An ultrasensitive and selective voltammetric microsensor (multiwalled carbon nanotube [MWCNT]/carbon black nanoparticle [nCB])-modified carbon paste microelectrode (mCPµE) with ultra-trace level detection limit is designed for the determination of danofloxacin (DAN) in real samples. The (MWCNT/nCB)-mCPµE consists of a carbon paste cavity microelectrode (MEC) modified with nCBs and MWCNTs. The nanostructure of the different MEC materials are characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimal conditions, a wide linear range (2.5 × 10−9–2.5 × 10−7 mol L−1) is obtained. The detection and quantification limits are estimated at 4.3 × 10−10 and 1.43 × 10−9 mol L−1, respectively. For the measurement of DAN in the presence of many possible interfering chemical molecules, the suggested microsensor demonstrates remarkable selectivity. Analysis of the real samples confirms that the (MWCNT/nCB)-mCPµE is a suitable electrochemical sensor for the determination of DAN in wastewater and urine samples with satisfactory recoveries of 103.5%–104.6% and relative standard deviations less than 4.93%. Finally, in terms of sustainability (availability of materials used), analytical efficiency (precision and very low limit of quantification), and economic considerations (use of a very small quantity of materials), the proposed method outperforms previously reported methods.
{"title":"An Innovative Nanoparticle Modified Carbon Paste Microsensor for Ultrasensitive and Selective Detection of Danofloxacin in Environmental and Urinary Samples","authors":"Siham Amra, Saliha Bourouina-Bacha, Mustapha Bourouina, Didier Hauchard","doi":"10.1002/elan.12007","DOIUrl":"https://doi.org/10.1002/elan.12007","url":null,"abstract":"<p>An ultrasensitive and selective voltammetric microsensor (multiwalled carbon nanotube [MWCNT]/carbon black nanoparticle [nCB])-modified carbon paste microelectrode (mCPµE) with ultra-trace level detection limit is designed for the determination of danofloxacin (DAN) in real samples. The (MWCNT/nCB)-mCPµE consists of a carbon paste cavity microelectrode (MEC) modified with nCBs and MWCNTs. The nanostructure of the different MEC materials are characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimal conditions, a wide linear range (2.5 × 10<sup>−9</sup>–2.5 × 10<sup>−7</sup> mol L<sup>−1</sup>) is obtained. The detection and quantification limits are estimated at 4.3 × 10<sup>−10</sup> and 1.43 × 10<sup>−9</sup> mol L<sup>−1</sup>, respectively. For the measurement of DAN in the presence of many possible interfering chemical molecules, the suggested microsensor demonstrates remarkable selectivity. Analysis of the real samples confirms that the (MWCNT/nCB)-mCPµE is a suitable electrochemical sensor for the determination of DAN in wastewater and urine samples with satisfactory recoveries of 103.5%–104.6% and relative standard deviations less than 4.93%. Finally, in terms of sustainability (availability of materials used), analytical efficiency (precision and very low limit of quantification), and economic considerations (use of a very small quantity of materials), the proposed method outperforms previously reported methods.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical modification of carbonaceous materials is a convenient and reliable approach for the permanent fabrication of functional moieties. Among different linkers, diazirines offer a photogenerated reactive carbene that can insert into X–H (X; O, N) and add to π bonds to tether a variety of moieties on the surface of carbonaceous materials. Explicitly, 3-phenyl-3-(trifluoromethyl)-3H-diazirine is more thermally and chemically stable within the diazirine family. Here, we synthesized 3-(ferrocenylalkyloxy)-3-(trifluoromethyl)-diazirine derivatives and utilized them to covalently modify the surface of glassy carbon (GC). The photogenerated carbene enabled the tethering of the ferrocene (Fc) to the surface of a GC electrode (GCE). The modified surface properties were investigated using different electrochemical techniques, ellipsometry spectroscopy, and scanning electron microscopy. Electrochemical surface responses in KCl and Ru(NH3)63+ solutions clearly exhibited ferrocene redox behavior and surface blocking during modification, respectively. Surface analysis results revealed a clear correlation between the thickness and capacitance current of the modified surface. More importantly, the obtained electrochemistry data show substantial chemical stability of the covalently tethered Fc on the GCE surface in both aqueous and nonaqueous media. The presented work offers an approach for the on-demand photochemical formation of carbene from diazirines to add functionality for applications of modified electrodes in electrocatalysis and sensing.
{"title":"On-Demand Photochemical Modification of Glassy Carbon Surface","authors":"Mahdi Hesari, Mark S. Workentin","doi":"10.1002/elan.12004","DOIUrl":"https://doi.org/10.1002/elan.12004","url":null,"abstract":"<p>Chemical modification of carbonaceous materials is a convenient and reliable approach for the permanent fabrication of functional moieties. Among different linkers, diazirines offer a photogenerated reactive carbene that can insert into X–H (X; O, N) and add to <i>π</i> bonds to tether a variety of moieties on the surface of carbonaceous materials. Explicitly, 3-phenyl-3-(trifluoromethyl)-3H-diazirine is more thermally and chemically stable within the diazirine family. Here, we synthesized 3-(ferrocenylalkyloxy)-3-(trifluoromethyl)-diazirine derivatives and utilized them to covalently modify the surface of glassy carbon (GC). The photogenerated carbene enabled the tethering of the ferrocene (Fc) to the surface of a GC electrode (GCE). The modified surface properties were investigated using different electrochemical techniques, ellipsometry spectroscopy, and scanning electron microscopy. Electrochemical surface responses in KCl and Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+</sup> solutions clearly exhibited ferrocene redox behavior and surface blocking during modification, respectively. Surface analysis results revealed a clear correlation between the thickness and capacitance current of the modified surface. More importantly, the obtained electrochemistry data show substantial chemical stability of the covalently tethered Fc on the GCE surface in both aqueous and nonaqueous media. The presented work offers an approach for the on-demand photochemical formation of carbene from diazirines to add functionality for applications of modified electrodes in electrocatalysis and sensing.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brunna F. Henriques, Amanda Neumann, Lucas V. Bertolim, Rafaela C. de Freitas, Luiz R. G. Silva, Jéssica S. Stefano, Bruno C. Janegitz
The production of electrochemical devices and systems using additive manufacturing technology, particularly three-dimensional (3D) printing, has proven to be highly promising. This work reports the development of 3D-printed electrochemical sensors for the determination of the antibiotic ciprofloxacin (CIP). To achieve this, a lab-made conductive filament composed of carbon black (CB) and polylactic acid (PLA) was produced and utilized in the fabrication of the sensors. Additionally, an electrochemical cell was constructed using a nonconductive filament, resulting in a miniaturized and entirely additively manufactured platform. The characterization of the proposed CB–PLA sensor was carried out using scanning electron microscopy and electrochemical techniques. The proposed sensor has shown a linear range of 1.0–12.5 µmol L−1, with a sensitivity of 3.77 µA µmol−1 L, and limits of detection and quantification of 0.3 and 0.9 µmol L−1 for CIP, respectively. Regarding the analysis of the samples (tap water and synthetic urine), it was observed recovery values close to 100% for all samples. Thus, the 3D-printed electrochemical device presents itself as a high-potential alternative for CIP drug control, with the possibility of being used in the field and point of care.
{"title":"Development and Application of 3D-Printed Electrochemical Sensors for Ciprofloxacin Detection","authors":"Brunna F. Henriques, Amanda Neumann, Lucas V. Bertolim, Rafaela C. de Freitas, Luiz R. G. Silva, Jéssica S. Stefano, Bruno C. Janegitz","doi":"10.1002/elan.12008","DOIUrl":"https://doi.org/10.1002/elan.12008","url":null,"abstract":"<p>The production of electrochemical devices and systems using additive manufacturing technology, particularly three-dimensional (3D) printing, has proven to be highly promising. This work reports the development of 3D-printed electrochemical sensors for the determination of the antibiotic ciprofloxacin (CIP). To achieve this, a lab-made conductive filament composed of carbon black (CB) and polylactic acid (PLA) was produced and utilized in the fabrication of the sensors. Additionally, an electrochemical cell was constructed using a nonconductive filament, resulting in a miniaturized and entirely additively manufactured platform. The characterization of the proposed CB–PLA sensor was carried out using scanning electron microscopy and electrochemical techniques. The proposed sensor has shown a linear range of 1.0–12.5 µmol L<sup>−1</sup>, with a sensitivity of 3.77 µA µmol<sup>−1</sup> L, and limits of detection and quantification of 0.3 and 0.9 µmol L<sup>−1</sup> for CIP, respectively. Regarding the analysis of the samples (tap water and synthetic urine), it was observed recovery values close to 100% for all samples. Thus, the 3D-printed electrochemical device presents itself as a high-potential alternative for CIP drug control, with the possibility of being used in the field and point of care.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a targeted impedimetric immunosensor for the detection of procalcitonin (PCT), a biomarker associated with SEPSIS. The immunosensor was operated based on the interaction between PCT antibody (anti-PCT) and PCT antigen, utilizing graphene quantum dot (GQD)-modified carbon screen-printed electrode (SPCE). Herein, GQDs, known for their large surface area and excellent electrical conductivity, served as the matrix for immobilizing anti-PCT, thereby enhancing the electrochemical signal. Following the immobilization of anti-PCT onto the GQD@SPCE, the interaction between anti-PCT and with PCT antigen was monitored by using electrochemical impedance spectroscopy. Experimental parameters were optimized, and the analytical characteristics were extensively evaluated. The developed impedimetric PCT immunosensor demonstrated a linear detection range of 0.1–10 ng/mL for PCT, with a detection limit of 0.01 ng/mL and a quantification limit of 0.03 ng/mL. Finally, developed GQD-based impedimetric PCT immunosensor was applied to low- and high-level original control serum samples of the selected kit and very promising recovery values were obtained.
{"title":"Graphene Quantum Dot-Based SEPSIS Immunosensor Using Procalcitonin as a Biomarker","authors":"Göksu Can, Vasfiye Hazal Özyurt, Burak Ekrem Çitil, Ülkü Anik","doi":"10.1002/elan.12010","DOIUrl":"https://doi.org/10.1002/elan.12010","url":null,"abstract":"<p>This study presents a targeted impedimetric immunosensor for the detection of procalcitonin (PCT), a biomarker associated with SEPSIS. The immunosensor was operated based on the interaction between PCT antibody (anti-PCT) and PCT antigen, utilizing graphene quantum dot (GQD)-modified carbon screen-printed electrode (SPCE). Herein, GQDs, known for their large surface area and excellent electrical conductivity, served as the matrix for immobilizing anti-PCT, thereby enhancing the electrochemical signal. Following the immobilization of anti-PCT onto the GQD@SPCE, the interaction between anti-PCT and with PCT antigen was monitored by using electrochemical impedance spectroscopy. Experimental parameters were optimized, and the analytical characteristics were extensively evaluated. The developed impedimetric PCT immunosensor demonstrated a linear detection range of 0.1–10 ng/mL for PCT, with a detection limit of 0.01 ng/mL and a quantification limit of 0.03 ng/mL. Finally, developed GQD-based impedimetric PCT immunosensor was applied to low- and high-level original control serum samples of the selected kit and very promising recovery values were obtained.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}