首页 > 最新文献

Journal of Global Optimization最新文献

英文 中文
Consensus-based optimization for multi-objective problems: a multi-swarm approach 基于共识的多目标问题优化:多群方法
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-02-15 DOI: 10.1007/s10898-024-01369-1
Kathrin Klamroth, Michael Stiglmayr, Claudia Totzeck

We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed K-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.

我们提出了一种以基于共识的优化方法(CBO)为基础的多蜂群方法,用于逼近一般多目标优化问题的帕累托前沿。该算法从基于固定标量权重的 CBO 简单扩展开始,逐步推进。为了解决权重选择问题,我们在第二个建模步骤中提出了自适应权重策略。在建模过程的最后,我们加入了一种惩罚策略,以避免帕累托前沿的集群,并加入了一个扩散项,以防止蜂群崩溃。总之,所提出的 K 群 CBO 算法是为帕累托前沿的多样化近似以及一般非凸多目标问题的高效集合而量身定制的。分析结果(包括收敛性证明)、与著名的非支配排序遗传算法 NSGA2 和 NSGA3 的性能比较,以及最近针对涉及基于共识的优化的多目标问题提出的单群方法,都证明了该方法的可行性。
{"title":"Consensus-based optimization for multi-objective problems: a multi-swarm approach","authors":"Kathrin Klamroth, Michael Stiglmayr, Claudia Totzeck","doi":"10.1007/s10898-024-01369-1","DOIUrl":"https://doi.org/10.1007/s10898-024-01369-1","url":null,"abstract":"<p>We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed <i>K</i>-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.\u0000</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method for searching for a globally optimal k-partition of higher-dimensional datasets 搜索高维数据集全局最优 k 分区的方法
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-02-13 DOI: 10.1007/s10898-024-01372-6

Abstract

The problem of finding a globally optimal k-partition of a set  (mathcal {A}) is a very intricate optimization problem for which in general, except in the case of one-dimensional data, i.e., for data with one feature ( (mathcal {A}subset mathbb {R}) ), there is no method to solve. Only in the one-dimensional case, there are efficient methods based on the fact that the search for a globally optimal k-partition is equivalent to solving a global optimization problem for a symmetric Lipschitz-continuous function using the global optimization algorithm DIRECT. In the present paper, we propose a method for finding a globally optimal k-partition in the general case ( (mathcal {A}subset mathbb {R}^n) , (nge 1) ), generalizing an idea for solving the Lipschitz global optimization for symmetric functions. To do this, we propose a method that combines a global optimization algorithm with linear constraints and the k-means algorithm. The first of these two algorithms is used only to find a good initial approximation for the k-means algorithm. The method was tested on a number of artificial datasets and on several examples from the UCI Machine Learning Repository, and an application in spectral clustering for linearly non-separable datasets is also demonstrated. Our proposed method proved to be very efficient.

摘要 为一个集合 (mathcal {A}) 寻找一个全局最优 k 分区的问题是一个非常复杂的优化问题,一般来说,除了一维数据的情况,即只有一个特征的数据((mathcal {A}subset mathbb {R}) ),没有方法可以解决这个问题。只有在一维情况下,才有高效的方法,其基础是寻找全局最优的 k 分区等同于使用全局优化算法 DIRECT 解决对称 Lipschitz-continuous 函数的全局优化问题。在本文中,我们提出了一种在一般情况下((mathcal {A}subset mathbb {R}^n) , (nge 1) )寻找全局最优 k-partition 的方法,推广了一种解决对称函数 Lipschitz 全局优化问题的思想。为此,我们提出了一种将带有线性约束的全局优化算法与 k-means 算法相结合的方法。这两种算法中的第一种仅用于为 k-means 算法找到一个良好的初始近似值。我们在一些人工数据集和 UCI 机器学习资料库中的几个示例上对该方法进行了测试,并展示了该方法在线性不可分离数据集的光谱聚类中的应用。事实证明,我们提出的方法非常高效。
{"title":"A method for searching for a globally optimal k-partition of higher-dimensional datasets","authors":"","doi":"10.1007/s10898-024-01372-6","DOIUrl":"https://doi.org/10.1007/s10898-024-01372-6","url":null,"abstract":"<h3>Abstract</h3> <p>The problem of finding a globally optimal <em>k</em>-partition of a set <span> <span>(mathcal {A})</span> </span> is a very intricate optimization problem for which in general, except in the case of one-dimensional data, i.e., for data with one feature (<span> <span>(mathcal {A}subset mathbb {R})</span> </span>), there is no method to solve. Only in the one-dimensional case, there are efficient methods based on the fact that the search for a globally optimal <em>k</em>-partition is equivalent to solving a global optimization problem for a symmetric Lipschitz-continuous function using the global optimization algorithm <span>DIRECT</span>. In the present paper, we propose a method for finding a globally optimal <em>k</em>-partition in the general case (<span> <span>(mathcal {A}subset mathbb {R}^n)</span> </span>, <span> <span>(nge 1)</span> </span>), generalizing an idea for solving the Lipschitz global optimization for symmetric functions. To do this, we propose a method that combines a global optimization algorithm with linear constraints and the <em>k</em>-means algorithm. The first of these two algorithms is used only to find a good initial approximation for the <em>k</em>-means algorithm. The method was tested on a number of artificial datasets and on several examples from the UCI Machine Learning Repository, and an application in spectral clustering for linearly non-separable datasets is also demonstrated. Our proposed method proved to be very efficient. </p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"25 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global solution of quadratic problems using interval methods and convex relaxations 利用区间法和凸松弛法求解二次函数问题的全局方案
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-02-12 DOI: 10.1007/s10898-024-01370-8
Sourour Elloumi, Amélie Lambert, Bertrand Neveu, Gilles Trombettoni

Interval branch-and-bound solvers provide reliable algorithms for handling non-convex optimization problems by ensuring the feasibility and the optimality of the computed solutions, i.e. independently from the floating-point rounding errors. Moreover, these solvers deal with a wide variety of mathematical operators. However, these solvers are not dedicated to quadratic optimization and do not exploit nonlinear convex relaxations in their framework. We present an interval branch-and-bound method that can efficiently solve quadratic optimization problems. At each node explored by the algorithm, our solver uses a quadratic convex relaxation which is as strong as a semi-definite programming relaxation, and a variable selection strategy dedicated to quadratic problems. The interval features can then propagate efficiently this information for contracting all variable domains. We also propose to make our algorithm rigorous by certifying firstly the convexity of the objective function of our relaxation, and secondly the validity of the lower bound calculated at each node. In the non-rigorous case, our experiments show significant speedups on general integer quadratic instances, and when reliability is required, our first results show that we are able to handle medium-sized instances in a reasonable running time.

区间分支与边界求解器为处理非凸优化问题提供了可靠的算法,它能确保计算结果的可行性和最优性,即与浮点舍入误差无关。此外,这些求解器还能处理各种数学算子。然而,这些求解器并非专门用于二次优化,也没有在其框架中利用非线性凸松弛。我们提出了一种能高效解决二次优化问题的区间分支与边界法。在算法探索的每个节点上,我们的求解器都使用了与半有限编程松弛同样强大的二次凸松弛,以及专门针对二次问题的变量选择策略。这样,区间特征就能在收缩所有变量域时有效传播这些信息。我们还建议使我们的算法更加严格,首先证明我们的松弛目标函数的凸性,其次证明在每个节点计算的下限的有效性。在不严格的情况下,我们的实验表明,在一般的整数二次方程实例上,我们的算法明显加快了速度;在要求可靠性的情况下,我们的初步结果表明,我们能够在合理的运行时间内处理中等规模的实例。
{"title":"Global solution of quadratic problems using interval methods and convex relaxations","authors":"Sourour Elloumi, Amélie Lambert, Bertrand Neveu, Gilles Trombettoni","doi":"10.1007/s10898-024-01370-8","DOIUrl":"https://doi.org/10.1007/s10898-024-01370-8","url":null,"abstract":"<p>Interval branch-and-bound solvers provide reliable algorithms for handling non-convex optimization problems by ensuring the feasibility and the optimality of the computed solutions, i.e. independently from the floating-point rounding errors. Moreover, these solvers deal with a wide variety of mathematical operators. However, these solvers are not dedicated to quadratic optimization and do not exploit nonlinear convex relaxations in their framework. We present an interval branch-and-bound method that can efficiently solve quadratic optimization problems. At each node explored by the algorithm, our solver uses a quadratic convex relaxation which is as strong as a semi-definite programming relaxation, and a variable selection strategy dedicated to quadratic problems. The interval features can then propagate efficiently this information for contracting all variable domains. We also propose to make our algorithm rigorous by certifying firstly the convexity of the objective function of our relaxation, and secondly the validity of the lower bound calculated at each node. In the non-rigorous case, our experiments show significant speedups on general integer quadratic instances, and when reliability is required, our first results show that we are able to handle medium-sized instances in a reasonable running time.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"16 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds 哈达玛流形上多目标半无限编程问题的效率条件和对偶性
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-31 DOI: 10.1007/s10898-024-01367-3
Balendu Bhooshan Upadhyay, Arnav Ghosh, Savin Treanţă

This paper is devoted to the study of a class of multiobjective semi-infinite programming problems on Hadamard manifolds (in short, (MOSIP-HM)). We derive some alternative theorems analogous to Tucker’s theorem, Tucker’s first and second existence theorem, and Motzkin’s theorem of alternative in the framework of Hadamard manifolds. We employ Motzkin’s theorem of alternative to establish necessary and sufficient conditions that characterize KKT pseudoconvex functions using strong KKT vector critical points and efficient solutions of (MOSIP-HM). Moreover, we formulate the Mond-Weir and Wolfe-type dual problems related to (MOSIP-HM) and derive the weak and converse duality theorems relating (MOSIP-HM) and the dual problems. Several non-trivial numerical examples are provided to illustrate the significance of the derived results. The results deduced in the paper extend and generalize several notable works existing in the literature.

本文致力于研究哈达玛流形上的一类多目标半无限编程问题(简称(MOSIP-HM))。我们推导了哈达玛流形框架下类似于塔克定理、塔克第一和第二存在定理以及莫兹金替代定理的一些替代定理。我们利用莫茨金替代定理建立了必要条件和充分条件,从而利用强 KKT 向量临界点和 (MOSIP-HM) 的有效解来描述 KKT 伪凸函数的特征。此外,我们还提出了与(MOSIP-HM)相关的蒙德-韦尔和沃尔夫型对偶问题,并推导出了与(MOSIP-HM)和对偶问题相关的弱对偶定理和反对偶定理。论文提供了几个非微观的数值示例来说明推导结果的意义。论文中推导出的结果扩展和概括了文献中已有的几项著名工作。
{"title":"Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds","authors":"Balendu Bhooshan Upadhyay, Arnav Ghosh, Savin Treanţă","doi":"10.1007/s10898-024-01367-3","DOIUrl":"https://doi.org/10.1007/s10898-024-01367-3","url":null,"abstract":"<p>This paper is devoted to the study of a class of multiobjective semi-infinite programming problems on Hadamard manifolds (in short, (MOSIP-HM)). We derive some alternative theorems analogous to Tucker’s theorem, Tucker’s first and second existence theorem, and Motzkin’s theorem of alternative in the framework of Hadamard manifolds. We employ Motzkin’s theorem of alternative to establish necessary and sufficient conditions that characterize KKT pseudoconvex functions using strong KKT vector critical points and efficient solutions of (MOSIP-HM). Moreover, we formulate the Mond-Weir and Wolfe-type dual problems related to (MOSIP-HM) and derive the weak and converse duality theorems relating (MOSIP-HM) and the dual problems. Several non-trivial numerical examples are provided to illustrate the significance of the derived results. The results deduced in the paper extend and generalize several notable works existing in the literature.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"4 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The appeals of quadratic majorization–minimization 二次大化-最小化的诉求
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-28 DOI: 10.1007/s10898-023-01361-1
Marc C. Robini, Lihui Wang, Yuemin Zhu

Majorization–minimization (MM) is a versatile optimization technique that operates on surrogate functions satisfying tangency and domination conditions. Our focus is on differentiable optimization using inexact MM with quadratic surrogates, which amounts to approximately solving a sequence of symmetric positive definite systems. We begin by investigating the convergence properties of this process, from subconvergence to R-linear convergence, with emphasis on tame objectives. Then we provide a numerically stable implementation based on truncated conjugate gradient. Applications to multidimensional scaling and regularized inversion are discussed and illustrated through numerical experiments on graph layout and X-ray tomography. In the end, quadratic MM not only offers solid guarantees of convergence and stability, but is robust to the choice of its control parameters.

主要化-最小化(MM)是一种通用的优化技术,可对满足切线和支配条件的代用函数进行操作。我们的重点是使用二次代函数的非精确 MM 进行可微分优化,这相当于近似求解一系列对称正定系统。我们首先研究了这一过程的收敛特性,从亚收敛到 R 线性收敛,重点是驯服目标。然后,我们提供了一种基于截断共轭梯度的数值稳定实现方法。我们讨论了多维缩放和正则化反演的应用,并通过图形布局和 X 射线断层扫描的数值实验进行了说明。最后,二次 MM 不仅在收敛性和稳定性方面提供了可靠保证,而且对其控制参数的选择也很稳健。
{"title":"The appeals of quadratic majorization–minimization","authors":"Marc C. Robini, Lihui Wang, Yuemin Zhu","doi":"10.1007/s10898-023-01361-1","DOIUrl":"https://doi.org/10.1007/s10898-023-01361-1","url":null,"abstract":"<p>Majorization–minimization (MM) is a versatile optimization technique that operates on surrogate functions satisfying tangency and domination conditions. Our focus is on differentiable optimization using inexact MM with quadratic surrogates, which amounts to approximately solving a sequence of symmetric positive definite systems. We begin by investigating the convergence properties of this process, from subconvergence to R-linear convergence, with emphasis on tame objectives. Then we provide a numerically stable implementation based on truncated conjugate gradient. Applications to multidimensional scaling and regularized inversion are discussed and illustrated through numerical experiments on graph layout and X-ray tomography. In the end, quadratic MM not only offers solid guarantees of convergence and stability, but is robust to the choice of its control parameters.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"171 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139583595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized derivatives of optimal-value functions with parameterized convex programs embedded 嵌入参数化凸程序的最优值函数广义导数
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-25 DOI: 10.1007/s10898-023-01359-9
Yingkai Song, Paul I. Barton

This article proposes new practical methods for furnishing generalized derivative information of optimal-value functions with embedded parameterized convex programs, with potential applications in nonsmooth equation-solving and optimization. We consider three cases of parameterized convex programs: (1) partial convexity—functions in the convex programs are convex with respect to decision variables for fixed values of parameters, (2) joint convexity—the functions are convex with respect to both decision variables and parameters, and (3) linear programs where the parameters appear in the objective function. These new methods calculate an LD-derivative, which is a recently established useful generalized derivative concept, by constructing and solving a sequence of auxiliary linear programs. In the general partial convexity case, our new method requires that the strong Slater conditions are satisfied for the embedded convex program’s decision space, and requires that the convex program has a unique optimal solution. It is shown that these conditions are essentially less stringent than the regularity conditions required by certain established methods, and our new method is at the same time computationally preferable over these methods. In the joint convexity case, the uniqueness requirement of an optimal solution is further relaxed, and to our knowledge, there is no established method for computing generalized derivatives prior to this work. In the linear program case, both the Slater conditions and the uniqueness of an optimal solution are not required by our new method.

本文提出了提供内嵌参数化凸程序的最优值函数广义导数信息的新实用方法,有望应用于非光滑方程求解和优化。我们考虑了参数化凸程序的三种情况:(1) 部分凸性--在参数值固定的情况下,凸程序中的函数相对于决策变量是凸的;(2) 联合凸性--函数相对于决策变量和参数都是凸的;(3) 参数出现在目标函数中的线性程序。这些新方法通过构建和求解一系列辅助线性程序来计算 LD-导数,这是最近确立的一个有用的广义导数概念。在一般偏凸情况下,我们的新方法要求嵌入凸程序的决策空间满足强斯莱特条件,并要求凸程序具有唯一最优解。研究表明,这些条件本质上比某些已有方法所要求的正则性条件更宽松,同时我们的新方法在计算上也优于这些方法。在联合凸性情况下,最优解的唯一性要求被进一步放宽,据我们所知,在这项工作之前,还没有计算广义导数的成熟方法。在线性规划情况下,我们的新方法不要求斯莱特条件和最优解的唯一性。
{"title":"Generalized derivatives of optimal-value functions with parameterized convex programs embedded","authors":"Yingkai Song, Paul I. Barton","doi":"10.1007/s10898-023-01359-9","DOIUrl":"https://doi.org/10.1007/s10898-023-01359-9","url":null,"abstract":"<p>This article proposes new practical methods for furnishing generalized derivative information of optimal-value functions with embedded parameterized convex programs, with potential applications in nonsmooth equation-solving and optimization. We consider three cases of parameterized convex programs: (1) partial convexity—functions in the convex programs are convex with respect to decision variables for fixed values of parameters, (2) joint convexity—the functions are convex with respect to both decision variables and parameters, and (3) linear programs where the parameters appear in the objective function. These new methods calculate an LD-derivative, which is a recently established useful generalized derivative concept, by constructing and solving a sequence of auxiliary linear programs. In the general partial convexity case, our new method requires that the strong Slater conditions are satisfied for the embedded convex program’s decision space, and requires that the convex program has a unique optimal solution. It is shown that these conditions are essentially less stringent than the regularity conditions required by certain established methods, and our new method is at the same time computationally preferable over these methods. In the joint convexity case, the uniqueness requirement of an optimal solution is further relaxed, and to our knowledge, there is no established method for computing generalized derivatives prior to this work. In the linear program case, both the Slater conditions and the uniqueness of an optimal solution are not required by our new method.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"9 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strong P-formulation for global optimization of industrial water-using and treatment networks 工业用水和水处理网络全局优化的强 P 公式
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-25 DOI: 10.1007/s10898-023-01363-z
Xin Cheng, Xiang Li

The problem of finding the optimal flow allocation within an industrial water-using and treatment network can be formulated into nonconvex nonlinear program or nonconvex mixed-integer nonlinear program. The efficiency of global optimization of the nonconvex program relies heavily on the strength of the problem formulation. In this paper, we propose a variant of the commonly used P-formulation, called the P(^*)-formulation, for the water treatment network (WTN) and the total water network (TWN) that includes water-using and water treatment units. For either type of networks, we prove that the P(^*)-formulation is at least as strong as the P-formulation under mild bound consistency conditions. We also prove for either type of networks that the P(^*)-formulation is at least as strong as the split-fraction based formulation (called SF-formulation) under certain bound consistency conditions. The computational study shows that the P(^*)-formulation significantly outperforms the P- and the SF-formulations. For some problem instances, the P(^*)-formulation is faster than the other two formulations by several orders of magnitudes.

在工业用水和水处理网络中寻找最优流量分配的问题可以表述为非凸非线性程序或非凸混合整数非线性程序。非凸程序的全局优化效率在很大程度上取决于问题表述的强度。本文针对包括用水单位和水处理单位的水处理网络(WTN)和总水网络(TWN),提出了一种常用 P 公式的变体,称为 P (^*)公式。对于这两类网络,我们都证明了在温和的约束一致性条件下,P(^*)公式至少和 P 公式一样强。我们还证明,对于这两类网络,在某些约束一致性条件下,P(^*)公式至少与基于分割分数的公式(称为 SF 公式)一样强。计算研究表明,P(^*)公式明显优于P公式和SF公式。对于某些问题实例,P(^*)公式比其他两种公式快几个数量级。
{"title":"A strong P-formulation for global optimization of industrial water-using and treatment networks","authors":"Xin Cheng, Xiang Li","doi":"10.1007/s10898-023-01363-z","DOIUrl":"https://doi.org/10.1007/s10898-023-01363-z","url":null,"abstract":"<p>The problem of finding the optimal flow allocation within an industrial water-using and treatment network can be formulated into nonconvex nonlinear program or nonconvex mixed-integer nonlinear program. The efficiency of global optimization of the nonconvex program relies heavily on the strength of the problem formulation. In this paper, we propose a variant of the commonly used P-formulation, called the P<span>(^*)</span>-formulation, for the water treatment network (WTN) and the total water network (TWN) that includes water-using and water treatment units. For either type of networks, we prove that the P<span>(^*)</span>-formulation is at least as strong as the P-formulation under mild bound consistency conditions. We also prove for either type of networks that the P<span>(^*)</span>-formulation is at least as strong as the split-fraction based formulation (called SF-formulation) under certain bound consistency conditions. The computational study shows that the P<span>(^*)</span>-formulation significantly outperforms the P- and the SF-formulations. For some problem instances, the P<span>(^*)</span>-formulation is faster than the other two formulations by several orders of magnitudes.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"9 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis 通过变分分析实现非光滑稀疏性多目标优化的一阶和二阶最优条件
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1007/s10898-023-01357-x
Jiawei Chen, Huasheng Su, Xiaoqing Ou, Yibing Lv

In this paper, we investigate optimality conditions of nonsmooth sparsity multiobjective optimization problem (shortly, SMOP) by the advanced variational analysis. We present the variational analysis characterizations, such as tangent cones, normal cones, dual cones and second-order tangent set, of the sparse set, and give the relationships among the sparse set and its tangent cones and second-order tangent set. The first-order necessary conditions for local weakly Pareto efficient solution of SMOP are established under some suitable conditions. We also obtain the equivalence between basic feasible point and stationary point defined by the Fréchet normal cone of SMOP. The sufficient optimality conditions of SMOP are derived under the pseudoconvexity. Moreover, the second-order necessary and sufficient optimality conditions of SMOP are established by the Dini directional derivatives of the objective function and the Bouligand tangent cone and second-order tangent set of the sparse set.

本文通过高级变分分析法研究了非光滑稀疏多目标优化问题(简称 SMOP)的最优性条件。我们提出了稀疏集的切锥、法锥、对偶锥和二阶切集等变分分析特征,并给出了稀疏集与其切锥和二阶切集之间的关系。在一些合适的条件下,建立了 SMOP 局部弱帕累托有效解的一阶必要条件。我们还得到了 SMOP 的弗雷谢特法锥定义的基本可行点和静止点之间的等价性。在伪凸性条件下推导出了 SMOP 的充分最优条件。此外,通过目标函数的 Dini 方向导数以及稀疏集的 Bouligand 切锥和二阶切集,建立了 SMOP 的二阶必要和充分最优条件。
{"title":"First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis","authors":"Jiawei Chen, Huasheng Su, Xiaoqing Ou, Yibing Lv","doi":"10.1007/s10898-023-01357-x","DOIUrl":"https://doi.org/10.1007/s10898-023-01357-x","url":null,"abstract":"<p>In this paper, we investigate optimality conditions of nonsmooth sparsity multiobjective optimization problem (shortly, SMOP) by the advanced variational analysis. We present the variational analysis characterizations, such as tangent cones, normal cones, dual cones and second-order tangent set, of the sparse set, and give the relationships among the sparse set and its tangent cones and second-order tangent set. The first-order necessary conditions for local weakly Pareto efficient solution of SMOP are established under some suitable conditions. We also obtain the equivalence between basic feasible point and stationary point defined by the Fréchet normal cone of SMOP. The sufficient optimality conditions of SMOP are derived under the pseudoconvexity. Moreover, the second-order necessary and sufficient optimality conditions of SMOP are established by the Dini directional derivatives of the objective function and the Bouligand tangent cone and second-order tangent set of the sparse set.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"15 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interval constraint programming for globally solving catalog-based categorical optimization 基于目录的分类优化全局求解的区间约束编程
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1007/s10898-023-01362-0

Abstract

In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at https://github.com/cvanaret/CateGOrical.jl.

摘要 本文提出了一种区间约束编程方法,用于全局求解基于目录的分类优化问题。该方法支持任意大小的目录和任意维度的属性,并且不需要用户做任何建模工作。一种新颖的基于目录的承包商(或过滤算子)保证了分类属性与现有目录项之间的一致性。这就产生了一种直观而通用的方法,它精确、严谨(对舍入误差具有鲁棒性),并且可以在现成的基于区间的连续求解器中轻松实现,该求解器将分支和约束传播交织在一起。我们在一个二维属性空间描述分类变量的数值问题上演示了该方法的有效性。Julia 原型作为开源软件,在 MIT 许可下发布在 https://github.com/cvanaret/CateGOrical.jl 上。
{"title":"Interval constraint programming for globally solving catalog-based categorical optimization","authors":"","doi":"10.1007/s10898-023-01362-0","DOIUrl":"https://doi.org/10.1007/s10898-023-01362-0","url":null,"abstract":"<h3>Abstract</h3> <p>In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at https://github.com/cvanaret/CateGOrical.jl.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"44 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaining or losing perspective for convex multivariate functions on a simplex 单纯形上凸多元函数的视角增减
IF 1.8 3区 数学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1007/s10898-023-01356-y
Luze Xu, Jon Lee

MINLO (mixed-integer nonlinear optimization) formulations of the disjunction between the origin and a polytope via a binary indicator variable have broad applicability in nonlinear combinatorial optimization, for modeling a fixed cost c associated with carrying out a set of d activities and a convex variable cost function f associated with the levels of the activities. The perspective relaxation is often used to solve such models to optimality in a branch-and-bound context, especially in the context in which f is univariate (e.g., in Markowitz-style portfolio optimization). But such a relaxation typically requires conic solvers and are typically not compatible with general-purpose NLP software which can accommodate additional classes of constraints. This motivates the study of weaker relaxations to investigate when simpler relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as means of comparing them, we lift some of the results related to univariate functions f to the multivariate case. Along the way, we survey, connect and extend relevant results on integration over a simplex, some of which we concretely employ, and others of which can be used for further exploration on our main subject.

MINLO(混合整数非线性优化)公式是通过二元指示变量对原点和多面体之间的析取,在非线性组合优化中具有广泛的适用性,可用于模拟与开展一组 d 项活动相关的固定成本 c 和与活动水平相关的凸变量成本函数 f。透视松弛法常用于在分支和边界情境中求解此类模型的最优性,尤其是在 f 是单变量的情境中(例如,在马科维茨式的组合优化中)。但这种松弛通常需要圆锥求解器,而且通常与能容纳更多类别约束的通用 NLP 软件不兼容。这就促使我们对较弱的松弛进行研究,以探究更简单的松弛何时可以满足要求。通过比较松弛的体积(即 Lebesgue 度量),我们将一些与单变量函数 f 相关的结果推广到多变量情况中。在此过程中,我们考察、连接并扩展了关于单纯形上积分的相关结果,其中一些我们已具体运用,另一些则可用于进一步探索我们的主要课题。
{"title":"Gaining or losing perspective for convex multivariate functions on a simplex","authors":"Luze Xu, Jon Lee","doi":"10.1007/s10898-023-01356-y","DOIUrl":"https://doi.org/10.1007/s10898-023-01356-y","url":null,"abstract":"<p>MINLO (mixed-integer nonlinear optimization) formulations of the disjunction between the origin and a polytope via a binary indicator variable have broad applicability in nonlinear combinatorial optimization, for modeling a fixed cost <i>c</i> associated with carrying out a set of <i>d</i> activities and a convex variable cost function <i>f</i> associated with the levels of the activities. The perspective relaxation is often used to solve such models to optimality in a branch-and-bound context, especially in the context in which <i>f</i> is univariate (e.g., in Markowitz-style portfolio optimization). But such a relaxation typically requires conic solvers and are typically not compatible with general-purpose NLP software which can accommodate additional classes of constraints. This motivates the study of weaker relaxations to investigate when simpler relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as means of comparing them, we lift some of the results related to univariate functions <i>f</i> to the multivariate case. Along the way, we survey, connect and extend relevant results on integration over a simplex, some of which we concretely employ, and others of which can be used for further exploration on our main subject.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"121 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Global Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1