Today's social infrastructure, e.g., transportation, medical services, energy supply and distribution, may become temporarily unable to provide functions due to the damage to buildings or excessive congestion resulting from threats, such as natural disasters, rising sea levels, pandemics. Maritime-based responses, typified by hospital ships, are drawing attention as a method to mitigate these effects. However, while designing emergency infrastructure, it is necessary to consider not only the value of these systems in emergencies but also during normal times. This study adopts the systems approach, a set of methods to conduct decision-making when complex stakeholders' relationships are involved. We focus on medical functions and propose a conceptual design for a flexible hospital ship with dynamic capability during emergencies as well as normal times. Specifically, we examine the optimal combination of ship type, size, navigation range during normal times, operations during emergencies, and contract approaches. Quantitative evaluation of utility during emergencies and economic efficiency are considered in tradeoff. In addition to the conventional cost-based study, we examined benefit-cost through ship sharing, in which ships are leased to the private sector as merchant vessels during normal times to generate revenue.
This study proposed a safety supervision tool to HRA-based monitoring of ship maintenance operations via a digital platform. It is conceptualized to assist safety supervisors in the best proactive measures along with maintenance works onboard ships. The tool refers the marine maintenance and operations human reliability analysis (MMOHRA) concept. Moreover, it facilitates the timely and consistently practice of MMOHRA. Indeed, it accurately identifies critical tasks and associate recovery acts. Fundamentally, a rule-based mechanism supported with relation matrix response to general task type selection, EPCs' assignment, and human error probability (HEP) calculation, respectively. Then, the system automatically calculates, visualizes and manages HEP values of operation steps. Consequently, this study digitalizes maritime HRA investigations particular to maintenance operations. The proposed tool, compliance with the relevant sections of updated inspection regimes such as SIRE 2.0 and DryBms, has very high utility to effectively control human element onboard. This study also enables a further research potential to conduct an extended human reliability database in ship fleet level.

