首页 > 最新文献

Journal of Infrared, Millimeter, and Terahertz Waves最新文献

英文 中文
Design and Investigation of Compact Backed Mirror Two-Port MIMO Antenna for n257 (30 GHz) 5G Spectrum 面向 n257(30 千兆赫)5G 频谱的紧凑型背反射镜双端口多输入多输出天线的设计与研究
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-18 DOI: 10.1007/s10762-024-00982-1
Aditya Kumar Singh, Ajay Kumar Dwivedi, Chandan Choubey, Vivek Singh

In this article, the designing and analysis of a compact novel dual-port multiple-input multiple-output (MIMO) printed antenna are investigated for 30 GHz mm-wave applications. The single antenna unit is having modified C-shaped radiator and an attached rectangular stub with an overall dimension of 10 × 7 × 0.8 mm3. The dual-element MIMO antenna is achieved by creating a back mirror of the single antenna element around the x-axis. This back mirror composition of the MIMO antenna elements is introducing the high level of inter-element isolation (> 20 dB). The proposed antenna prototype is built on a Roger RT/duriod substrate with a loss tangent (tanδ) of 0.0009 and a relative constant (εrsub) of 2.2. As a way to determine the capabilities of the proposed MIMO antenna, many diversity parameters are computed, including the envelope correlation coefficient (ECC < 0.05), diversity gain (DG > 9.99 dB), channel capacity loss (CCL < 0.2 bits/s/Hz), mean effective gain (MEG < − 3 dB), and total active reflection coefficient (TARC). The suggested MIMO antenna is appropriate for 5G new radio frequency bands under mm-wave communication as it has 8.36% impedance bandwidth across the frequency range of simulated (29.04–31.57 GHz)/measured (28.82–31.30 GHz). The antenna under consideration is constructed, and the simulated outcomes are verified by the measurement results.

本文研究了用于 30 GHz 毫米波应用的紧凑型新型双端口多输入多输出(MIMO)印刷天线的设计和分析。单个天线单元具有改良的 C 形辐射器和一个附带的矩形存根,总尺寸为 10 × 7 × 0.8 mm3。双元件多输入多输出天线是通过在 x 轴周围创建单天线元件的背面镜来实现的。MIMO 天线元件的这种背镜面构成带来了高水平的元件间隔离度(20 dB)。拟议的天线原型建立在 Roger RT/duriod 基板上,其损耗正切(tanδ)为 0.0009,相对常数(εrsub)为 2.2。为了确定所建议的 MIMO 天线的能力,计算了许多分集参数,包括包络相关系数(ECC < 0.05)、分集增益(DG > 9.99 dB)、信道容量损失(CCL < 0.2 bits/s/Hz)、平均有效增益(MEG < - 3 dB)和总有源反射系数(TARC)。建议的 MIMO 天线在模拟(29.04-31.57 GHz)/实测(28.82-31.30 GHz)频率范围内具有 8.36% 的阻抗带宽,因此适合毫米波通信下的 5G 新无线电频段。我们构建了所考虑的天线,并通过测量结果验证了模拟结果。
{"title":"Design and Investigation of Compact Backed Mirror Two-Port MIMO Antenna for n257 (30 GHz) 5G Spectrum","authors":"Aditya Kumar Singh, Ajay Kumar Dwivedi, Chandan Choubey, Vivek Singh","doi":"10.1007/s10762-024-00982-1","DOIUrl":"https://doi.org/10.1007/s10762-024-00982-1","url":null,"abstract":"<p>In this article, the designing and analysis of a compact novel dual-port multiple-input multiple-output (MIMO) printed antenna are investigated for 30 GHz mm-wave applications. The single antenna unit is having modified C-shaped radiator and an attached rectangular stub with an overall dimension of 10 × 7 × 0.8 mm<sup>3</sup>. The dual-element MIMO antenna is achieved by creating a back mirror of the single antenna element around the <i>x</i>-axis. This back mirror composition of the MIMO antenna elements is introducing the high level of inter-element isolation (&gt; 20 dB). The proposed antenna prototype is built on a Roger RT/duriod substrate with a loss tangent (tan<i>δ</i>) of 0.0009 and a relative constant (<i>ε</i><sub>rsub</sub>) of 2.2. As a way to determine the capabilities of the proposed MIMO antenna, many diversity parameters are computed, including the envelope correlation coefficient (ECC &lt; 0.05), diversity gain (DG &gt; 9.99 dB), channel capacity loss (CCL &lt; 0.2 bits/s/Hz), mean effective gain (MEG &lt; − 3 dB), and total active reflection coefficient (TARC). The suggested MIMO antenna is appropriate for 5G new radio frequency bands under mm-wave communication as it has 8.36% impedance bandwidth across the frequency range of simulated (29.04–31.57 GHz)/measured (28.82–31.30 GHz). The antenna under consideration is constructed, and the simulated outcomes are verified by the measurement results.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Evaluation and Experimental Study of a 0.34-THz Folded Waveguide Sheet Beam BWO 0.34-THz 折叠波导片束 BWO 的性能评估和实验研究
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-03-25 DOI: 10.1007/s10762-024-00980-3
Jibran Latif, Huarong Gong, Zhanliang Wang, Atif Jameel, Shaomeng Wang, Jinjun Feng, Yubin Gong

Terahertz (THz) backward wave oscillators (BWOs) hold immense potential for a broad range of industrial and military applications. This study presents a comparative analysis of 0.34 THz sheet beam (SB) and circular beam (CB) folded waveguide (FWG) BWOs. We examined the design, simulation (CST MWS and PS, HFSS), and performance, revealing that sheet beam BWO outperforms circular beam BWO in terms of interaction impedance, power, efficiency, and bandwidth. Under 20 kV beam voltage and 10 mA beam current conditions, sheet beam BWO achieves 0.47 (Omega ) (0.34 THz) interaction impedance, 0.65 W output power, and a bandwidth of approximately 12 GHz, surpassing the 0.18 (Omega ), 0.23 W, and 8.5 GHz values of circular beam BWO, respectively. Furthermore, this study encompasses the fabrication and thorough characterization of the sheet beam BWO’s slow-wave structure. Experimental validation confirms its effectiveness, with measured (S_{11}) demonstrating reflection below (-)10 dB and (S_{21}) exhibiting transmission above (-)2 dB.

太赫兹(THz)后向波振荡器(BWOs)在广泛的工业和军事应用中具有巨大的潜力。本研究对 0.34 太赫兹片束 (SB) 和圆束 (CB) 折叠波导 (FWG) BWOs 进行了比较分析。我们考察了设计、仿真(CST MWS 和 PS、HFSS)和性能,结果表明片束 BWO 在相互作用阻抗、功率、效率和带宽方面均优于圆束 BWO。在 20 kV 束电压和 10 mA 束电流条件下,片束 BWO 实现了 0.47 (Omega ) (0.34 THz) 的相互作用阻抗、0.65 W 的输出功率和约 12 GHz 的带宽,分别超过了圆束 BWO 的 0.18 (Omega )、0.23 W 和 8.5 GHz 值。此外,这项研究还包括片束 BWO 慢波结构的制造和全面表征。实验验证证实了其有效性,测得的(S_{11})反射率低于(-)10 dB,(S_{21})传输率高于(-)2 dB。
{"title":"Performance Evaluation and Experimental Study of a 0.34-THz Folded Waveguide Sheet Beam BWO","authors":"Jibran Latif, Huarong Gong, Zhanliang Wang, Atif Jameel, Shaomeng Wang, Jinjun Feng, Yubin Gong","doi":"10.1007/s10762-024-00980-3","DOIUrl":"https://doi.org/10.1007/s10762-024-00980-3","url":null,"abstract":"<p>Terahertz (THz) backward wave oscillators (BWOs) hold immense potential for a broad range of industrial and military applications. This study presents a comparative analysis of 0.34 THz sheet beam (SB) and circular beam (CB) folded waveguide (FWG) BWOs. We examined the design, simulation (CST MWS and PS, HFSS), and performance, revealing that sheet beam BWO outperforms circular beam BWO in terms of interaction impedance, power, efficiency, and bandwidth. Under 20 kV beam voltage and 10 mA beam current conditions, sheet beam BWO achieves 0.47 <span>(Omega )</span> (0.34 THz) interaction impedance, 0.65 W output power, and a bandwidth of approximately 12 GHz, surpassing the 0.18 <span>(Omega )</span>, 0.23 W, and 8.5 GHz values of circular beam BWO, respectively. Furthermore, this study encompasses the fabrication and thorough characterization of the sheet beam BWO’s slow-wave structure. Experimental validation confirms its effectiveness, with measured <span>(S_{11})</span> demonstrating reflection below <span>(-)</span>10 dB and <span>(S_{21})</span> exhibiting transmission above <span>(-)</span>2 dB.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-Band MIMO Antennas with Circular Polarization for Spatial and Polarization Diversity 用于空间和极化分集的 Q 波段环形极化多输入多输出天线
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-03-25 DOI: 10.1007/s10762-024-00979-w

Abstract

The present work proposes three MIMO antennas with different configurations for the future applications of wireless communications in the Q-band of the frequency to realize both spatial and polarization diversities. A circularly polarized (CP) printed antenna operating over two frequency bands at 37.8 and 50 GHz is utilized as a single element to construct the proposed MIMO antennas. Two-element MIMO antenna systems arranged in two configurations, side-by-side and face-to-face, are proposed to achieve spatial diversity. Also, a four-element MIMO antenna system is designed to achieve polarization diversity in addition to spatial diversity. The proposed MIMO antenna systems are designed with the aid of the CST simulator. The three MIMO antennas are fabricated and their performance is experimentally evaluated regarding the circular polarization, impedance matching, antenna gain, envelope correlation coefficient (ECC), and diversity gain (DG). The experimental results for the single-element as well as the MIMO antennas come in good agreement with simulation results showing high performance. Both the numerical and experimental investigations reveal that the mutual coupling between any two ports of the proposed MIMO antennas is below (-25 {text{dB}}) . Also, for any two ports it is shown that the ECC is below (1times {10}^{-7}) and the diversity gain is higher than (9.99) . The impedance matching bandwidths (for (left|{S}_{11}right|<-10 {text{dB}}) ) are shown to be (1.53) and (1.88) GHz at (37.8) and (50mathrm{ GHz}) , respectively, and the corresponding 3-dB axial ratio bandwidths are (700) and (130mathrm{ MHz}) , respectively.

摘要 本作品针对 Q 频段无线通信的未来应用,提出了三种不同配置的多输入多输出(MIMO)天线,以实现空间和极化多样化。在 37.8 和 50 GHz 两个频段上工作的圆极化(CP)印刷天线被用作构建所建议的 MIMO 天线的单一元件。为实现空间分集,提出了并排和面对面两种配置的两元件 MIMO 天线系统。此外,还设计了一个四元件 MIMO 天线系统,以实现空间分集之外的极化分集。所提出的 MIMO 天线系统是借助 CST 仿真器设计的。制作了三个 MIMO 天线,并通过实验评估了它们在圆极化、阻抗匹配、天线增益、包络相关系数 (ECC) 和分集增益 (DG) 方面的性能。单元件和多输入多输出天线的实验结果与仿真结果非常吻合,显示出很高的性能。数值和实验研究都表明,所提出的 MIMO 天线任意两个端口之间的相互耦合都低于 (-25 {text{dB}}) 。同时,对于任意两个端口,ECC低于(1乘以{10}^{-7}),分集增益高于(9.99)。阻抗匹配带宽(对于 (left|{S}_{11}right|<-10 {text{dB}}) )分别为 (1.53) 和 (1.88) GHz,频率分别为 (37.8) 和 (50mathrm{ GHz}) ,相应的 3-dB 轴向比带宽分别为 (700) 和 (130mathrm{ MHz}) 。
{"title":"Q-Band MIMO Antennas with Circular Polarization for Spatial and Polarization Diversity","authors":"","doi":"10.1007/s10762-024-00979-w","DOIUrl":"https://doi.org/10.1007/s10762-024-00979-w","url":null,"abstract":"<h3>Abstract</h3> <p>The present work proposes three MIMO antennas with different configurations for the future applications of wireless communications in the Q-band of the frequency to realize both spatial and polarization diversities. A circularly polarized (CP) printed antenna operating over two frequency bands at 37.8 and 50 GHz is utilized as a single element to construct the proposed MIMO antennas. Two-element MIMO antenna systems arranged in two configurations, side-by-side and face-to-face, are proposed to achieve spatial diversity. Also, a four-element MIMO antenna system is designed to achieve polarization diversity in addition to spatial diversity. The proposed MIMO antenna systems are designed with the aid of the CST simulator. The three MIMO antennas are fabricated and their performance is experimentally evaluated regarding the circular polarization, impedance matching, antenna gain, envelope correlation coefficient (ECC), and diversity gain (DG). The experimental results for the single-element as well as the MIMO antennas come in good agreement with simulation results showing high performance. Both the numerical and experimental investigations reveal that the mutual coupling between any two ports of the proposed MIMO antennas is below <span> <span>(-25 {text{dB}})</span> </span>. Also, for any two ports it is shown that the ECC is below <span> <span>(1times {10}^{-7})</span> </span> and the diversity gain is higher than <span> <span>(9.99)</span> </span>. The impedance matching bandwidths (for <span> <span>(left|{S}_{11}right|&lt;-10 {text{dB}})</span> </span>) are shown to be <span> <span>(1.53)</span> </span> and <span> <span>(1.88)</span> </span> GHz at <span> <span>(37.8)</span> </span> and <span> <span>(50mathrm{ GHz})</span> </span>, respectively, and the corresponding 3-dB axial ratio bandwidths are <span> <span>(700)</span> </span> and <span> <span>(130mathrm{ MHz})</span> </span>, respectively.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
$$bar{varvec{S}}$$ Matrix from a Two-Dimensional Slab Covered by Water Drops in W and J Bands: Comparison of a Full-Wave Method with Measurements 水滴覆盖的二维板在 W 波段和 J 波段的 $$bar{varvec{S}}$ 矩阵:全波方法与测量结果的比较
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-03-12 DOI: 10.1007/s10762-024-00977-y
Christophe Bourlier, Paul Bouquin, Alain Peden, Daniel Bourreau, Nicolas Pinel

This paper presents a full-wave method, based on the method of moments (MoM), to calculate the (bar{varvec{S}}) matrix from a two-dimensional complex sample in millimeter and submillimeter W and J bands. From the surface currents obtained by inverting the impedance matrix and from the Huygens principle, the reflection and transmission coefficients are computed. This allows us to obtain the four elements of the (bar{varvec{S}}) matrix. Firstly, the method is validated from canonical samples (a dielectric slab and a stack of two dielectric slabs) by applying the well-known Fresnel coefficients. Secondly, for the W (75 to 110 GHz) and J (220 to 330 GHz) bands, a PVC slab covered by water drops is considered, for which the (bar{varvec{S}}) matrix is compared with measurements made in quasi-optical free space. A satisfactory agreement is obtained between the measurements and the model.

本文提出了一种基于矩量法(MoM)的全波方法,用于计算毫米波段和亚毫米波段 W 和 J 波段二维复杂样品的 (barvarvec{S}})矩阵。根据阻抗矩阵反演得到的表面电流和惠更斯原理,可以计算出反射系数和透射系数。这样我们就可以得到 (bar{varvec{S}}) 矩阵的四个元素。首先,通过应用众所周知的菲涅尔系数,从典型样品(一块介质板和两块介质板的叠层)验证了该方法。其次,对于 W(75 至 110 GHz)和 J(220 至 330 GHz)波段,考虑了被水滴覆盖的 PVC 板,并将其 (bar{varvec{S}}) 矩阵与在准光学自由空间中进行的测量进行了比较。测量结果与模型之间取得了令人满意的一致。
{"title":"$$bar{varvec{S}}$$ Matrix from a Two-Dimensional Slab Covered by Water Drops in W and J Bands: Comparison of a Full-Wave Method with Measurements","authors":"Christophe Bourlier, Paul Bouquin, Alain Peden, Daniel Bourreau, Nicolas Pinel","doi":"10.1007/s10762-024-00977-y","DOIUrl":"https://doi.org/10.1007/s10762-024-00977-y","url":null,"abstract":"<p>This paper presents a full-wave method, based on the method of moments (MoM), to calculate the <span>(bar{varvec{S}})</span> matrix from a two-dimensional complex sample in millimeter and submillimeter <i>W</i> and <i>J</i> bands. From the surface currents obtained by inverting the impedance matrix and from the Huygens principle, the reflection and transmission coefficients are computed. This allows us to obtain the four elements of the <span>(bar{varvec{S}})</span> matrix. Firstly, the method is validated from canonical samples (a dielectric slab and a stack of two dielectric slabs) by applying the well-known Fresnel coefficients. Secondly, for the <i>W</i> (75 to 110 GHz) and <i>J</i> (220 to 330 GHz) bands, a PVC slab covered by water drops is considered, for which the <span>(bar{varvec{S}})</span> matrix is compared with measurements made in quasi-optical free space. A satisfactory agreement is obtained between the measurements and the model.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range 用于太赫兹范围的高频选择性三维打印介质结构
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-03-08 DOI: 10.1007/s10762-024-00973-2
Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer

In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.

本文介绍了一种太赫兹透射频率选择准表面(FSQS),它具有很强的吸收线和周期性带通特性。FSQS 结构由不同厚度的法布里-佩罗谐振器横向组合而成。FSQS 的传递函数可作为宽带参考,用于测试宽带太赫兹系统传输路径的信号完整性。该传递函数实现了带通特性和尖锐谐振的结合,理论衰减超过 80 dB,36 个谐振器组合的品质因数超过 40,000 。使用低损耗环烯烃共聚物 (COC) 长丝,通过熔融沉积模型三维打印出由四个谐振器组成的单个 FSQS。最后,利用频域和时域太赫兹光谱对 3D 打印 FSQS 进行了表征。结果显示衰减超过 42 dB,品质因数超过 100。
{"title":"A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range","authors":"Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer","doi":"10.1007/s10762-024-00973-2","DOIUrl":"https://doi.org/10.1007/s10762-024-00973-2","url":null,"abstract":"<p>In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photonic THz Beam Steering Using Fiber Chromatic Dispersion 利用光纤色度色散进行光子太赫兹光束转向
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-02-29 DOI: 10.1007/s10762-024-00975-0
Ming Che, Hanwei Chen, Bo Li, Haruichi Kanaya, Kazutoshi Kato

THz technology has the potential to revolutionize various fields, including high-speed wireless communication, medical imaging, and spectroscopy. One challenge facing THz technology, however, is the limited output power (on the order of microwatts) of photonic THz sources (e.g., uni-traveling-carrier photodiode). Researchers are therefore exploring THz beam steering techniques to maximize their power effectiveness. To this end, we propose a photonic THz beam steering method that utilizes fiber chromatic dispersion, eliminating the need for energy-consuming active electronics. This paper explains its basic operating principle, fabrication and performance analysis of the associated THz array antenna, and demonstrates the feasibility of achieving a 300 GHz beam steering within 10(^circ ) by means of dispersion-varied polarization-maintaining fibers. In conclusion, the present scheme can greatly enhance the power efficiency of photonic THz sources, and enable the potential advantages of seamless integration with fiber-optic networks, including reduced complexity, simplified operation, low power consumption, and cost-effectiveness.

太赫兹技术有可能给高速无线通信、医学成像和光谱学等多个领域带来革命性的变化。然而,太赫兹技术面临的一个挑战是光子太赫兹源(例如单向传输载波光电二极管)的输出功率有限(微瓦级)。因此,研究人员正在探索太赫兹光束转向技术,以最大限度地提高其功率效率。为此,我们提出了一种利用光纤色度色散的光子太赫兹光束转向方法,无需耗能的有源电子器件。本文解释了其基本工作原理、相关太赫兹阵列天线的制造和性能分析,并演示了通过色散偏振保持光纤在 10(^circ) 范围内实现 300 GHz 波束转向的可行性。总之,本方案可大大提高光子太赫兹源的功率效率,并实现与光纤网络无缝集成的潜在优势,包括降低复杂性、简化操作、低功耗和成本效益。
{"title":"Photonic THz Beam Steering Using Fiber Chromatic Dispersion","authors":"Ming Che, Hanwei Chen, Bo Li, Haruichi Kanaya, Kazutoshi Kato","doi":"10.1007/s10762-024-00975-0","DOIUrl":"https://doi.org/10.1007/s10762-024-00975-0","url":null,"abstract":"<p>THz technology has the potential to revolutionize various fields, including high-speed wireless communication, medical imaging, and spectroscopy. One challenge facing THz technology, however, is the limited output power (on the order of microwatts) of photonic THz sources (e.g., uni-traveling-carrier photodiode). Researchers are therefore exploring THz beam steering techniques to maximize their power effectiveness. To this end, we propose a photonic THz beam steering method that utilizes fiber chromatic dispersion, eliminating the need for energy-consuming active electronics. This paper explains its basic operating principle, fabrication and performance analysis of the associated THz array antenna, and demonstrates the feasibility of achieving a 300 GHz beam steering within 10<span>(^circ )</span> by means of dispersion-varied polarization-maintaining fibers. In conclusion, the present scheme can greatly enhance the power efficiency of photonic THz sources, and enable the potential advantages of seamless integration with fiber-optic networks, including reduced complexity, simplified operation, low power consumption, and cost-effectiveness.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionization of a Silicon Surface Layer Induced by a High-Intensity Subpicosecond Electric Field 高强度亚皮秒电场诱导的硅表面层电离
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-02-28 DOI: 10.1007/s10762-024-00976-z

Abstract

The ionization of a silicon surface layer induced by an electric field with a strength of up to 17 MV/cm and a rise time of (approx ) 245 fs has been studied for the first time. The generation rate of free carriers induced by electric field has been experimentally determined. It has been shown that the average concentration of electrons in the conduction band in surface layer reaches (sim 3times 10^{19})  cm (^{-3}) , which corresponds to the ionization rate of (1.4times 10^{14})  s (^{-1}) . A new method is proposed for synchronizing the THz pulse temporal profile measured by electro-optical sampling with the results of pump-probe measurements based on second harmonic generation.

摘要 首次研究了在强度高达 17 MV/cm 和上升时间为 245 fs 的电场诱导下硅表面层的电离。实验测定了电场诱导的自由载流子的产生率。实验表明,表层导带中电子的平均浓度达到了 3 倍 10^{19} cm (^{-3}),这相当于 1.4 倍 10^{14} s (^{-1})的电离率。我们提出了一种新方法,用于将电光采样测量到的太赫兹脉冲时间轮廓与基于二次谐波产生的泵探测量结果同步。
{"title":"Ionization of a Silicon Surface Layer Induced by a High-Intensity Subpicosecond Electric Field","authors":"","doi":"10.1007/s10762-024-00976-z","DOIUrl":"https://doi.org/10.1007/s10762-024-00976-z","url":null,"abstract":"<h3>Abstract</h3> <p>The ionization of a silicon surface layer induced by an electric field with a strength of up to 17 MV/cm and a rise time of <span> <span>(approx )</span> </span>245 fs has been studied for the first time. The generation rate of free carriers induced by electric field has been experimentally determined. It has been shown that the average concentration of electrons in the conduction band in surface layer reaches <span> <span>(sim 3times 10^{19})</span> </span> cm<span> <span>(^{-3})</span> </span>, which corresponds to the ionization rate of <span> <span>(1.4times 10^{14})</span> </span> s<span> <span>(^{-1})</span> </span>. A new method is proposed for synchronizing the THz pulse temporal profile measured by electro-optical sampling with the results of pump-probe measurements based on second harmonic generation.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Gain Diagonally-Probe-Fed Multi-Layered Dielectric Resonator Antenna Array for 77 GHz Automotive Radar Applications 用于 77 GHz 汽车雷达应用的高增益对角探针馈电多层介质谐振器天线阵列
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-02-27 DOI: 10.1007/s10762-024-00978-x
Sung Yong An, Boumseock Kim

This paper presents a high gain diagonally-probe-fed multi-layered dielectric resonator antenna (DPF-ML-DRA) designed for 77 GHz automotive radar applications. A comparison with the conventional probe-fed ML-DRA demonstrates that the proposed DPF-ML-DRA achieves higher antenna gain by 1 dB. The sub-array utilizing the proposed DPF-ML-DRA is tailored to meet specific radar system requirements, including a broad impedance bandwidth (> 5 GHz), high antenna gain (> 12 dBi), and wide half-power beamwidth (> ± 60°). Simulated results validate that the sub-array performance meets the aforementioned antenna requirements. To attain high azimuthal and elevational angular detecting resolution, 3 sub-arrays with 12 DF-ML-DRA for the Tx channel and 4 sub-arrays with 10 DF-ML-DRA for the Rx channel were designed and simulated. The fabricated radar system underwent field testing, demonstrating a maximum range of up to 160 m and a field of view of 120° for 100 m. Remarkably, the proposed DPF-ML-DRA exhibits equivalent radar performance while featuring a smaller form-factor compared to commercially available state-of-the-art automotive radar systems. Consequently, the proposed DPF-ML-DRA proves to be well-suited for 77 GHz automotive radar applications.

本文介绍了一种为 77 GHz 汽车雷达应用而设计的高增益对角探针馈电多层介质谐振器天线(DPF-ML-DRA)。与传统的探针馈电多层介质谐振器天线相比,DPF-ML-DRA 的天线增益提高了 1 dB。采用拟议的 DPF-ML-DRA 的子阵列可满足特定雷达系统的要求,包括宽阻抗带宽(> 5 GHz)、高天线增益(> 12 dBi)和宽半功率波束宽度(> ± 60°)。仿真结果验证了该子阵列的性能符合上述天线要求。为了达到较高的方位角和仰角探测分辨率,设计并仿真了 3 个子阵列,其中 12 个 DF-ML-DRA 用于 Tx 信道,4 个子阵列,其中 10 个 DF-ML-DRA 用于 Rx 信道。所制造的雷达系统进行了现场测试,结果表明其最大探测距离可达 160 米,100 米内的视场角为 120°。因此,拟议的 DPF-ML-DRA 非常适合 77 GHz 汽车雷达应用。
{"title":"High Gain Diagonally-Probe-Fed Multi-Layered Dielectric Resonator Antenna Array for 77 GHz Automotive Radar Applications","authors":"Sung Yong An, Boumseock Kim","doi":"10.1007/s10762-024-00978-x","DOIUrl":"https://doi.org/10.1007/s10762-024-00978-x","url":null,"abstract":"<p>This paper presents a high gain diagonally-probe-fed multi-layered dielectric resonator antenna (DPF-ML-DRA) designed for 77 GHz automotive radar applications. A comparison with the conventional probe-fed ML-DRA demonstrates that the proposed DPF-ML-DRA achieves higher antenna gain by 1 dB. The sub-array utilizing the proposed DPF-ML-DRA is tailored to meet specific radar system requirements, including a broad impedance bandwidth (&gt; 5 GHz), high antenna gain (&gt; 12 dBi), and wide half-power beamwidth (&gt; ± 60°). Simulated results validate that the sub-array performance meets the aforementioned antenna requirements. To attain high azimuthal and elevational angular detecting resolution, 3 sub-arrays with 12 DF-ML-DRA for the Tx channel and 4 sub-arrays with 10 DF-ML-DRA for the Rx channel were designed and simulated. The fabricated radar system underwent field testing, demonstrating a maximum range of up to 160 m and a field of view of 120° for 100 m. Remarkably, the proposed DPF-ML-DRA exhibits equivalent radar performance while featuring a smaller form-factor compared to commercially available state-of-the-art automotive radar systems. Consequently, the proposed DPF-ML-DRA proves to be well-suited for 77 GHz automotive radar applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study and Experimental Validation of a 0.34 THz Double Corrugated Waveguide Interaction Structure for Backward Wave Oscillator with Sheet Electron Beam 用于片状电子束后向波振荡器的 0.34 太赫兹双波纹波导相互作用结构的研究与实验验证
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-02-26 DOI: 10.1007/s10762-024-00974-1
Jibran Latif, Zhanliang Wang, Atif Jameel, Muhammad Khawar Nadeem, Bilawal Ali, Uzair Shakir, Jinjun Feng, Yubin Gong

Terahertz backward wave oscillators based on double corrugated waveguides are enabling devices for modern satellite communication systems. This research focuses on the design of a 0.34 THz double corrugated waveguide-based interaction structure using a sheet beam. This choice allows the use of shorter pillars along with a narrow gap between pillar rows. Shorter pillars are easier to manufacture and a narrow gap is required for better interaction impedance. Circular beams restrict the use of larger pillars and narrow gap between pillars. The performance of this interaction structure is compared with a folded waveguide. Under the same operating conditions involving a 20 kV beam voltage and a 30 mA beam current, the double corrugated waveguide interaction structure exhibits impressive performance in simulations, featuring an interaction impedance of 0.52 ({varOmega }) at 0.34 THz, an output power of 3.2 W, and a bandwidth extending to approximately 20 GHz. In contrast, the folded waveguide, as per simulation results, registers values of 0.43 ({varOmega }), 2.6 W, and a 12 GHz bandwidth, respectively. The proposed double corrugated waveguide-based interaction structure is fabricated using modern CNC machining. Experimental validation reinforces the effectiveness of this design, with measurements indicating reflection below −20 dB and transmission exceeding −2 dB.

基于双波纹波导的太赫兹后向波振荡器是现代卫星通信系统的使能设备。这项研究的重点是利用片状光束设计基于双波纹波导的 0.34 太赫兹交互结构。这种选择允许使用较短的支柱以及支柱行之间的窄间隙。较短的支柱更容易制造,而较窄的间隙则需要更好的相互作用阻抗。圆形梁限制了较大支柱的使用和支柱间隙的缩小。我们将这种相互作用结构的性能与折叠式波导进行了比较。在相同的工作条件下,包括 20 kV 的光束电压和 30 mA 的光束电流,双波纹波导相互作用结构在模拟中表现出令人印象深刻的性能,在 0.34 THz 时的相互作用阻抗为 0.52 ({varOmega }) ,输出功率为 3.2 W,带宽扩展到约 20 GHz。相比之下,根据模拟结果,折叠波导的记录值分别为 0.43 ({varOmega })、2.6 W 和 12 GHz 带宽。所提出的基于双波纹波导的交互结构是利用现代数控加工技术制造的。实验验证加强了这一设计的有效性,测量结果表明反射低于 -20 dB,传输超过 -2 dB。
{"title":"Study and Experimental Validation of a 0.34 THz Double Corrugated Waveguide Interaction Structure for Backward Wave Oscillator with Sheet Electron Beam","authors":"Jibran Latif, Zhanliang Wang, Atif Jameel, Muhammad Khawar Nadeem, Bilawal Ali, Uzair Shakir, Jinjun Feng, Yubin Gong","doi":"10.1007/s10762-024-00974-1","DOIUrl":"https://doi.org/10.1007/s10762-024-00974-1","url":null,"abstract":"<p>Terahertz backward wave oscillators based on double corrugated waveguides are enabling devices for modern satellite communication systems. This research focuses on the design of a 0.34 THz double corrugated waveguide-based interaction structure using a sheet beam. This choice allows the use of shorter pillars along with a narrow gap between pillar rows. Shorter pillars are easier to manufacture and a narrow gap is required for better interaction impedance. Circular beams restrict the use of larger pillars and narrow gap between pillars. The performance of this interaction structure is compared with a folded waveguide. Under the same operating conditions involving a 20 kV beam voltage and a 30 mA beam current, the double corrugated waveguide interaction structure exhibits impressive performance in simulations, featuring an interaction impedance of 0.52 <span>({varOmega })</span> at 0.34 THz, an output power of 3.2 W, and a bandwidth extending to approximately 20 GHz. In contrast, the folded waveguide, as per simulation results, registers values of 0.43 <span>({varOmega })</span>, 2.6 W, and a 12 GHz bandwidth, respectively. The proposed double corrugated waveguide-based interaction structure is fabricated using modern CNC machining. Experimental validation reinforces the effectiveness of this design, with measurements indicating reflection below −20 dB and transmission exceeding −2 dB.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonic Gyrotrons: Pros and Cons 谐波陀螺仪:优缺点
IF 2.9 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-02-20 DOI: 10.1007/s10762-024-00972-3
S. P. Sabchevski, G. S. Nusinovich, M. Yu. Glyavin

In this paper we present a comprehensive overview of the theoretical and experimental studies on gyrotrons operating at harmonics of the electron cyclotron frequency. Besides the conventional (small-orbit) gyrotrons, three other types of such devices are considered, namely large-orbit gyrotrons (LOG), double-beam gyrotrons, and gyro-devices with a frequency multiplication. Based on a comparison between them and the devices that work on the fundamental resonances, both the advantages and disadvantages of the harmonic gyrotrons are critically examined. Such an analysis is helpful for choosing between different alternative concepts in the design process of appropriate radiation sources for various applications.

本文全面概述了在电子回旋频率谐波下运行的陀螺仪的理论和实验研究。除了传统的(小轨道)陀螺仪外,我们还考虑了其他三种类型的陀螺仪,即大轨道陀螺仪(LOG)、双光束陀螺仪和频率倍增陀螺仪。在对它们和利用基频共振工作的装置进行比较的基础上,对谐波陀螺仪的优缺点进行了严格审查。这种分析有助于在为各种应用设计适当辐射源的过程中,在不同的替代概念之间做出选择。
{"title":"Harmonic Gyrotrons: Pros and Cons","authors":"S. P. Sabchevski, G. S. Nusinovich, M. Yu. Glyavin","doi":"10.1007/s10762-024-00972-3","DOIUrl":"https://doi.org/10.1007/s10762-024-00972-3","url":null,"abstract":"<p>In this paper we present a comprehensive overview of the theoretical and experimental studies on gyrotrons operating at harmonics of the electron cyclotron frequency. Besides the conventional (small-orbit) gyrotrons, three other types of such devices are considered, namely large-orbit gyrotrons (LOG), double-beam gyrotrons, and gyro-devices with a frequency multiplication. Based on a comparison between them and the devices that work on the fundamental resonances, both the advantages and disadvantages of the harmonic gyrotrons are critically examined. Such an analysis is helpful for choosing between different alternative concepts in the design process of appropriate radiation sources for various applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Infrared, Millimeter, and Terahertz Waves
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1