Pub Date : 2023-11-24DOI: 10.1007/s10762-023-00951-0
Min Zhai, Pragna Bhaskar, Haolian Shi, Madhavan Swaminathan, Alexandre Locquet, D. S. Citrin
Glass-based materials, including polymer/glass stack ups, are attractive structural blocks for packaging substrates supporting 5 G and 6 G microelectronic modules and components. We present the first broadband characterization of AGC Inc. EN-A1 alkali-free boroaluminosilicate glass and of Ajinomoto Build-up Film (ABF) laminated on soda-lime float glass substrate from 200 GHz to 2.5 THz with a commercial terahertz time-domain spectroscopy (THz-TDS) system. The refractive index (n(nu )), attenuation coefficient (alpha (nu )), permittivity (varepsilon '(nu )), and loss tangent (tan delta (nu )) of EN-A1 glass as well as laminated ABF are (n_mathrm{EN-A1}=2.376), (alpha _mathrm{EN-A1}=31.1) cm(^{-1}), (varepsilon '_mathrm{EN-A1}=5.64), (tan delta _mathrm{EN-A1}=0.062), and (n_textrm{ABF}= 1.9), (alpha _textrm{ABF}= 30) cm(^{-1}), (varepsilon _textrm{ABF} = 3.8), (tan delta _textrm{ABF}= 0.072), all at 1 THz. Our results validate the promising perspective of both EN-A1 glass and ABF polymer materials as microwave and THz packaging solutions.
{"title":"Terahertz Characterization of Glass-Based Materials and Stackups for 6 G Microelectronics Packaging","authors":"Min Zhai, Pragna Bhaskar, Haolian Shi, Madhavan Swaminathan, Alexandre Locquet, D. S. Citrin","doi":"10.1007/s10762-023-00951-0","DOIUrl":"https://doi.org/10.1007/s10762-023-00951-0","url":null,"abstract":"<p>Glass-based materials, including polymer/glass stack ups, are attractive structural blocks for packaging substrates supporting 5 G and 6 G microelectronic modules and components. We present the first broadband characterization of AGC Inc. EN-A1 alkali-free boroaluminosilicate glass and of Ajinomoto Build-up Film (ABF) laminated on soda-lime float glass substrate from 200 GHz to 2.5 THz with a commercial terahertz time-domain spectroscopy (THz-TDS) system. The refractive index <span>(n(nu ))</span>, attenuation coefficient <span>(alpha (nu ))</span>, permittivity <span>(varepsilon '(nu ))</span>, and loss tangent <span>(tan delta (nu ))</span> of EN-A1 glass as well as laminated ABF are <span>(n_mathrm{EN-A1}=2.376)</span>, <span>(alpha _mathrm{EN-A1}=31.1)</span> cm<span>(^{-1})</span>, <span>(varepsilon '_mathrm{EN-A1}=5.64)</span>, <span>(tan delta _mathrm{EN-A1}=0.062)</span>, and <span>(n_textrm{ABF}= 1.9)</span>, <span>(alpha _textrm{ABF}= 30)</span> cm<span>(^{-1})</span>, <span>(varepsilon _textrm{ABF} = 3.8)</span>, <span>(tan delta _textrm{ABF}= 0.072)</span>, all at 1 THz. Our results validate the promising perspective of both EN-A1 glass and ABF polymer materials as microwave and THz packaging solutions.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1007/s10762-023-00952-z
R. M. Rozental, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, I. V. Zotova
We consider the possibilities of producing wideband chaotic terahertz-range radiation in gyrotrons with excitation of cyclotron harmonics. The transition to the chaotic generation mode in gyrotrons requires a significant excess of the operating current over the starting value, which excludes selective operation at cyclotron harmonics due to the intensification of mode competition. At the same time, it is attractive to use a competition-free frequency multiplication effect that arises due to the nonlinear properties of the electron beam. The implementation of the frequency multiplication regime is simplified when using low-energy electron beams. Based on the averaged model of electron-wave interaction, we simulate generation in a 250-GHz low-voltage gyrotron and demonstrate the regime of a double frequency multiplication providing 0.5 THz chaotic radiation with a bandwidth of about 20 GHz and an average power of 0.5 mW. A significant expansion of the spectrum is achieved through to additional resonant interaction at the intersection points of the dispersion characteristics of the operating mode and the electron beam at the second cyclotron harmonic.
{"title":"Generation of Chaotic Terahertz-band Radiation Based on Frequency Multiplication in Gyrotrons","authors":"R. M. Rozental, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, I. V. Zotova","doi":"10.1007/s10762-023-00952-z","DOIUrl":"https://doi.org/10.1007/s10762-023-00952-z","url":null,"abstract":"<p>We consider the possibilities of producing wideband chaotic terahertz-range radiation in gyrotrons with excitation of cyclotron harmonics. The transition to the chaotic generation mode in gyrotrons requires a significant excess of the operating current over the starting value, which excludes selective operation at cyclotron harmonics due to the intensification of mode competition. At the same time, it is attractive to use a competition-free frequency multiplication effect that arises due to the nonlinear properties of the electron beam. The implementation of the frequency multiplication regime is simplified when using low-energy electron beams. Based on the averaged model of electron-wave interaction, we simulate generation in a 250-GHz low-voltage gyrotron and demonstrate the regime of a double frequency multiplication providing 0.5 THz chaotic radiation with a bandwidth of about 20 GHz and an average power of 0.5 mW. A significant expansion of the spectrum is achieved through to additional resonant interaction at the intersection points of the dispersion characteristics of the operating mode and the electron beam at the second cyclotron harmonic.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1007/s10762-023-00950-1
A. N. Leontyev, O. P. Plankin, R. M. Rozental, E. S. Semenov
Calculations are presented for an electron-optical system that makes it possible to produce a helical electron beam with an energy of 250 keV, a current of 100 A, and a pitch factor of 1.1 for a 0.3 THz gyrotron with the operating mode of TE33.2. Based on averaged stationary equations with a non-fixed field structure, the cavity profile is optimized and the possibility of obtaining an output power of about 8 MW with an electronic efficiency of more than 30% is demonstrated. Within the framework of particle-in-cell three-dimensional simulation, the processes of establishing oscillations are considered. Besides, it is shown that in the range of magnetic fields from 14.7 to 15.1 T, selective excitation of oscillations in the operating mode with a maximum power of about 7 MW is possible.
{"title":"Design of a 300 GHz Relativistic Gyrotron with an output Power of more Than 7 MW","authors":"A. N. Leontyev, O. P. Plankin, R. M. Rozental, E. S. Semenov","doi":"10.1007/s10762-023-00950-1","DOIUrl":"https://doi.org/10.1007/s10762-023-00950-1","url":null,"abstract":"<p>Calculations are presented for an electron-optical system that makes it possible to produce a helical electron beam with an energy of 250 keV, a current of 100 A, and a pitch factor of 1.1 for a 0.3 THz gyrotron with the operating mode of TE<sub>33.2</sub>. Based on averaged stationary equations with a non-fixed field structure, the cavity profile is optimized and the possibility of obtaining an output power of about 8 MW with an electronic efficiency of more than 30% is demonstrated. Within the framework of particle-in-cell three-dimensional simulation, the processes of establishing oscillations are considered. Besides, it is shown that in the range of magnetic fields from 14.7 to 15.1 T, selective excitation of oscillations in the operating mode with a maximum power of about 7 MW is possible.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1007/s10762-023-00949-8
Nishtha Chopra, James Lloyd-Hughes
Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations: these make achieving diffraction-limited performance a challenge, and lower the peak electric field strength in the focal plane. Here, we quantify the impact of geometric aberrations on the performance of the most widely used spectrometer designs, by using ray tracing and physical optics calculations to investigate whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source, this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.
{"title":"Optimum Optical Designs for Diffraction-Limited Terahertz Spectroscopy and Imaging Systems Using Off-Axis Parabolic Mirrors","authors":"Nishtha Chopra, James Lloyd-Hughes","doi":"10.1007/s10762-023-00949-8","DOIUrl":"https://doi.org/10.1007/s10762-023-00949-8","url":null,"abstract":"<p>Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations: these make achieving diffraction-limited performance a challenge, and lower the peak electric field strength in the focal plane. Here, we quantify the impact of geometric aberrations on the performance of the most widely used spectrometer designs, by using ray tracing and physical optics calculations to investigate whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source, this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.1007/s10762-023-00946-x
B. N. Carnio, O. Moutanabbir, A. Y. Elezzabi
{"title":"Terahertz Time-Domain Spectroscopy and Dispersive Fourier Transform Spectroscopy: Two Sides of the Same Coin","authors":"B. N. Carnio, O. Moutanabbir, A. Y. Elezzabi","doi":"10.1007/s10762-023-00946-x","DOIUrl":"https://doi.org/10.1007/s10762-023-00946-x","url":null,"abstract":"","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1007/s10762-023-00944-z
Kaijun Song, Lijuan Zhu, Qian Li, Yong Fan
{"title":"W-Band Low-Loss Eight-Way Radial-Waveguide Power Divider Based on Coaxial Mode Transition","authors":"Kaijun Song, Lijuan Zhu, Qian Li, Yong Fan","doi":"10.1007/s10762-023-00944-z","DOIUrl":"https://doi.org/10.1007/s10762-023-00944-z","url":null,"abstract":"","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1007/s10762-023-00942-1
Jing Zhang, Zhongjie Zhu, Yu Wu, Te Ji, Jie Wang, Huachun Zhu, Weiwei Peng, Min Chen, Shaoping Li, Hongwei Zhao
{"title":"Broadband Terahertz Spectroscopy and Weak Interactions of Adenosine with Vibrational Mode Analysis","authors":"Jing Zhang, Zhongjie Zhu, Yu Wu, Te Ji, Jie Wang, Huachun Zhu, Weiwei Peng, Min Chen, Shaoping Li, Hongwei Zhao","doi":"10.1007/s10762-023-00942-1","DOIUrl":"https://doi.org/10.1007/s10762-023-00942-1","url":null,"abstract":"","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1007/s10762-023-00943-0
Rania R. Elsharkawy, Khalid.F. A. Hussein, Asmaa E. Farahat
Abstract The present work proposes a novel design of a dual-band-printed antenna for operation at the millimeter-wave frequencies 28 and 38 GHz that are utilized for the modern and future generations of mobile communications. The antenna is composed of two radiating elements. The first element is the main patch that is fed through a microstrip line with inset feed, and the second element is a parasitic element that is fed through capacitive coupling with the main patch. The design parameters of the proposed antenna are optimized through a complete parametric study to give excellent impedance matching at 28 GHz over the band 27.7–28.3 GHz and at 38 GHz over the band 37.7–38.3 GHz. The surface current distributions at the two operational frequencies are investigated. The designed antenna is used to construct a four-port efficient multi–input–multi–output (MIMO) system. The MIMO system performance is investigated regarding the envelope correlation coefficient (ECC), diversity gain (DG), and the channel capacity loss (CCL) showing very good performance. The single-element antenna and the MIMO are fabricated and experimentally evaluated showing excellent impedance matching over the lower and higher frequency bands, which come in agreement with the simulation results. It is shown that the antenna produces maximum gain of 7.4 and 8.1 dBi at 28 and 38 GHz, respectively. The average radiation efficiencies of the proposed antenna are 88% and 88.8% over the lower and higher frequency bands, respectively. In addition, the coupling coefficients between the MIMO antenna systems are measured experimentally showing very low coupling values resulting in an efficient MIMO system that is suitable for future millimeter-wave (mm-wave) applications.
{"title":"Dual-Band (28/38 GHz) Compact MIMO Antenna System for Millimeter-Wave Applications","authors":"Rania R. Elsharkawy, Khalid.F. A. Hussein, Asmaa E. Farahat","doi":"10.1007/s10762-023-00943-0","DOIUrl":"https://doi.org/10.1007/s10762-023-00943-0","url":null,"abstract":"Abstract The present work proposes a novel design of a dual-band-printed antenna for operation at the millimeter-wave frequencies 28 and 38 GHz that are utilized for the modern and future generations of mobile communications. The antenna is composed of two radiating elements. The first element is the main patch that is fed through a microstrip line with inset feed, and the second element is a parasitic element that is fed through capacitive coupling with the main patch. The design parameters of the proposed antenna are optimized through a complete parametric study to give excellent impedance matching at 28 GHz over the band 27.7–28.3 GHz and at 38 GHz over the band 37.7–38.3 GHz. The surface current distributions at the two operational frequencies are investigated. The designed antenna is used to construct a four-port efficient multi–input–multi–output (MIMO) system. The MIMO system performance is investigated regarding the envelope correlation coefficient (ECC), diversity gain (DG), and the channel capacity loss (CCL) showing very good performance. The single-element antenna and the MIMO are fabricated and experimentally evaluated showing excellent impedance matching over the lower and higher frequency bands, which come in agreement with the simulation results. It is shown that the antenna produces maximum gain of 7.4 and 8.1 dBi at 28 and 38 GHz, respectively. The average radiation efficiencies of the proposed antenna are 88% and 88.8% over the lower and higher frequency bands, respectively. In addition, the coupling coefficients between the MIMO antenna systems are measured experimentally showing very low coupling values resulting in an efficient MIMO system that is suitable for future millimeter-wave (mm-wave) applications.","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}