首页 > 最新文献

Journal of Infrared, Millimeter, and Terahertz Waves最新文献

英文 中文
Pattern Diversity Based Four-Element Dual-band MIMO Patch Antenna for 5G mmWave Communication Networks 用于 5G 毫米波通信网络的基于模式分集的四元件双频 MIMO 贴片天线
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-05-10 DOI: 10.1007/s10762-024-00983-0
Waleed Tariq Sethi, Saad Hassan Kiani, Mehre E. Munir, Daniyal Ali Sehrai, Huseyin şerif savci, Dawar Awan

This study presents a planar dual-band multiple-input multiple-output (MIMO) antenna design for the prospective fifth-generation (5G) frequency bands of 28 and 38 GHz. The antenna element is designed by utilizing a rectangular patch with an offset microstrip feeding technique. A dual-band response is achieved by placing semi-circular slots on each side of the patch element. To tune the frequency response and improve impedance matching, vertical rectangular slits are etched in the rectangular patch and the ground plane, respectively. The results show that the single antenna element offers an impedance bandwidth of 2.52 GHz (26.32–28.84 GHz) and 7.5 GHz (34–41.5 GHz). In addition, a MIMO configuration based on pattern diversity using four antenna elements is designed and fabricated. The designed MIMO configuration achieves an impedance bandwidth of 3 GHz (27–30 GHz) and 5.46 GHz (35.54–41 GHz) at operating bands of 28 and 38 GHz. The peak realized gain for the single element at 28 and 38 GHz is noted to be 7.4 dBi and 7.5 dBi, respectively. Furthermore, the polarization diversity configuration illustrates an isolation of > 15 dB and > 25 dB for the 28 and 38 GHz frequency bands, respectively. Moreover, the MIMO configuration attains appropriate values for the envelope correlation coefficient (ECC) and diversity gain (DG), Total Active Reflection Co-efficient (TARC), Channel Capacity Loss (CCL) and Mean Effective Gain (MEG) for the operating frequency bands. The proposed MIMO system based on results seems to be potential choice for mmwave Ka Band Applications.

本研究介绍了一种平面双频多输入多输出(MIMO)天线设计,适用于 28 和 38 千兆赫的未来第五代(5G)频段。天线元件的设计采用了偏移微带馈电技术的矩形贴片。通过在贴片元件的两侧分别设置半圆形槽,实现了双频响应。为了调整频率响应和改善阻抗匹配,在矩形贴片和地平面上分别蚀刻了垂直矩形缝隙。结果显示,单个天线元件的阻抗带宽为 2.52 GHz(26.32-28.84 GHz)和 7.5 GHz(34-41.5 GHz)。此外,还设计并制造了基于模式分集的 MIMO 配置,使用四个天线元件。所设计的 MIMO 配置在 28 和 38 GHz 工作频段的阻抗带宽分别为 3 GHz(27-30 GHz)和 5.46 GHz(35.54-41 GHz)。在 28 和 38 GHz 频段,单个元件的峰值增益分别为 7.4 dBi 和 7.5 dBi。此外,极化分集配置在 28 和 38 GHz 频段的隔离度分别为 15 dB 和 25 dB。此外,MIMO 配置在工作频段的包络相关系数(ECC)、分集增益(DG)、总有源反射系数(TARC)、信道容量损失(CCL)和平均有效增益(MEG)方面都达到了适当的值。根据研究结果,拟议的多输入多输出系统似乎是毫米波 Ka 波段应用的潜在选择。
{"title":"Pattern Diversity Based Four-Element Dual-band MIMO Patch Antenna for 5G mmWave Communication Networks","authors":"Waleed Tariq Sethi, Saad Hassan Kiani, Mehre E. Munir, Daniyal Ali Sehrai, Huseyin şerif savci, Dawar Awan","doi":"10.1007/s10762-024-00983-0","DOIUrl":"https://doi.org/10.1007/s10762-024-00983-0","url":null,"abstract":"<p>This study presents a planar dual-band multiple-input multiple-output (MIMO) antenna design for the prospective fifth-generation (5G) frequency bands of 28 and 38 GHz. The antenna element is designed by utilizing a rectangular patch with an offset microstrip feeding technique. A dual-band response is achieved by placing semi-circular slots on each side of the patch element. To tune the frequency response and improve impedance matching, vertical rectangular slits are etched in the rectangular patch and the ground plane, respectively. The results show that the single antenna element offers an impedance bandwidth of 2.52 GHz (26.32–28.84 GHz) and 7.5 GHz (34–41.5 GHz). In addition, a MIMO configuration based on pattern diversity using four antenna elements is designed and fabricated. The designed MIMO configuration achieves an impedance bandwidth of 3 GHz (27–30 GHz) and 5.46 GHz (35.54–41 GHz) at operating bands of 28 and 38 GHz. The peak realized gain for the single element at 28 and 38 GHz is noted to be 7.4 dBi and 7.5 dBi, respectively. Furthermore, the polarization diversity configuration illustrates an isolation of &gt; 15 dB and &gt; 25 dB for the 28 and 38 GHz frequency bands, respectively. Moreover, the MIMO configuration attains appropriate values for the envelope correlation coefficient (ECC) and diversity gain (DG), Total Active Reflection Co-efficient (TARC), Channel Capacity Loss (CCL) and Mean Effective Gain (MEG) for the operating frequency bands. The proposed MIMO system based on results seems to be potential choice for mmwave Ka Band Applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"39 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Subterahertz Atmospheric Pressure Plasmatron for Plasma Chemical Applications 用于等离子化学应用的混合式次赫兹大气压力等离子体加速器
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-05-07 DOI: 10.1007/s10762-024-00987-w
S. V. Sintsov, A. V. Vodopyanov, D. A. Mansfeld, A. P. Fokin, A. A. Ananichev, A. A. Goryunov, E. I. Preobrazhensky, N. V. Chekmarev, M. Yu. Glyavin

This paper presents the results of an experimental study of a new hybrid plasmatron scheme, which was used to realize a gas discharge at atmospheric pressure supported by continuous focused submillimeter radiation with a frequency of 263 GHz. The implemented design allowed organizing a self-consistent interaction between submillimeter radiation and the supercritical plasma in a localized area both in terms of gas flow and electrodynamic. It is experimentally shown that the gas discharge absorbs up to 80% of the introduced submillimeter radiation power.

本文介绍了一种新型混合等离子体加速器方案的实验研究结果,该方案用于在大气压力下实现气体放电,并由频率为 263 千兆赫的持续聚焦亚毫米辐射提供支持。采用这种设计后,亚毫米波辐射和超临界等离子体在局部区域的气体流动和电动力学方面的相互作用自洽。实验表明,气体放电可吸收高达 80% 的亚毫米波辐射功率。
{"title":"Hybrid Subterahertz Atmospheric Pressure Plasmatron for Plasma Chemical Applications","authors":"S. V. Sintsov, A. V. Vodopyanov, D. A. Mansfeld, A. P. Fokin, A. A. Ananichev, A. A. Goryunov, E. I. Preobrazhensky, N. V. Chekmarev, M. Yu. Glyavin","doi":"10.1007/s10762-024-00987-w","DOIUrl":"https://doi.org/10.1007/s10762-024-00987-w","url":null,"abstract":"<p>This paper presents the results of an experimental study of a new hybrid plasmatron scheme, which was used to realize a gas discharge at atmospheric pressure supported by continuous focused submillimeter radiation with a frequency of 263 GHz. The implemented design allowed organizing a self-consistent interaction between submillimeter radiation and the supercritical plasma in a localized area both in terms of gas flow and electrodynamic. It is experimentally shown that the gas discharge absorbs up to 80% of the introduced submillimeter radiation power.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"22 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Static Reflective Surfaces for Improved Terahertz Coverage 提高太赫兹覆盖率的静态反射表面
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-05-06 DOI: 10.1007/s10762-024-00985-y
Thanh Le, Suresh Singh

LoS (Line of Sight) MIMO (Multiple Input Multiple Output) is considered the best way to deliver high-capacity channels for terahertz communications due to the severe attenuation suffered by reflected components. Unfortunately, terahertz links are easily blocked by any obstruction resulting in link breakage. Therefore, it is necessary to provide alternative paths via reflectors. A problem shared by LoS paths and reflected paths (via polished reflectors) is that the channel matrix is rank 1 in the far field. As a result, the achieved capacity is lower than what can theoretically be achieved in a rich multi-path environment. In this work, we simultaneously solve the channel rank problem and the coverage problem by using static reflective surfaces which provide limited scattering of the incident signal in a way that minimizes signal loss but provides multiple paths to the receiver with varying phase. We construct such a surface and characterize the received signal using a terahertz testbed. We show that using our surface, we can improve channel capacity for 2 × 2 LoS MIMO. We also develop a theoretical model for the received signal and show that the reflected capacity matches the measured capacity well.

LoS(视线)MIMO(多输入多输出)被认为是为太赫兹通信提供大容量信道的最佳方式,因为反射成分会产生严重衰减。遗憾的是,太赫兹链路很容易被任何障碍物阻断,导致链路中断。因此,有必要通过反射器提供替代路径。LoS 路径和反射路径(通过抛光反射器)共同面临的一个问题是,信道矩阵在远场的秩为 1。因此,实现的容量低于理论上在丰富的多路径环境中可以实现的容量。在这项工作中,我们同时解决了信道秩问题和覆盖问题,方法是使用静态反射表面,这种表面对入射信号进行有限散射,从而最大限度地减少信号损耗,同时提供多条通往接收器的不同相位路径。我们构建了这样一个表面,并使用太赫兹测试平台对接收信号进行了表征。我们的研究表明,使用我们的曲面,可以提高 2 × 2 LoS MIMO 的信道容量。我们还为接收信号建立了一个理论模型,并证明反射容量与测量容量十分吻合。
{"title":"Static Reflective Surfaces for Improved Terahertz Coverage","authors":"Thanh Le, Suresh Singh","doi":"10.1007/s10762-024-00985-y","DOIUrl":"https://doi.org/10.1007/s10762-024-00985-y","url":null,"abstract":"<p>LoS (Line of Sight) MIMO (Multiple Input Multiple Output) is considered the best way to deliver high-capacity channels for terahertz communications due to the severe attenuation suffered by reflected components. Unfortunately, terahertz links are easily blocked by any obstruction resulting in link breakage. Therefore, it is necessary to provide alternative paths via reflectors. A problem shared by LoS paths and reflected paths (via polished reflectors) is that the channel matrix is <i>rank 1</i> in the far field. As a result, the achieved capacity is lower than what can theoretically be achieved in a rich multi-path environment. In this work, we simultaneously solve the channel rank problem and the coverage problem by using static reflective surfaces which provide limited scattering of the incident signal in a way that minimizes signal loss but provides multiple paths to the receiver with varying phase. We construct such a surface and characterize the received signal using a terahertz testbed. We show that using our surface, we can improve channel capacity for 2 × 2 LoS MIMO. We also develop a theoretical model for the received signal and show that the reflected capacity matches the measured capacity well.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"31 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmented Reality Terahertz (AR-THz) Sensing and Imaging with Frequency-Modulated Continuous-Wave Radar 利用频率调制连续波雷达进行太赫兹增强现实(AR-THz)传感和成像
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-30 DOI: 10.1007/s10762-024-00984-z
Jean-Paul Guillet, Frédéric Fauquet, Jean Rioult

Terahertz imaging is one of the most promising approaches for non-destructive control. An interesting approach to having cost-effective systems is to use frequency-modulated continuous wave (FMCW) radars with a raster scan configuration. Nevertheless, current systems using linear stages or robotic arms have the disadvantage of being heavy, requiring a long scan and not allowing a direct visualization of the result being measured. In addition, it is complex to evaluate the position of the measuring point on the real object, particularly if it is not flat. Here, we propose to solve these previous challenges with a portable system combining an FMCW radar with an augmented reality (AR) interface using a smartphone. This system achieves two goals: (i) first is to achieve data acquisition in the AR environment and (ii) the second is to make possible the visualization of data, even after post-processing, in the AR environment.

太赫兹成像是最有前途的无损控制方法之一。使用具有光栅扫描配置的频率调制连续波(FMCW)雷达是一种具有成本效益的系统的有趣方法。然而,目前使用线性平台或机械臂的系统存在重量大、扫描时间长、无法直接看到测量结果等缺点。此外,评估测量点在实际物体上的位置也很复杂,尤其是在物体不平的情况下。在此,我们建议使用一种结合了 FMCW 雷达和使用智能手机的增强现实(AR)界面的便携式系统来解决上述难题。该系统可实现两个目标:(i) 首先是在 AR 环境中实现数据采集;(ii) 其次是在 AR 环境中实现数据的可视化,即使是在后处理之后。
{"title":"Augmented Reality Terahertz (AR-THz) Sensing and Imaging with Frequency-Modulated Continuous-Wave Radar","authors":"Jean-Paul Guillet, Frédéric Fauquet, Jean Rioult","doi":"10.1007/s10762-024-00984-z","DOIUrl":"https://doi.org/10.1007/s10762-024-00984-z","url":null,"abstract":"<p>Terahertz imaging is one of the most promising approaches for non-destructive control. An interesting approach to having cost-effective systems is to use frequency-modulated continuous wave (FMCW) radars with a raster scan configuration. Nevertheless, current systems using linear stages or robotic arms have the disadvantage of being heavy, requiring a long scan and not allowing a direct visualization of the result being measured. In addition, it is complex to evaluate the position of the measuring point on the real object, particularly if it is not flat. Here, we propose to solve these previous challenges with a portable system combining an FMCW radar with an augmented reality (AR) interface using a smartphone. This system achieves two goals: (i) first is to achieve data acquisition in the AR environment and (ii) the second is to make possible the visualization of data, even after post-processing, in the AR environment.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time Monitoring of Hydration Reaction of Theophylline Anhydrous via Terahertz Attenuated Total Reflection Time Domain Spectroscopy 通过太赫兹衰减全反射时域光谱实时监测无水茶碱的水合反应
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-26 DOI: 10.1007/s10762-024-00986-x
Kazuhiro Takahashi, Koichiro Akiyama, Kazuki Horita, Tomoaki Sakamoto, Hiroshi Satozono

In pharmaceuticals, pseudo-polymorphism, e.g., the existence of hydrate and anhydrous forms, affects their physicochemical characteristics. Therefore, the evaluation of pseudo-polymorphism is one of the most important quality analyses. In this research, we investigate the real-time monitoring of the hydration reaction of theophylline using terahertz attenuated total reflection time domain spectroscopy (THz-attenuated total reflection (ATR)-TDS). We continuously measured a mixture of hydroxypropyl cellulose solution and theophylline anhydrous (TPA) while keeping it pressed to the ATR surface. We observed that the absorption peaks derived from TPA decreased and those derived from theophylline monohydrate (TPM) increased with time, demonstrating that the hydrate reaction of TPA can be monitored. Subsequently, we performed an accurate and quantitative evaluation of the hydration reaction by calculating the temporal changes in the crystal form ratio of TPM based on the changes in its second derivative peak intensity followed by a curve fitting. In addition, we performed real-time monitoring of the reaction using two different pressure mechanisms, finding that using a weight to apply pressure provided better reproducibility than using a screw. This study demonstrates that THz spectroscopy is a useful method for the evaluation of pseudo-polymorphism in pharmaceuticals.

在药品中,假多态性(如水合物和无水物的存在)会影响药品的理化特性。因此,假多态性的评估是最重要的质量分析之一。在这项研究中,我们利用太赫兹衰减全反射时域光谱(THz-attenuated total reflection (ATR)-TDS) 技术研究了茶碱水合反应的实时监测。我们连续测量了羟丙基纤维素溶液和无水茶碱(TPA)的混合物,同时将其压在 ATR 表面。我们观察到,随着时间的推移,来自 TPA 的吸收峰减少,而来自一水茶碱 (TPM) 的吸收峰增加,这表明 TPA 的水合物反应是可以监测的。随后,我们根据 TPM 二阶导数峰强度的变化,计算出 TPM 晶型比的时间变化,然后进行曲线拟合,从而对水合反应进行了精确的定量评估。此外,我们还使用两种不同的加压机制对反应进行了实时监测,发现使用砝码加压比使用螺杆加压具有更好的重现性。这项研究表明,太赫兹光谱法是评估药物假多态性的一种有用方法。
{"title":"Real-time Monitoring of Hydration Reaction of Theophylline Anhydrous via Terahertz Attenuated Total Reflection Time Domain Spectroscopy","authors":"Kazuhiro Takahashi, Koichiro Akiyama, Kazuki Horita, Tomoaki Sakamoto, Hiroshi Satozono","doi":"10.1007/s10762-024-00986-x","DOIUrl":"https://doi.org/10.1007/s10762-024-00986-x","url":null,"abstract":"<p>In pharmaceuticals, pseudo-polymorphism, e.g., the existence of hydrate and anhydrous forms, affects their physicochemical characteristics. Therefore, the evaluation of pseudo-polymorphism is one of the most important quality analyses. In this research, we investigate the real-time monitoring of the hydration reaction of theophylline using terahertz attenuated total reflection time domain spectroscopy (THz-attenuated total reflection (ATR)-TDS). We continuously measured a mixture of hydroxypropyl cellulose solution and theophylline anhydrous (TPA) while keeping it pressed to the ATR surface. We observed that the absorption peaks derived from TPA decreased and those derived from theophylline monohydrate (TPM) increased with time, demonstrating that the hydrate reaction of TPA can be monitored. Subsequently, we performed an accurate and quantitative evaluation of the hydration reaction by calculating the temporal changes in the crystal form ratio of TPM based on the changes in its second derivative peak intensity followed by a curve fitting. In addition, we performed real-time monitoring of the reaction using two different pressure mechanisms, finding that using a weight to apply pressure provided better reproducibility than using a screw. This study demonstrates that THz spectroscopy is a useful method for the evaluation of pseudo-polymorphism in pharmaceuticals.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"261 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140802485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Investigation of Compact Backed Mirror Two-Port MIMO Antenna for n257 (30 GHz) 5G Spectrum 面向 n257(30 千兆赫)5G 频谱的紧凑型背反射镜双端口多输入多输出天线的设计与研究
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-18 DOI: 10.1007/s10762-024-00982-1
Aditya Kumar Singh, Ajay Kumar Dwivedi, Chandan Choubey, Vivek Singh

In this article, the designing and analysis of a compact novel dual-port multiple-input multiple-output (MIMO) printed antenna are investigated for 30 GHz mm-wave applications. The single antenna unit is having modified C-shaped radiator and an attached rectangular stub with an overall dimension of 10 × 7 × 0.8 mm3. The dual-element MIMO antenna is achieved by creating a back mirror of the single antenna element around the x-axis. This back mirror composition of the MIMO antenna elements is introducing the high level of inter-element isolation (> 20 dB). The proposed antenna prototype is built on a Roger RT/duriod substrate with a loss tangent (tanδ) of 0.0009 and a relative constant (εrsub) of 2.2. As a way to determine the capabilities of the proposed MIMO antenna, many diversity parameters are computed, including the envelope correlation coefficient (ECC < 0.05), diversity gain (DG > 9.99 dB), channel capacity loss (CCL < 0.2 bits/s/Hz), mean effective gain (MEG < − 3 dB), and total active reflection coefficient (TARC). The suggested MIMO antenna is appropriate for 5G new radio frequency bands under mm-wave communication as it has 8.36% impedance bandwidth across the frequency range of simulated (29.04–31.57 GHz)/measured (28.82–31.30 GHz). The antenna under consideration is constructed, and the simulated outcomes are verified by the measurement results.

本文研究了用于 30 GHz 毫米波应用的紧凑型新型双端口多输入多输出(MIMO)印刷天线的设计和分析。单个天线单元具有改良的 C 形辐射器和一个附带的矩形存根,总尺寸为 10 × 7 × 0.8 mm3。双元件多输入多输出天线是通过在 x 轴周围创建单天线元件的背面镜来实现的。MIMO 天线元件的这种背镜面构成带来了高水平的元件间隔离度(20 dB)。拟议的天线原型建立在 Roger RT/duriod 基板上,其损耗正切(tanδ)为 0.0009,相对常数(εrsub)为 2.2。为了确定所建议的 MIMO 天线的能力,计算了许多分集参数,包括包络相关系数(ECC < 0.05)、分集增益(DG > 9.99 dB)、信道容量损失(CCL < 0.2 bits/s/Hz)、平均有效增益(MEG < - 3 dB)和总有源反射系数(TARC)。建议的 MIMO 天线在模拟(29.04-31.57 GHz)/实测(28.82-31.30 GHz)频率范围内具有 8.36% 的阻抗带宽,因此适合毫米波通信下的 5G 新无线电频段。我们构建了所考虑的天线,并通过测量结果验证了模拟结果。
{"title":"Design and Investigation of Compact Backed Mirror Two-Port MIMO Antenna for n257 (30 GHz) 5G Spectrum","authors":"Aditya Kumar Singh, Ajay Kumar Dwivedi, Chandan Choubey, Vivek Singh","doi":"10.1007/s10762-024-00982-1","DOIUrl":"https://doi.org/10.1007/s10762-024-00982-1","url":null,"abstract":"<p>In this article, the designing and analysis of a compact novel dual-port multiple-input multiple-output (MIMO) printed antenna are investigated for 30 GHz mm-wave applications. The single antenna unit is having modified C-shaped radiator and an attached rectangular stub with an overall dimension of 10 × 7 × 0.8 mm<sup>3</sup>. The dual-element MIMO antenna is achieved by creating a back mirror of the single antenna element around the <i>x</i>-axis. This back mirror composition of the MIMO antenna elements is introducing the high level of inter-element isolation (&gt; 20 dB). The proposed antenna prototype is built on a Roger RT/duriod substrate with a loss tangent (tan<i>δ</i>) of 0.0009 and a relative constant (<i>ε</i><sub>rsub</sub>) of 2.2. As a way to determine the capabilities of the proposed MIMO antenna, many diversity parameters are computed, including the envelope correlation coefficient (ECC &lt; 0.05), diversity gain (DG &gt; 9.99 dB), channel capacity loss (CCL &lt; 0.2 bits/s/Hz), mean effective gain (MEG &lt; − 3 dB), and total active reflection coefficient (TARC). The suggested MIMO antenna is appropriate for 5G new radio frequency bands under mm-wave communication as it has 8.36% impedance bandwidth across the frequency range of simulated (29.04–31.57 GHz)/measured (28.82–31.30 GHz). The antenna under consideration is constructed, and the simulated outcomes are verified by the measurement results.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Evaluation and Experimental Study of a 0.34-THz Folded Waveguide Sheet Beam BWO 0.34-THz 折叠波导片束 BWO 的性能评估和实验研究
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-25 DOI: 10.1007/s10762-024-00980-3
Jibran Latif, Huarong Gong, Zhanliang Wang, Atif Jameel, Shaomeng Wang, Jinjun Feng, Yubin Gong

Terahertz (THz) backward wave oscillators (BWOs) hold immense potential for a broad range of industrial and military applications. This study presents a comparative analysis of 0.34 THz sheet beam (SB) and circular beam (CB) folded waveguide (FWG) BWOs. We examined the design, simulation (CST MWS and PS, HFSS), and performance, revealing that sheet beam BWO outperforms circular beam BWO in terms of interaction impedance, power, efficiency, and bandwidth. Under 20 kV beam voltage and 10 mA beam current conditions, sheet beam BWO achieves 0.47 (Omega ) (0.34 THz) interaction impedance, 0.65 W output power, and a bandwidth of approximately 12 GHz, surpassing the 0.18 (Omega ), 0.23 W, and 8.5 GHz values of circular beam BWO, respectively. Furthermore, this study encompasses the fabrication and thorough characterization of the sheet beam BWO’s slow-wave structure. Experimental validation confirms its effectiveness, with measured (S_{11}) demonstrating reflection below (-)10 dB and (S_{21}) exhibiting transmission above (-)2 dB.

太赫兹(THz)后向波振荡器(BWOs)在广泛的工业和军事应用中具有巨大的潜力。本研究对 0.34 太赫兹片束 (SB) 和圆束 (CB) 折叠波导 (FWG) BWOs 进行了比较分析。我们考察了设计、仿真(CST MWS 和 PS、HFSS)和性能,结果表明片束 BWO 在相互作用阻抗、功率、效率和带宽方面均优于圆束 BWO。在 20 kV 束电压和 10 mA 束电流条件下,片束 BWO 实现了 0.47 (Omega ) (0.34 THz) 的相互作用阻抗、0.65 W 的输出功率和约 12 GHz 的带宽,分别超过了圆束 BWO 的 0.18 (Omega )、0.23 W 和 8.5 GHz 值。此外,这项研究还包括片束 BWO 慢波结构的制造和全面表征。实验验证证实了其有效性,测得的(S_{11})反射率低于(-)10 dB,(S_{21})传输率高于(-)2 dB。
{"title":"Performance Evaluation and Experimental Study of a 0.34-THz Folded Waveguide Sheet Beam BWO","authors":"Jibran Latif, Huarong Gong, Zhanliang Wang, Atif Jameel, Shaomeng Wang, Jinjun Feng, Yubin Gong","doi":"10.1007/s10762-024-00980-3","DOIUrl":"https://doi.org/10.1007/s10762-024-00980-3","url":null,"abstract":"<p>Terahertz (THz) backward wave oscillators (BWOs) hold immense potential for a broad range of industrial and military applications. This study presents a comparative analysis of 0.34 THz sheet beam (SB) and circular beam (CB) folded waveguide (FWG) BWOs. We examined the design, simulation (CST MWS and PS, HFSS), and performance, revealing that sheet beam BWO outperforms circular beam BWO in terms of interaction impedance, power, efficiency, and bandwidth. Under 20 kV beam voltage and 10 mA beam current conditions, sheet beam BWO achieves 0.47 <span>(Omega )</span> (0.34 THz) interaction impedance, 0.65 W output power, and a bandwidth of approximately 12 GHz, surpassing the 0.18 <span>(Omega )</span>, 0.23 W, and 8.5 GHz values of circular beam BWO, respectively. Furthermore, this study encompasses the fabrication and thorough characterization of the sheet beam BWO’s slow-wave structure. Experimental validation confirms its effectiveness, with measured <span>(S_{11})</span> demonstrating reflection below <span>(-)</span>10 dB and <span>(S_{21})</span> exhibiting transmission above <span>(-)</span>2 dB.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-Band MIMO Antennas with Circular Polarization for Spatial and Polarization Diversity 用于空间和极化分集的 Q 波段环形极化多输入多输出天线
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-25 DOI: 10.1007/s10762-024-00979-w

Abstract

The present work proposes three MIMO antennas with different configurations for the future applications of wireless communications in the Q-band of the frequency to realize both spatial and polarization diversities. A circularly polarized (CP) printed antenna operating over two frequency bands at 37.8 and 50 GHz is utilized as a single element to construct the proposed MIMO antennas. Two-element MIMO antenna systems arranged in two configurations, side-by-side and face-to-face, are proposed to achieve spatial diversity. Also, a four-element MIMO antenna system is designed to achieve polarization diversity in addition to spatial diversity. The proposed MIMO antenna systems are designed with the aid of the CST simulator. The three MIMO antennas are fabricated and their performance is experimentally evaluated regarding the circular polarization, impedance matching, antenna gain, envelope correlation coefficient (ECC), and diversity gain (DG). The experimental results for the single-element as well as the MIMO antennas come in good agreement with simulation results showing high performance. Both the numerical and experimental investigations reveal that the mutual coupling between any two ports of the proposed MIMO antennas is below (-25 {text{dB}}) . Also, for any two ports it is shown that the ECC is below (1times {10}^{-7}) and the diversity gain is higher than (9.99) . The impedance matching bandwidths (for (left|{S}_{11}right|<-10 {text{dB}}) ) are shown to be (1.53) and (1.88) GHz at (37.8) and (50mathrm{ GHz}) , respectively, and the corresponding 3-dB axial ratio bandwidths are (700) and (130mathrm{ MHz}) , respectively.

摘要 本作品针对 Q 频段无线通信的未来应用,提出了三种不同配置的多输入多输出(MIMO)天线,以实现空间和极化多样化。在 37.8 和 50 GHz 两个频段上工作的圆极化(CP)印刷天线被用作构建所建议的 MIMO 天线的单一元件。为实现空间分集,提出了并排和面对面两种配置的两元件 MIMO 天线系统。此外,还设计了一个四元件 MIMO 天线系统,以实现空间分集之外的极化分集。所提出的 MIMO 天线系统是借助 CST 仿真器设计的。制作了三个 MIMO 天线,并通过实验评估了它们在圆极化、阻抗匹配、天线增益、包络相关系数 (ECC) 和分集增益 (DG) 方面的性能。单元件和多输入多输出天线的实验结果与仿真结果非常吻合,显示出很高的性能。数值和实验研究都表明,所提出的 MIMO 天线任意两个端口之间的相互耦合都低于 (-25 {text{dB}}) 。同时,对于任意两个端口,ECC低于(1乘以{10}^{-7}),分集增益高于(9.99)。阻抗匹配带宽(对于 (left|{S}_{11}right|<-10 {text{dB}}) )分别为 (1.53) 和 (1.88) GHz,频率分别为 (37.8) 和 (50mathrm{ GHz}) ,相应的 3-dB 轴向比带宽分别为 (700) 和 (130mathrm{ MHz}) 。
{"title":"Q-Band MIMO Antennas with Circular Polarization for Spatial and Polarization Diversity","authors":"","doi":"10.1007/s10762-024-00979-w","DOIUrl":"https://doi.org/10.1007/s10762-024-00979-w","url":null,"abstract":"<h3>Abstract</h3> <p>The present work proposes three MIMO antennas with different configurations for the future applications of wireless communications in the Q-band of the frequency to realize both spatial and polarization diversities. A circularly polarized (CP) printed antenna operating over two frequency bands at 37.8 and 50 GHz is utilized as a single element to construct the proposed MIMO antennas. Two-element MIMO antenna systems arranged in two configurations, side-by-side and face-to-face, are proposed to achieve spatial diversity. Also, a four-element MIMO antenna system is designed to achieve polarization diversity in addition to spatial diversity. The proposed MIMO antenna systems are designed with the aid of the CST simulator. The three MIMO antennas are fabricated and their performance is experimentally evaluated regarding the circular polarization, impedance matching, antenna gain, envelope correlation coefficient (ECC), and diversity gain (DG). The experimental results for the single-element as well as the MIMO antennas come in good agreement with simulation results showing high performance. Both the numerical and experimental investigations reveal that the mutual coupling between any two ports of the proposed MIMO antennas is below <span> <span>(-25 {text{dB}})</span> </span>. Also, for any two ports it is shown that the ECC is below <span> <span>(1times {10}^{-7})</span> </span> and the diversity gain is higher than <span> <span>(9.99)</span> </span>. The impedance matching bandwidths (for <span> <span>(left|{S}_{11}right|&lt;-10 {text{dB}})</span> </span>) are shown to be <span> <span>(1.53)</span> </span> and <span> <span>(1.88)</span> </span> GHz at <span> <span>(37.8)</span> </span> and <span> <span>(50mathrm{ GHz})</span> </span>, respectively, and the corresponding 3-dB axial ratio bandwidths are <span> <span>(700)</span> </span> and <span> <span>(130mathrm{ MHz})</span> </span>, respectively.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"74 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
$$bar{varvec{S}}$$ Matrix from a Two-Dimensional Slab Covered by Water Drops in W and J Bands: Comparison of a Full-Wave Method with Measurements 水滴覆盖的二维板在 W 波段和 J 波段的 $$bar{varvec{S}}$ 矩阵:全波方法与测量结果的比较
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-12 DOI: 10.1007/s10762-024-00977-y
Christophe Bourlier, Paul Bouquin, Alain Peden, Daniel Bourreau, Nicolas Pinel

This paper presents a full-wave method, based on the method of moments (MoM), to calculate the (bar{varvec{S}}) matrix from a two-dimensional complex sample in millimeter and submillimeter W and J bands. From the surface currents obtained by inverting the impedance matrix and from the Huygens principle, the reflection and transmission coefficients are computed. This allows us to obtain the four elements of the (bar{varvec{S}}) matrix. Firstly, the method is validated from canonical samples (a dielectric slab and a stack of two dielectric slabs) by applying the well-known Fresnel coefficients. Secondly, for the W (75 to 110 GHz) and J (220 to 330 GHz) bands, a PVC slab covered by water drops is considered, for which the (bar{varvec{S}}) matrix is compared with measurements made in quasi-optical free space. A satisfactory agreement is obtained between the measurements and the model.

本文提出了一种基于矩量法(MoM)的全波方法,用于计算毫米波段和亚毫米波段 W 和 J 波段二维复杂样品的 (barvarvec{S}})矩阵。根据阻抗矩阵反演得到的表面电流和惠更斯原理,可以计算出反射系数和透射系数。这样我们就可以得到 (bar{varvec{S}}) 矩阵的四个元素。首先,通过应用众所周知的菲涅尔系数,从典型样品(一块介质板和两块介质板的叠层)验证了该方法。其次,对于 W(75 至 110 GHz)和 J(220 至 330 GHz)波段,考虑了被水滴覆盖的 PVC 板,并将其 (bar{varvec{S}}) 矩阵与在准光学自由空间中进行的测量进行了比较。测量结果与模型之间取得了令人满意的一致。
{"title":"$$bar{varvec{S}}$$ Matrix from a Two-Dimensional Slab Covered by Water Drops in W and J Bands: Comparison of a Full-Wave Method with Measurements","authors":"Christophe Bourlier, Paul Bouquin, Alain Peden, Daniel Bourreau, Nicolas Pinel","doi":"10.1007/s10762-024-00977-y","DOIUrl":"https://doi.org/10.1007/s10762-024-00977-y","url":null,"abstract":"<p>This paper presents a full-wave method, based on the method of moments (MoM), to calculate the <span>(bar{varvec{S}})</span> matrix from a two-dimensional complex sample in millimeter and submillimeter <i>W</i> and <i>J</i> bands. From the surface currents obtained by inverting the impedance matrix and from the Huygens principle, the reflection and transmission coefficients are computed. This allows us to obtain the four elements of the <span>(bar{varvec{S}})</span> matrix. Firstly, the method is validated from canonical samples (a dielectric slab and a stack of two dielectric slabs) by applying the well-known Fresnel coefficients. Secondly, for the <i>W</i> (75 to 110 GHz) and <i>J</i> (220 to 330 GHz) bands, a PVC slab covered by water drops is considered, for which the <span>(bar{varvec{S}})</span> matrix is compared with measurements made in quasi-optical free space. A satisfactory agreement is obtained between the measurements and the model.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"15 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range 用于太赫兹范围的高频选择性三维打印介质结构
IF 2.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-08 DOI: 10.1007/s10762-024-00973-2
Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer

In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.

本文介绍了一种太赫兹透射频率选择准表面(FSQS),它具有很强的吸收线和周期性带通特性。FSQS 结构由不同厚度的法布里-佩罗谐振器横向组合而成。FSQS 的传递函数可作为宽带参考,用于测试宽带太赫兹系统传输路径的信号完整性。该传递函数实现了带通特性和尖锐谐振的结合,理论衰减超过 80 dB,36 个谐振器组合的品质因数超过 40,000 。使用低损耗环烯烃共聚物 (COC) 长丝,通过熔融沉积模型三维打印出由四个谐振器组成的单个 FSQS。最后,利用频域和时域太赫兹光谱对 3D 打印 FSQS 进行了表征。结果显示衰减超过 42 dB,品质因数超过 100。
{"title":"A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range","authors":"Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer","doi":"10.1007/s10762-024-00973-2","DOIUrl":"https://doi.org/10.1007/s10762-024-00973-2","url":null,"abstract":"<p>In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"21 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Infrared, Millimeter, and Terahertz Waves
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1