,&nbsp;HUANG Wenbin ,&nbsp;CUI Yan ,&nbsp;ZHOU Yasong ,&nbsp;WEI Qiang","doi":"10.1016/S1872-5813(24)60443-3","DOIUrl":"10.1016/S1872-5813(24)60443-3","url":null,"abstract":"<div><p>Pyridine and its derivatives, collectively referred to as pyridine bases, are widely used in industries such as pesticides and pharmaceuticals, serving as crucial intermediates in the chemical industry. In recent years, with the development of the pesticide and pharmaceutical industries, the demand for pyridine bases has rapidly increased. The Chichibabin condensation reaction is the most commonly route for industrial production of pyridine bases. Currently, the most used ZSM-5 zeolite catalyst is limited by the instability of its silicon-aluminum framework structure, resulting in a short active reaction cycle (5 h). To address this limitation, this study selected the thermally stable and hydrothermally stable Silicalite-1 zeolite. Polyvinylpyrrolidone (PVP) was employed as a colloidal dispersant and Fe was introduced into the MFI framework through <em>in-situ</em> modification during the hydrothermal synthesis of zeolite. The influence of PVP dosage, template agent dosage, and other crystallization conditions on the crystallinity, pore structure, and acidity of Silicalite-1 zeolite products was investigated using XRD, SEM, TG, and N<sub>2</sub> adsorption-desorption measurement. The acidity of Fe-modified Silicalite-1 zeolites was characterized using NH<sub>3</sub>-TPD, Py-FTIR, FT-IR, and XPS. These results indicated that the introduction of seed crystals effectively reduced the particle size of the zeolite to about 200 nm. Fe-modified Silicalite-1 displayed a disk-like morphology with excellent crystal dispersion. The highest relative crystallinity of the zeolite reached 103% with 15% seed crystal input and 3.75% PVP addition. The Fe-modified Silicalite-1 possessed a significantly enhanced abundance of both Lewis (L) and Brønsted (B) acid sites, resulting in an increase in the initial activity from 66% to 85% for the pyridine bases synthesis through the Chichibabin condensation. Compared to ZSM-5, Fe-modified Silicalite-1 exhibited superior catalytic stability, maintaining the total carbon conversion and pyridine bases yield above 66% and 40%, respectively, over a 15 h reaction period. Furthermore, the strategy proposed in this study, employing polyvinylpyrrolidone as a colloidal stabilizer to modify Silicalite-1 zeolite, could significantly broadened the application prospects of weakly acidic pure silica zeolites in the field of acid catalysis. This approach has demonstrated significant scientific value and industrial potential.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1280-1289"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic conversion of biomass pyrolysis volatiles over composite catalysts of activated carbon and HY zeolite 生物质热解挥发物在活性炭和 HY 沸石复合催化剂上的催化转化
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60447-0
XU Ji, WU Bowen, HAN Zhen, HU Haoquan, JIN Lijun

Bio-oil has complex compositions and high oxygen content, which restricts its high-value utilization. Commercial activated carbon (AC) and HY zeolite were used as composite catalysts to study their effect on pyrolysis volatiles from rice straw and poplar sawdust by changing the mixing modes of two catalysts. The results showed that the loading modes of AC and HY zeolite obviously affected the products distribution and bio-oil components. The lowest yield of bio-oil was obtained when HY zeolite and AC were mechanically mixed at a mass ratio of 1:1 (YACM). But the loading mode of YACM was beneficial to the deoxidation and aromatic hydrocarbon generation. Under the mode of YACM, the aromatics content in rice straw and poplar sawdust bio-oil can be increased from 13.8% and 8.0% without catalyst to 56.4% and 53.1%, respectively. However, the layered loading with upper HY zeolite and lower AC (YTACL) was favorable for formation of phenolic compounds. The selectivity to monocyclic and bicyclic aromatic hydrocarbons followed the order of YTACL > ACTYL > YACM, and YACM > ACTYL > YTACL, respectively. Compared with HY zeolite, AC catalyst possessed smaller pore size and fewer acidity, and the active sites of AC were conducive to rearrangement of furan compounds to generate cyclopentanone, 2-cyclopentenone and methyl-cyclopentenone, and further rearrangement to form phenol. Therefore, the loading mode of YTACL exhibited a promotion effect on the formation of phenol, cresol, toluene, ethylbenzene and p-xylene. The strong acidic sites of HY zeolite were favorable for the aromatization, so the loading mode of ACTYL had good selectivity to the formation of naphthalene, methylnaphthalene, anthracene and pyrene. This work will provide a guide for products regulation from biomass pyrolysis and enrich aromatics and phenols in bio-oil.

生物油成分复杂,含氧量高,限制了其高价值利用。本研究以商用活性炭(AC)和 HY 沸石为复合催化剂,通过改变两种催化剂的混合模式,研究其对稻草和杨木锯末热解挥发物的影响。结果表明,AC 和 HY 沸石的负载模式明显影响产物分布和生物油组分。当 HY 沸石和 AC 以 1:1 的质量比(YACM)进行机械混合时,生物油的产量最低。但 YACM 的加载模式有利于脱氧和芳香烃的生成。在 YACM 模式下,稻草和杨木锯屑生物油中的芳烃含量可分别从无催化剂时的 13.8% 和 8.0% 提高到 56.4% 和 53.1%。然而,上层 HY 沸石和下层 AC(YTACL)的分层负载有利于酚类化合物的形成。对单环和双环芳香烃的选择性分别按照 YTACL > ACTYL > YACM 和 YACM > ACTYL > YTACL 的顺序排列。与 HY 沸石相比,AC 催化剂孔径更小,酸度更低,AC 的活性位点有利于呋喃化合物重排生成环戊酮、2-环戊烯酮和甲基环戊烯酮,并进一步重排生成苯酚。因此,YTACL 的负载模式对苯酚、甲酚、甲苯、乙苯和对二甲苯的生成具有促进作用。HY 沸石的强酸性位点有利于芳香化,因此 ACTYL 的负载模式对生成萘、甲基萘、蒽和芘具有良好的选择性。这项工作将为生物质热解产物的调节和生物油中芳烃和酚的富集提供指导。
{"title":"Catalytic conversion of biomass pyrolysis volatiles over composite catalysts of activated carbon and HY zeolite","authors":"XU Ji,&nbsp;WU Bowen,&nbsp;HAN Zhen,&nbsp;HU Haoquan,&nbsp;JIN Lijun","doi":"10.1016/S1872-5813(24)60447-0","DOIUrl":"10.1016/S1872-5813(24)60447-0","url":null,"abstract":"<div><p>Bio-oil has complex compositions and high oxygen content, which restricts its high-value utilization. Commercial activated carbon (AC) and HY zeolite were used as composite catalysts to study their effect on pyrolysis volatiles from rice straw and poplar sawdust by changing the mixing modes of two catalysts. The results showed that the loading modes of AC and HY zeolite obviously affected the products distribution and bio-oil components. The lowest yield of bio-oil was obtained when HY zeolite and AC were mechanically mixed at a mass ratio of 1:1 (YACM). But the loading mode of YACM was beneficial to the deoxidation and aromatic hydrocarbon generation. Under the mode of YACM, the aromatics content in rice straw and poplar sawdust bio-oil can be increased from 13.8% and 8.0% without catalyst to 56.4% and 53.1%, respectively. However, the layered loading with upper HY zeolite and lower AC (YTACL) was favorable for formation of phenolic compounds. The selectivity to monocyclic and bicyclic aromatic hydrocarbons followed the order of YTACL &gt; ACTYL &gt; YACM, and YACM &gt; ACTYL &gt; YTACL, respectively. Compared with HY zeolite, AC catalyst possessed smaller pore size and fewer acidity, and the active sites of AC were conducive to rearrangement of furan compounds to generate cyclopentanone, 2-cyclopentenone and methyl-cyclopentenone, and further rearrangement to form phenol. Therefore, the loading mode of YTACL exhibited a promotion effect on the formation of phenol, cresol, toluene, ethylbenzene and <em>p</em>-xylene. The strong acidic sites of HY zeolite were favorable for the aromatization, so the loading mode of ACTYL had good selectivity to the formation of naphthalene, methylnaphthalene, anthracene and pyrene. This work will provide a guide for products regulation from biomass pyrolysis and enrich aromatics and phenols in bio-oil.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1318-1326"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co doping induces CoxP-Ni2P bimetallic site and acid synergistic effect to achieve efficient hydrodeoxidation 掺杂 Co 可诱导 CoxP-Ni2P 双金属位点和酸协同效应,从而实现高效氢氧化作用
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60477-9
SI Minghao, WANG Shuai, GOU Xiaomei, SONG Hua

The development of highly efficient hydrodeoxidation (HDO) catalyst is the key to upgrade the quality of bio-oil. CoxP-Ni2P/SiO2-y catalysts (y is the initial P/(Ni+Co) molar ratio) comprised of CoxP-Ni2P bimetallic sites and acidic site were prepared by doping Co into Ni2P active phase using mesoporous SiO2 as the support. The structure and chemical properties of the catalyst were characterized by XRD, BET, XPS, H2-TPR, NH3-TPD, Py-FTIR and TEM methods. The effects of Co doping and P/M molar ratio on the HDO performance of Ni2P/SiO2 catalyst were investigated taking m-cresol as the model compound. The results show that Co doping not only creates new CoxP active sites, but also optimizes the electronic structure of Ni2P, thus improving the HDO activity of the catalyst. Among the CoxP-Ni2P/SiO2-y catalysts, CoxP-Ni2P/SiO2-0.5 with P/M molar ratio of 0.5 exhibits the best catalytic performance, with the m-cresol conversion of 98.7% and selectivity to the deoxidized product methylcyclohexane (MCH) of 95.6% at 275 °C, 2 MPa and 1 h. The HDO of m-cresol over the CoxP-Ni2P/SiO2-y catalyst mainly proceeded through hydrogenation-deoxygenation (HYD) pathway.

开发高效加氢脱氧(HDO)催化剂是提高生物油质量的关键。以介孔二氧化硅为载体,通过在 Ni2P 活性相中掺杂 Co,制备了由 CoxP-Ni2P 双金属位点和酸性位点组成的 CoxP-Ni2P/SiO2-y 催化剂(y 为初始 P/(Ni+Co)摩尔比)。催化剂的结构和化学性质通过 XRD、BET、XPS、H2-TPR、NH3-TPD、Py-FTIR 和 TEM 方法进行了表征。以间苯二酚为模型化合物,研究了 Co 掺杂和 P/M 摩尔比对 Ni2P/SiO2 催化剂 HDO 性能的影响。结果表明,Co 掺杂不仅能产生新的 CoxP 活性位点,还能优化 Ni2P 的电子结构,从而提高催化剂的 HDO 活性。在 CoxP-Ni2P/SiO2-y 催化剂中,P/M 摩尔比为 0.5 的 CoxP-Ni2P/SiO2-0.5 的催化性能最好,间甲酚转化率为 98.在 275 ℃、2 MPa 和 1 h 条件下,间甲酚在 CoxP-Ni2P/SiO2-y 催化剂上的 HDO 主要通过加氢脱氧(HYD)途径进行。
{"title":"Co doping induces CoxP-Ni2P bimetallic site and acid synergistic effect to achieve efficient hydrodeoxidation","authors":"SI Minghao,&nbsp;WANG Shuai,&nbsp;GOU Xiaomei,&nbsp;SONG Hua","doi":"10.1016/S1872-5813(24)60477-9","DOIUrl":"10.1016/S1872-5813(24)60477-9","url":null,"abstract":"<div><p>The development of highly efficient hydrodeoxidation (HDO) catalyst is the key to upgrade the quality of bio-oil. Co<sub><em>x</em></sub>P-Ni<sub>2</sub>P/SiO<sub>2</sub>-<em>y</em> catalysts (<em>y</em> is the initial P/(Ni+Co) molar ratio) comprised of Co<sub><em>x</em></sub>P-Ni<sub>2</sub>P bimetallic sites and acidic site were prepared by doping Co into Ni<sub>2</sub>P active phase using mesoporous SiO<sub>2</sub> as the support. The structure and chemical properties of the catalyst were characterized by XRD, BET, XPS, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD, Py-FTIR and TEM methods. The effects of Co doping and P/M molar ratio on the HDO performance of Ni<sub>2</sub>P/SiO<sub>2</sub> catalyst were investigated taking <em>m</em>-cresol as the model compound. The results show that Co doping not only creates new Co<sub><em>x</em></sub>P active sites, but also optimizes the electronic structure of Ni<sub>2</sub>P, thus improving the HDO activity of the catalyst. Among the Co<sub><em>x</em></sub>P-Ni<sub>2</sub>P/SiO<sub>2</sub>-<em>y</em> catalysts, Co<sub><em>x</em></sub>P-Ni<sub>2</sub>P/SiO<sub>2</sub>-0.5 with P/M molar ratio of 0.5 exhibits the best catalytic performance, with the <em>m</em>-cresol conversion of 98.7% and selectivity to the deoxidized product methylcyclohexane (MCH) of 95.6% at 275 °C, 2 MPa and 1 h. The HDO of <em>m</em>-cresol over the Co<sub><em>x</em></sub>P-Ni<sub>2</sub>P/SiO<sub>2</sub>-<em>y</em> catalyst mainly proceeded through hydrogenation-deoxygenation (HYD) pathway.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1327-1335"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872581324604779/pdf?md5=d1e854b459da1bf0f1000fe4f33b920e&pid=1-s2.0-S1872581324604779-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of design and performance improvement of catalysts for the stepwise production of bicyclohexane from benzene and cyclohexene 从苯和环己烯分步生产双环己烷催化剂的设计和性能改进研究
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60457-3
LIU Ruilin , WANG Sen , MENG Fanchun , LI Zhuo , YANG Huimin , ZHAO Shichao , QIN Yong , ZHANG Bin

Bicyclohexane is a hydrogen storage reagent with high hydrogen density and low boiling point. Compared with the hydrogenation of biphenyl, the alkylation of benzene and cyclohexene to cyclohexylbenzene and hydrogenation is a promising way to prepare cyclohexane on a large scale. The research and development of high-efficiency cyclohexyl benzene hydrogenation catalyst should be further developed based on mature alkylation technology. This paper used an acidified USY molecular sieve to catalyze the alkylation of benzene and cyclohexene to cyclohexylbenzene, which achieved 100% conversion and selectivity. Furthermore, Pt/TiO2/γ-Al2O3 catalyst is prepared by pre-deposition TiO2 film of different thicknesses on γ-Al2O3 surface and then supported with platinum particles by Atomic layer deposition (ALD). The role of TiO2 film in improving the cyclohexylbenzene hydrogenation performance of the catalyst is studied. TEM, CO pulse chemisorption, CO-DRIFTs, quasi-in situ XPS, H-D exchange, and H2-TPR characterization show that compared with Pt/γ-Al2O3, TiO2 thin films on Pt/TiO2/γ-Al2O3 do not change the dispersion of Pt particles, but can form new Pt-TiO2 interactions. The hydrogenation performance of cyclohexylbenzene was improved by increasing the electron density and the proportion of planar active sites on the surface of platinum and reducing the energy barrier of hydrogen spillover. The research provides theoretical support for further bicyclohexane organic liquid hydrogen storage reagent development. The relevant metal-support interaction regulation strategy can be applied to the development of efficient catalysts for other aromatic molecules hydrogenation.

双环己烷是一种氢密度高、沸点低的储氢试剂。与联苯加氢相比,苯和环己烯烷基化为环己基苯再加氢是一种很有前途的大规模制备环己烷的方法。应在成熟的烷基化技术基础上,进一步研发高效环己基苯加氢催化剂。本文采用酸化 USY 分子筛催化苯和环己烯烷基化为环己基苯,其转化率和选择性均达到 100%。此外,铂/TiO2/γ-Al2O3 催化剂的制备方法是在 γ-Al2O3 表面预沉积不同厚度的 TiO2 薄膜,然后用原子层沉积(ALD)法支撑铂颗粒。研究了 TiO2 膜在改善催化剂环己基苯加氢性能方面的作用。TEM、CO 脉冲化学吸附、CO-DRIFTs、准原位 XPS、H-D 交换和 H2-TPR 表征表明,与 Pt/γ-Al2O3 相比,Pt/TiO2/γ-Al2O3 上的 TiO2 薄膜不会改变铂粒子的分散性,但能形成新的 Pt-TiO2 相互作用。通过增加铂表面的电子密度和平面活性位点比例,降低氢溢出的能量势垒,环己基苯的氢化性能得到了改善。该研究为进一步开发双环己烷有机液态储氢试剂提供了理论支持。相关的金属-支撑相互作用调控策略可应用于其他芳香分子加氢的高效催化剂开发。
{"title":"The study of design and performance improvement of catalysts for the stepwise production of bicyclohexane from benzene and cyclohexene","authors":"LIU Ruilin ,&nbsp;WANG Sen ,&nbsp;MENG Fanchun ,&nbsp;LI Zhuo ,&nbsp;YANG Huimin ,&nbsp;ZHAO Shichao ,&nbsp;QIN Yong ,&nbsp;ZHANG Bin","doi":"10.1016/S1872-5813(24)60457-3","DOIUrl":"10.1016/S1872-5813(24)60457-3","url":null,"abstract":"<div><p>Bicyclohexane is a hydrogen storage reagent with high hydrogen density and low boiling point. Compared with the hydrogenation of biphenyl, the alkylation of benzene and cyclohexene to cyclohexylbenzene and hydrogenation is a promising way to prepare cyclohexane on a large scale. The research and development of high-efficiency cyclohexyl benzene hydrogenation catalyst should be further developed based on mature alkylation technology. This paper used an acidified USY molecular sieve to catalyze the alkylation of benzene and cyclohexene to cyclohexylbenzene, which achieved 100% conversion and selectivity. Furthermore, Pt/TiO<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst is prepared by pre-deposition TiO<sub>2</sub> film of different thicknesses on γ-Al<sub>2</sub>O<sub>3</sub> surface and then supported with platinum particles by Atomic layer deposition (ALD). The role of TiO<sub>2</sub> film in improving the cyclohexylbenzene hydrogenation performance of the catalyst is studied. TEM, CO pulse chemisorption, CO-DRIFTs, quasi-<em>in situ</em> XPS, H-D exchange, and H<sub>2</sub>-TPR characterization show that compared with Pt/γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> thin films on Pt/TiO<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> do not change the dispersion of Pt particles, but can form new Pt-TiO<sub>2</sub> interactions. The hydrogenation performance of cyclohexylbenzene was improved by increasing the electron density and the proportion of planar active sites on the surface of platinum and reducing the energy barrier of hydrogen spillover. The research provides theoretical support for further bicyclohexane organic liquid hydrogen storage reagent development. The relevant metal-support interaction regulation strategy can be applied to the development of efficient catalysts for other aromatic molecules hydrogenation.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1290-1298"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Rh loading on the selectivity to methanol and ethanol in the hydrogenation of CO2 over the Rh/CeO2 catalyst Rh 负荷对 Rh/CeO2 催化剂在 CO2 加氢过程中甲醇和乙醇选择性的影响
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60450-0
ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao

The capture and hydrogenation of CO2 into high-value chemicals such as alcohols is one of the important ways to reduce CO2 emission and achieve carbon resource recycling. In this work, the catalytic performance of Rh/CeO2 catalyst in the CO2 hydrogenation was investigated; with the help of various characterization methods including XRD, Raman, H2-TPR, CO2-TPD, CO-DRIFTS and XPS, the influence of Rh loading (0.1%–2.0%) on the catalytic activity of Rh/CeO2 and product selectivity in the CO2 hydrogenation was revealed. The results indicate that for the hydrogenation of CO2 at 250 °C and 3.0 MPa over the Rh/CeO2 catalysts, ethanol is the major product at a low Rh loading of 0.1%. With the increase of Rh loading, the conversion of CO2 increases, but accompanied by a decrease in the selectivity to ethanol; when the Rh loading reaches 2.0%, the main product turns to be methanol. It seems that the difference of various Rh/CeO2 catalysts with different Rh loadings in the product selectivity for the CO2 hydrogenation is ascribed to their difference in the structural and electronic properties of Rh; atomically dispersed Rh+ species favor the stabilization of CO* and its subsequent C–C coupling with CH3* to form ethanol, whereas metallic Rh clusters facilitate the hydrogenation of CO* to produce methanol.

将二氧化碳捕获并加氢转化为酒精等高价值化学品是减少二氧化碳排放和实现碳资源循环利用的重要途径之一。本研究采用 XRD、拉曼、H2-TPR、CO2-TPD、CO-DRIFTS 和 XPS 等多种表征方法,研究了 Rh/CeO2 催化剂在 CO2 加氢过程中的催化性能,揭示了 Rh 加载量(0.1%-2.0%)对 Rh/CeO2 催化活性和 CO2 加氢产物选择性的影响。结果表明,Rh/CeO2 催化剂在 250 °C 和 3.0 MPa 条件下进行 CO2 加氢反应时,Rh 低负载量(0.1%)时的主要产物是乙醇。随着 Rh 加载量的增加,CO2 的转化率提高,但同时乙醇的选择性降低;当 Rh 加载量达到 2.0% 时,主要产物变成了甲醇。原子分散的 Rh+ 物种有利于 CO* 的稳定及其随后与 CH3* 的 C-C 偶联生成乙醇,而金属 Rh 簇团则有利于 CO* 加氢生成甲醇。
{"title":"Effect of Rh loading on the selectivity to methanol and ethanol in the hydrogenation of CO2 over the Rh/CeO2 catalyst","authors":"ZHENG Ke,&nbsp;LIU Bing,&nbsp;XU Yuebing,&nbsp;LIU Xiaohao","doi":"10.1016/S1872-5813(24)60450-0","DOIUrl":"10.1016/S1872-5813(24)60450-0","url":null,"abstract":"<div><p>The capture and hydrogenation of CO<sub>2</sub> into high-value chemicals such as alcohols is one of the important ways to reduce CO<sub>2</sub> emission and achieve carbon resource recycling. In this work, the catalytic performance of Rh/CeO<sub>2</sub> catalyst in the CO<sub>2</sub> hydrogenation was investigated; with the help of various characterization methods including XRD, Raman, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD, CO-DRIFTS and XPS, the influence of Rh loading (0.1%–2.0%) on the catalytic activity of Rh/CeO<sub>2</sub> and product selectivity in the CO<sub>2</sub> hydrogenation was revealed. The results indicate that for the hydrogenation of CO<sub>2</sub> at 250 °C and 3.0 MPa over the Rh/CeO<sub>2</sub> catalysts, ethanol is the major product at a low Rh loading of 0.1%. With the increase of Rh loading, the conversion of CO<sub>2</sub> increases, but accompanied by a decrease in the selectivity to ethanol; when the Rh loading reaches 2.0%, the main product turns to be methanol. It seems that the difference of various Rh/CeO<sub>2</sub> catalysts with different Rh loadings in the product selectivity for the CO<sub>2</sub> hydrogenation is ascribed to their difference in the structural and electronic properties of Rh; atomically dispersed Rh<sup>+</sup> species favor the stabilization of CO* and its subsequent C–C coupling with CH<sub>3</sub>* to form ethanol, whereas metallic Rh clusters facilitate the hydrogenation of CO* to produce methanol.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1214-1223"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of silicon foam supported CoMn catalysts and their catalytic performances in higher alcohol synthesis via syngas 泡沫硅支撑 CoMn 催化剂的制备及其在利用合成气合成高级醇中的催化性能
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60444-5
DU Xin , ZHANG Mingwei , FANG Kegong

A series of silicon foam supported CoMn catalysts were prepared using impregnation, precipitation, and hydrothermal methods. Combining the characterization techniques such as XRD, H2-TPR, N2 physical adsorption, TEM, and XPS, the effect of different catalyst preparation methods on the catalytic performance in the synthesis of higher alcohols from syngas was investigated. It is shown that there are Co2+(Co2C) and Co0 species on the surface of the catalyst. The active sites of Co2C-Co0 on the surface of the catalyst prepared by hydrothermal method have a good synergistic effect, which is conducive to the generation of alcohols. A higher proportion of Co2C also promotes the associative adsorption and insertion of CO, resulting in the highest alcohol selectivity. Under the reaction conditions of t=260 °C, p=5.0 MPa, GHSV=4500 h–1 and H2/CO(volume ratio)=2:1, the catalyst exhibited the best reaction performances with CO conversion of 11.1%, total alcohol selectivity of 34.7%, and C2+OH selectivity of 34.5%.

采用浸渍法、沉淀法和水热法制备了一系列硅泡沫支撑 CoMn 催化剂。结合 XRD、H2-TPR、N2 物理吸附、TEM 和 XPS 等表征技术,研究了不同催化剂制备方法对合成气合成高级醇催化性能的影响。结果表明,催化剂表面存在 Co2+(Co2C) 和 Co0 物种。水热法制备的催化剂表面 Co2C-Co0 的活性位点具有良好的协同效应,有利于醇的生成。较高比例的 Co2C 还能促进 CO 的缔合吸附和插入,从而获得最高的醇选择性。在 t=260 ℃、p=5.0 MPa、GHSV=4500 h-1 和 H2/CO(体积比)=2:1 的反应条件下,催化剂的反应性能最佳,CO 转化率为 11.1%,总醇选择性为 34.7%,C2+OH 选择性为 34.5%。
{"title":"Preparation of silicon foam supported CoMn catalysts and their catalytic performances in higher alcohol synthesis via syngas","authors":"DU Xin ,&nbsp;ZHANG Mingwei ,&nbsp;FANG Kegong","doi":"10.1016/S1872-5813(24)60444-5","DOIUrl":"10.1016/S1872-5813(24)60444-5","url":null,"abstract":"<div><p>A series of silicon foam supported CoMn catalysts were prepared using impregnation, precipitation, and hydrothermal methods. Combining the characterization techniques such as XRD, H<sub>2</sub>-TPR, N<sub>2</sub> physical adsorption, TEM, and XPS, the effect of different catalyst preparation methods on the catalytic performance in the synthesis of higher alcohols from syngas was investigated. It is shown that there are Co<sup>2+</sup>(Co<sub>2</sub>C) and Co<sup>0</sup> species on the surface of the catalyst. The active sites of Co<sub>2</sub>C-Co<sup>0</sup> on the surface of the catalyst prepared by hydrothermal method have a good synergistic effect, which is conducive to the generation of alcohols. A higher proportion of Co<sub>2</sub>C also promotes the associative adsorption and insertion of CO, resulting in the highest alcohol selectivity. Under the reaction conditions of <em>t</em>=260 °C, <em>p</em>=5.0 MPa, GHSV=4500 h<sup>–1</sup> and H<sub>2</sub>/CO(volume ratio)=2:1, the catalyst exhibited the best reaction performances with CO conversion of 11.1%, total alcohol selectivity of 34.7%, and C<sub>2+</sub>OH selectivity of 34.5%.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1224-1234"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of γ-Valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst 在 Pt/CoxAl 催化剂上通过乙酰丙酸甲酯加氢与甲醇水相重整耦合合成 γ-戊内酯
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60453-6
LÜ Zexiang , ZHU Shanhui , DONG Mei , QIN Zhangfeng , FAN Weibin , WANG Jianguo

The synthesis of high-value γ-valerolactone (GVL) from biomass-derived methyl levulinate (ML) conventionally requires a high-pressure hydrogen, which incurs significant costs and safety concerns. This study proposes an innovative approach to produce GVL by integrating ML hydrogenation with aqueous phase reforming of methanol (APRM) using Pt/CoxAl catalysts, thereby eliminating the need for an external hydrogen source. The influence of catalyst composition, methanol concentration, and reaction temperature on catalytic performance has been carefully examined. The results suggest that Pt/Co1Al demonstrated exceptional activity, yielding up to 98.2% GVL, and maintaining stable performance over multiple cycles. Characterization results revealed that Pt0 facilitates both APRM and ML hydrogenation, while Brønsted acid sites catalyze the hydrolysis of ML and lactonization of intermediates. The synergy between Pt0 and Brønsted acid sites is essential for GVL formation. The appropriate amount of Co not only enhances Pt dispersion but also increases Brønsted acid sites, thereby boosting catalytic efficiency. This work offers a sustainable and economically feasible strategy for transforming biomass derivatives into valuable fuels and chemicals.

从生物质衍生的乙酰丙酸甲酯(ML)合成高价值的γ-戊内酯(GVL)传统上需要高压氢气,这产生了巨大的成本和安全问题。本研究提出了一种生产 GVL 的创新方法,即使用 Pt/CoxAl 催化剂将 ML 加氢与甲醇水相重整(APRM)结合起来,从而无需外部氢源。我们仔细研究了催化剂组成、甲醇浓度和反应温度对催化性能的影响。结果表明,Pt/Co1Al 表现出卓越的活性,GVL 收率高达 98.2%,并在多次循环中保持稳定的性能。表征结果表明,Pt0 可促进 APRM 和 ML 的氢化,而布氏酸位点则可催化 ML 的水解和中间产物的内酯化。Pt0 和布氏酸位点之间的协同作用对 GVL 的形成至关重要。适量的 Co 不仅能增强铂的分散性,还能增加布氏硬度酸位点,从而提高催化效率。这项研究为将生物质衍生物转化为有价值的燃料和化学品提供了一种可持续且经济可行的策略。
{"title":"Synthesis of γ-Valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst","authors":"LÜ Zexiang ,&nbsp;ZHU Shanhui ,&nbsp;DONG Mei ,&nbsp;QIN Zhangfeng ,&nbsp;FAN Weibin ,&nbsp;WANG Jianguo","doi":"10.1016/S1872-5813(24)60453-6","DOIUrl":"10.1016/S1872-5813(24)60453-6","url":null,"abstract":"<div><p>The synthesis of high-value γ-valerolactone (GVL) from biomass-derived methyl levulinate (ML) conventionally requires a high-pressure hydrogen, which incurs significant costs and safety concerns. This study proposes an innovative approach to produce GVL by integrating ML hydrogenation with aqueous phase reforming of methanol (APRM) using Pt/Co<sub><em>x</em></sub>Al catalysts, thereby eliminating the need for an external hydrogen source. The influence of catalyst composition, methanol concentration, and reaction temperature on catalytic performance has been carefully examined. The results suggest that Pt/Co<sub>1</sub>Al demonstrated exceptional activity, yielding up to 98.2% GVL, and maintaining stable performance over multiple cycles. Characterization results revealed that Pt<sup>0</sup> facilitates both APRM and ML hydrogenation, while Brønsted acid sites catalyze the hydrolysis of ML and lactonization of intermediates. The synergy between Pt<sup>0</sup> and Brønsted acid sites is essential for GVL formation. The appropriate amount of Co not only enhances Pt dispersion but also increases Brønsted acid sites, thereby boosting catalytic efficiency. This work offers a sustainable and economically feasible strategy for transforming biomass derivatives into valuable fuels and chemicals.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1266-1279"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane Co0.5Cu0.5/CNR 催化剂的制备及其在硼烷氨水解制氢中的性能
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60442-1
ZUO Youhua , LI Rong , HUA Junfeng , HAO Siyu , XIE Jing , XU Lixin , YE Mingfu , WAN Chao

Cobalt nitrate and copper nitrate was mixed to prepare solution A. Phenyldicarboxylic acid and N,N-dimethylformamide was mixed to prepare solution B. Co/Cu Lavashield skeleton series materials (Co/Cu-MIL precursors) was then synthesized by mixing the above two solution via solvothermal method. The precursor was further carbonized to produce the MOFs derivatives, i.e. bimetallic carbon nanorods (CoxCu1–x/CNR) catalysts. The morphology and composition of the catalysts were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that CoxCu1–x/CNR was successfully obtained after calcination of Co/Cu-MIL at high temperature. The activity of the catalyst was optimal when x=0.5, the solvothermal temperature of 120 °C and the calcination temperature of 650 °C. The TOF value of the Co0.5Cu0.5/CNR catalyst for the hydrolysis of ammonia borane for the production of hydrogen was 2718.21 h–1 with activation energy of 51.64 kJ/mol. The catalyst had good cyclic stability. Although the activity decreased, the conversion of AB still maintained 100% after 10 cycles.

将硝酸钴和硝酸铜混合,制备溶液 A;将苯二甲酸和 N,N-二甲基甲酰胺混合,制备溶液 B;然后通过溶热法将上述两种溶液混合,合成 Co/Cu Lavashield 骨架系列材料(Co/Cu-MIL 前驱体)。将前驱体进一步碳化,生成 MOFs 衍生物,即双金属碳纳米棒(CoxCu1-x/CNR)催化剂。通过 SEM、TEM、XRD、XPS 等表征手段对催化剂的形态和组成进行了研究。结果表明,高温煅烧 Co/Cu-MIL 后成功获得了 CoxCu1-x/CNR。当 x=0.5、溶热温度为 120 ℃、煅烧温度为 650 ℃时,催化剂的活性最佳。Co0.5Cu0.5/CNR 催化剂水解硼烷氨生产氢气的 TOF 值为 2718.21 h-1,活化能为 51.64 kJ/mol。催化剂具有良好的循环稳定性。虽然活性有所下降,但 10 个循环后 AB 的转化率仍保持在 100%。
{"title":"Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane","authors":"ZUO Youhua ,&nbsp;LI Rong ,&nbsp;HUA Junfeng ,&nbsp;HAO Siyu ,&nbsp;XIE Jing ,&nbsp;XU Lixin ,&nbsp;YE Mingfu ,&nbsp;WAN Chao","doi":"10.1016/S1872-5813(24)60442-1","DOIUrl":"10.1016/S1872-5813(24)60442-1","url":null,"abstract":"<div><p>Cobalt nitrate and copper nitrate was mixed to prepare solution A. Phenyldicarboxylic acid and <em>N</em>,<em>N</em>-dimethylformamide was mixed to prepare solution B. Co/Cu Lavashield skeleton series materials (Co/Cu-MIL precursors) was then synthesized by mixing the above two solution via solvothermal method. The precursor was further carbonized to produce the MOFs derivatives, i.e. bimetallic carbon nanorods (Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR) catalysts. The morphology and composition of the catalysts were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR was successfully obtained after calcination of Co/Cu-MIL at high temperature. The activity of the catalyst was optimal when <em>x</em>=0.5, the solvothermal temperature of 120 °C and the calcination temperature of 650 °C. The TOF value of the Co<sub>0.5</sub>Cu<sub>0.5</sub>/CNR catalyst for the hydrolysis of ammonia borane for the production of hydrogen was 2718.21 h<sup>–1</sup> with activation energy of 51.64 kJ/mol. The catalyst had good cyclic stability. Although the activity decreased, the conversion of AB still maintained 100% after 10 cycles.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1307-1317"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction 低温熔盐辅助掺杂钴的氢氧化物用于工业氧进化反应
Q3 Energy Pub Date : 2024-09-01 DOI: 10.1016/S1872-5813(24)60456-1
WANG Fuli , LÜ Qianxi , DONG Yiwen , XIE Jingyi , WANG Zhicai , DONG Bin , CHAI Yongming

Developing low cost and high-performance oxygen evolution electrocatalysts is significant to improve the efficiency of water electrolysis for large-scale hydrogen production. Cobalt hydroxide is a promising electrocatalyst for oxygen evolution reaction (OER), but its poor conductivity and activity seriously restrict the practical application. A simple one-step low temperature molten salt method was applied to successfully synthesize the Ce-doped cobalt hydroxide nitrate (Ce-CoNH/CF), which exhibits outstanding OER performance with a low overpotential of 448 mV at the current density of 1000 mA/cm2 in 1 mol/L KOH. The remarkable performance of Ce-CoNH/CF electrode in OER may be the comprehensive result of fast reaction kinetics, large electrochemical active specific surface area (ECSA) and small charge transfer resistance (Rct) as revealed by the Tafel, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) analysis. Under the simulated industrial test conditions (6 mol/L KOH, 70 °C), the Ce-CoNH/CF electrode still displays excellent OER performance.

开发低成本、高性能的氧进化电催化剂对于提高电解水的效率以实现大规模制氢具有重要意义。氢氧化钴是一种很有前景的氧进化反应(OER)电催化剂,但其导电性和活性较差,严重制约了其实际应用。研究人员采用简单的一步低温熔盐法成功合成了掺杂铈的氢氧化钴硝酸盐(Ce-CoNH/CF),该催化剂在 1 mol/L KOH 溶液中的电流密度为 1000 mA/cm2 时,过电位低至 448 mV,表现出卓越的氧进化反应性能。塔菲尔、循环伏安法和电化学阻抗谱分析表明,Ce-CoNH/CF 电极在 OER 中的优异性能可能是反应动力学快、电化学活性比表面积大和电荷转移电阻小的综合结果。在模拟工业测试条件(6 mol/L KOH,70 °C)下,Ce-CoNH/CF 电极仍然表现出优异的 OER 性能。
{"title":"Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction","authors":"WANG Fuli ,&nbsp;LÜ Qianxi ,&nbsp;DONG Yiwen ,&nbsp;XIE Jingyi ,&nbsp;WANG Zhicai ,&nbsp;DONG Bin ,&nbsp;CHAI Yongming","doi":"10.1016/S1872-5813(24)60456-1","DOIUrl":"10.1016/S1872-5813(24)60456-1","url":null,"abstract":"<div><p>Developing low cost and high-performance oxygen evolution electrocatalysts is significant to improve the efficiency of water electrolysis for large-scale hydrogen production. Cobalt hydroxide is a promising electrocatalyst for oxygen evolution reaction (OER), but its poor conductivity and activity seriously restrict the practical application. A simple one-step low temperature molten salt method was applied to successfully synthesize the Ce-doped cobalt hydroxide nitrate (Ce-CoNH/CF), which exhibits outstanding OER performance with a low overpotential of 448 mV at the current density of 1000 mA/cm<sup>2</sup> in 1 mol/L KOH. The remarkable performance of Ce-CoNH/CF electrode in OER may be the comprehensive result of fast reaction kinetics, large electrochemical active specific surface area (ECSA) and small charge transfer resistance (<em>R</em><sub>ct</sub>) as revealed by the Tafel, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) analysis. Under the simulated industrial test conditions (6 mol/L KOH, 70 °C), the Ce-CoNH/CF electrode still displays excellent OER performance.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1299-1306"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872581324604561/pdf?md5=d909c8fe5e1fe3d679ed6df672c58997&pid=1-s2.0-S1872581324604561-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined Ni, Co-induced synthesis of NiCoP nanoparticles uniformly embedded in NCNTs: A robust dual-functional electrocatalyst for water splitting 精炼镍,共诱导合成均匀嵌入 NCNT 的 NiCoP 纳米粒子:一种稳定的双功能水分离电催化剂
Q3 Energy Pub Date : 2024-08-01 DOI: 10.1016/S1872-5813(24)60446-9
Xupeng ZHANG , Junling ZHAN , Ying WANG , Qun LIU , Yu ZHANG , Jiabo WANG , Li CHEN

Ni, Co-induced highly distributed NiCoP nanoparticles embedded nitrogen-doped carbon nanotubes (NCNTs) (NiCo/NiCoP-NCNTs) were directly synthesized by a one-step phosphorization and carbonization process. As a bifunctional electrocatalyst for water splitting, NiCo/NiCoP NCNTs show impressive catalytic performance with an overpotential of only 206 mV for the hydrogen evolution reaction and 360 mV for the oxygen evolution reaction in 0.5 mol/L H2SO4 and 1 mol/L KOH solutions, respectively. In addition, NiCo/NiCoP NCNTs maintain a stable cell voltage of 1.68 V at 10 mA/cm2 with only a 10% decrease in current density over 48 h, showing remarkable stability. The improved catalytic activity can be attributed to the integration of NiCoP nanoparticles and the synergies between NCNTs and NiCo alloy. Additionally, the improved electrocatalytic performance can be attributed to the increased electrochemically active surface area and the reduced electron transfer resistance of the NiCo/NiCoP-NCNTs. Overall, the NiCo/NiCoP-NCNTs demonstrated significant performance for advanced water electrolysis applications.

通过一步磷化和碳化工艺直接合成了嵌入氮掺杂碳纳米管(NCNTs)的高分布镍钴磷纳米粒子(NiCo/NiCoP-NCNTs)。作为一种双功能水分离电催化剂,NiCo/NiCoP NCNTs 表现出令人印象深刻的催化性能,在 0.5 mol/L H2SO4 和 1 mol/L KOH 溶液中,氢进化反应的过电位仅为 206 mV,氧进化反应的过电位为 360 mV。此外,镍钴/镍钴磷 NCNT 在 10 mA/cm2 的条件下可保持 1.68 V 的稳定电池电压,48 小时内电流密度仅下降 10%,显示出显著的稳定性。催化活性的提高可归因于镍钴磷纳米颗粒的整合以及 NCNTs 和镍钴合金之间的协同作用。此外,NiCo/NiCoP-NCNTs 电化学活性表面积的增加和电子传递电阻的降低也提高了电催化性能。总之,NiCo/NiCoP-NCNTs 在先进的水电解应用中表现出了显著的性能。
{"title":"Refined Ni, Co-induced synthesis of NiCoP nanoparticles uniformly embedded in NCNTs: A robust dual-functional electrocatalyst for water splitting","authors":"Xupeng ZHANG ,&nbsp;Junling ZHAN ,&nbsp;Ying WANG ,&nbsp;Qun LIU ,&nbsp;Yu ZHANG ,&nbsp;Jiabo WANG ,&nbsp;Li CHEN","doi":"10.1016/S1872-5813(24)60446-9","DOIUrl":"10.1016/S1872-5813(24)60446-9","url":null,"abstract":"<div><p>Ni, Co-induced highly distributed NiCoP nanoparticles embedded nitrogen-doped carbon nanotubes (NCNTs) (NiCo/NiCoP-NCNTs) were directly synthesized by a one-step phosphorization and carbonization process. As a bifunctional electrocatalyst for water splitting, NiCo/NiCoP NCNTs show impressive catalytic performance with an overpotential of only 206 mV for the hydrogen evolution reaction and 360 mV for the oxygen evolution reaction in 0.5 mol/L H<sub>2</sub>SO<sub>4</sub> and 1 mol/L KOH solutions, respectively. In addition, NiCo/NiCoP NCNTs maintain a stable cell voltage of 1.68 V at 10 mA/cm<sup>2</sup> with only a 10% decrease in current density over 48 h, showing remarkable stability. The improved catalytic activity can be attributed to the integration of NiCoP nanoparticles and the synergies between NCNTs and NiCo alloy. Additionally, the improved electrocatalytic performance can be attributed to the increased electrochemically active surface area and the reduced electron transfer resistance of the NiCo/NiCoP-NCNTs. Overall, the NiCo/NiCoP-NCNTs demonstrated significant performance for advanced water electrolysis applications.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 8","pages":"Pages 1173-1183"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
燃料化学学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1