Pub Date : 2025-12-11DOI: 10.1186/s12984-025-01826-2
Gang Seo, Manuel Portilla-Jiménez, Michael Houston, Jeong-Ho Park, Hangil Lee, Sheng Li, Yingchun Zhang, Hyung-Soon Park, Jinsook Roh
Background: Stroke survivors often experience impaired upper extremity motor function due to abnormal muscle synergies. This pilot study evaluated the feasibility and preliminary effectiveness of electromyography-guided human-machine interaction training designed to expand the repertoire of intermuscular coordination patterns and improve upper extremity motor function in chronic stroke survivors.
Methods: Four chronic stroke survivors with mild-to-moderate upper extremity motor impairment and three age-matched healthy controls participated in a six-week electromyography-guided training intervention. Participants practiced selectively activating one elbow flexor muscle while suppressing another (brachioradialis or biceps brachii). Throughout the course of the intervention, the effect of the training on intermuscular coordination, task performance, and motor function and impairment level of the stroke-affected upper extremity were assessed.
Results: Participants in both the control and stroke groups successfully learned to selectively activate targeted muscles, expanding their repertoire of habitual intermuscular coordination patterns. Stroke survivors demonstrated improvements in force generation, reaching ability, wrist rotation, and clinical measures of upper extremity motor function and spasticity. Participants also reported improved ease in performing daily activities.
Conclusions: This is, to our knowledge, the first study to demonstrate the feasibility of using electromyography-guided human-machine interaction training to expand the repertoire of habitual intermuscular coordination patterns and improve upper extremity motor function in chronic stroke survivors. These findings highlight the potential of electromyography-guided human-machine interaction training as a neurorehabilitation approach to address motor deficits associated with abnormal intermuscular coordination following stroke.
Trial registration: The study was registered at the Clinical Research Information Service of Korea National Institute of Health (KCT0005803).
{"title":"EMG-guided human-machine interaction training develops new intermuscular coordination patterns in stroke: a pilot study.","authors":"Gang Seo, Manuel Portilla-Jiménez, Michael Houston, Jeong-Ho Park, Hangil Lee, Sheng Li, Yingchun Zhang, Hyung-Soon Park, Jinsook Roh","doi":"10.1186/s12984-025-01826-2","DOIUrl":"10.1186/s12984-025-01826-2","url":null,"abstract":"<p><strong>Background: </strong>Stroke survivors often experience impaired upper extremity motor function due to abnormal muscle synergies. This pilot study evaluated the feasibility and preliminary effectiveness of electromyography-guided human-machine interaction training designed to expand the repertoire of intermuscular coordination patterns and improve upper extremity motor function in chronic stroke survivors.</p><p><strong>Methods: </strong>Four chronic stroke survivors with mild-to-moderate upper extremity motor impairment and three age-matched healthy controls participated in a six-week electromyography-guided training intervention. Participants practiced selectively activating one elbow flexor muscle while suppressing another (brachioradialis or biceps brachii). Throughout the course of the intervention, the effect of the training on intermuscular coordination, task performance, and motor function and impairment level of the stroke-affected upper extremity were assessed.</p><p><strong>Results: </strong>Participants in both the control and stroke groups successfully learned to selectively activate targeted muscles, expanding their repertoire of habitual intermuscular coordination patterns. Stroke survivors demonstrated improvements in force generation, reaching ability, wrist rotation, and clinical measures of upper extremity motor function and spasticity. Participants also reported improved ease in performing daily activities.</p><p><strong>Conclusions: </strong>This is, to our knowledge, the first study to demonstrate the feasibility of using electromyography-guided human-machine interaction training to expand the repertoire of habitual intermuscular coordination patterns and improve upper extremity motor function in chronic stroke survivors. These findings highlight the potential of electromyography-guided human-machine interaction training as a neurorehabilitation approach to address motor deficits associated with abnormal intermuscular coordination following stroke.</p><p><strong>Trial registration: </strong>The study was registered at the Clinical Research Information Service of Korea National Institute of Health (KCT0005803).</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"16"},"PeriodicalIF":5.2,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12802238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145743012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-11DOI: 10.1186/s12984-025-01784-9
Shriniwas Patwardhan, Noah Rubin, Katharine E Alter, Diane L Damiano, Thomas C Bulea
Background: Despite significant advances in biosignal extraction techniques for studying neuromotor disorders, there remains an unmet need for a method that effectively links muscle structure and dynamics to muscle activation. Addressing this gap could improve the quantification of neuromuscular impairments and pave the way for precision rehabilitation. In this study, we demonstrate the proof of concept of recording multimodal signals from the brain, muscles, and resulting limb kinematics. We also explore the use of ultrasound imaging to extract limb kinematics.
Methods: We collected data from three healthy volunteers and one individual with cerebral palsy during single degree-of-freedom ankle and wrist movements. Participants performed range of motion (ROM) tasks at approximately 1-second intervals, either volitionally or through functional electrical stimulation. We simultaneously recorded electroencephalography, surface electromyography (EMG), continuous ultrasound imaging, and motion capture data. Joint kinematics were computed from ultrasound imaging using a technique called sonomyography (SMG), and we evaluated the technical feasibility of estimating joint kinematics from both sonomyography and surface EMG signals.
Results: The technical feasibility study evaluated joint angle prediction using EMG and SMG under volitional (FES-OFF) and electrically stimulated (FES-ON) conditions. Root mean squared error (RMSE) between predicted and measured joint angles was computed for multiple methods of extracting kinematics from EMG and SMG. EMG-based RMSE ranged from 0.34 to 0.57 (FES-OFF) and 0.43-0.51 (FES-ON). SMG-based RMSE ranged from 0.10 to 0.25 across all conditions and methods. Linear regression analysis produced values between 0.31 and 0.81 depending on joint, condition, and method. No significant RMSE difference was found between FES-ON and FES-OFF conditions within SMG. SMG RMSE values were also comparable to previously reported values (10-25%) in prior literature.
Conclusion: Our findings suggest that sonomyography can be used as a noninvasive method for estimating joint kinematics when the joint movement is driven either by volition or by functional electrical stimulation. This technique can potentially be be useful in evaluating altered muscle dynamics and driving assistive and rehabilitation devices in individuals with neuromotor disorders such as cerebral palsy.
{"title":"Sonomyography accurately captures joint kinematics during volitional and electrically stimulated motion in healthy adults and an individual with cerebral palsy.","authors":"Shriniwas Patwardhan, Noah Rubin, Katharine E Alter, Diane L Damiano, Thomas C Bulea","doi":"10.1186/s12984-025-01784-9","DOIUrl":"10.1186/s12984-025-01784-9","url":null,"abstract":"<p><strong>Background: </strong>Despite significant advances in biosignal extraction techniques for studying neuromotor disorders, there remains an unmet need for a method that effectively links muscle structure and dynamics to muscle activation. Addressing this gap could improve the quantification of neuromuscular impairments and pave the way for precision rehabilitation. In this study, we demonstrate the proof of concept of recording multimodal signals from the brain, muscles, and resulting limb kinematics. We also explore the use of ultrasound imaging to extract limb kinematics.</p><p><strong>Methods: </strong>We collected data from three healthy volunteers and one individual with cerebral palsy during single degree-of-freedom ankle and wrist movements. Participants performed range of motion (ROM) tasks at approximately 1-second intervals, either volitionally or through functional electrical stimulation. We simultaneously recorded electroencephalography, surface electromyography (EMG), continuous ultrasound imaging, and motion capture data. Joint kinematics were computed from ultrasound imaging using a technique called sonomyography (SMG), and we evaluated the technical feasibility of estimating joint kinematics from both sonomyography and surface EMG signals.</p><p><strong>Results: </strong>The technical feasibility study evaluated joint angle prediction using EMG and SMG under volitional (FES-OFF) and electrically stimulated (FES-ON) conditions. Root mean squared error (RMSE) between predicted and measured joint angles was computed for multiple methods of extracting kinematics from EMG and SMG. EMG-based RMSE ranged from 0.34 to 0.57 (FES-OFF) and 0.43-0.51 (FES-ON). SMG-based RMSE ranged from 0.10 to 0.25 across all conditions and methods. Linear regression analysis produced <math><msup><mi>R</mi> <mn>2</mn></msup> </math> values between 0.31 and 0.81 depending on joint, condition, and method. No significant RMSE difference was found between FES-ON and FES-OFF conditions within SMG. SMG RMSE values were also comparable to previously reported values (10-25%) in prior literature.</p><p><strong>Conclusion: </strong>Our findings suggest that sonomyography can be used as a noninvasive method for estimating joint kinematics when the joint movement is driven either by volition or by functional electrical stimulation. This technique can potentially be be useful in evaluating altered muscle dynamics and driving assistive and rehabilitation devices in individuals with neuromotor disorders such as cerebral palsy.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"15"},"PeriodicalIF":5.2,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12801643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145743128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1186/s12984-025-01764-z
Beverley C Larssen, Ronan Denyer, Mahta Khoshnam Tehrani, Anjana Rajendran, Carlo Menon, Lara Boyd
Background: Impaired arm position sense is a common somatosensory impairment after stroke, which significantly impacts the performance of functional activities using the upper limb. However, few clinical interventions target loss of position sense after stroke. Our aim was to use interlimb force-coupling to augment position sense of the stroke-affected arm during a bilateral reaching task and investigate the impact of training with this feedback manipulation on measures of arm position matching ability and both bilateral and unilateral motor control.
Methods: Twenty-four participants with a history of stroke were randomized (N = 12/group) to perform mirrored bimanual aiming movements with either interlimb force-coupling (Augmented PF) or uncoupled symmetrical reaches with only visual feedback about movement position. Participants completed 11 sessions (295 bimanual reaches/session) using a Kinarm End-Point robot. Performance on measures of arm position sense (Arm Position Matching, APM), motor impairment (Fugl-Meyer Upper Limb, FM), motor function (Wolf Motor Function Test, WMFT), unilateral reach accuracy and speed (Visually Guided Reaching, VGR), and bilateral reach symmetry were collected before and after training to characterize changes in upper limb somatosensory and motor control performance.
Results: APM Task Scores improved for both groups. This improvement was specifically observed through reduced APM variability, but not accuracy. FM scores also improved for both groups. The group that did not practice with force-coupling between limbs improved on measures of bilateral movement symmetry on a mirrored reaching task and had faster VGR movement times in post-test.
Conclusion: Symmetrical reach training with or without augmented PF led to reduced motor impairment and benefited upper limb position matching ability by reducing APM variability. Augmenting position sense during reaching did not provide additional benefits for position matching accuracy. Advantages for unilateral movement speed and bilateral reach symmetry measures in the group that practiced without interlimb coupling may reflect specificity of practice effects due to similarity between test and training conditions for this group.
{"title":"The impact of bimanual reach training with augmented position sense feedback on post-stroke upper limb somatosensory and motor impairment.","authors":"Beverley C Larssen, Ronan Denyer, Mahta Khoshnam Tehrani, Anjana Rajendran, Carlo Menon, Lara Boyd","doi":"10.1186/s12984-025-01764-z","DOIUrl":"10.1186/s12984-025-01764-z","url":null,"abstract":"<p><strong>Background: </strong>Impaired arm position sense is a common somatosensory impairment after stroke, which significantly impacts the performance of functional activities using the upper limb. However, few clinical interventions target loss of position sense after stroke. Our aim was to use interlimb force-coupling to augment position sense of the stroke-affected arm during a bilateral reaching task and investigate the impact of training with this feedback manipulation on measures of arm position matching ability and both bilateral and unilateral motor control.</p><p><strong>Methods: </strong>Twenty-four participants with a history of stroke were randomized (N = 12/group) to perform mirrored bimanual aiming movements with either interlimb force-coupling (Augmented PF) or uncoupled symmetrical reaches with only visual feedback about movement position. Participants completed 11 sessions (295 bimanual reaches/session) using a Kinarm End-Point robot. Performance on measures of arm position sense (Arm Position Matching, APM), motor impairment (Fugl-Meyer Upper Limb, FM), motor function (Wolf Motor Function Test, WMFT), unilateral reach accuracy and speed (Visually Guided Reaching, VGR), and bilateral reach symmetry were collected before and after training to characterize changes in upper limb somatosensory and motor control performance.</p><p><strong>Results: </strong>APM Task Scores improved for both groups. This improvement was specifically observed through reduced APM variability, but not accuracy. FM scores also improved for both groups. The group that did not practice with force-coupling between limbs improved on measures of bilateral movement symmetry on a mirrored reaching task and had faster VGR movement times in post-test.</p><p><strong>Conclusion: </strong>Symmetrical reach training with or without augmented PF led to reduced motor impairment and benefited upper limb position matching ability by reducing APM variability. Augmenting position sense during reaching did not provide additional benefits for position matching accuracy. Advantages for unilateral movement speed and bilateral reach symmetry measures in the group that practiced without interlimb coupling may reflect specificity of practice effects due to similarity between test and training conditions for this group.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"260"},"PeriodicalIF":5.2,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12690791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145714630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1186/s12984-025-01822-6
Mareike Vermehren, Annalisa Colucci, Cornelius Angerhöfer, Niels Peekhaus, Won-Seok Kim, Won Kee Chang, Hyunji Kim, Volker Hömberg, Nam-Jong Paik, Surjo R Soekadar
Background: Brain/neural hand exoskeletons (B/NHEs) can restore motor function after severe stroke, enabling bimanual tasks critical for various activities of daily living. Yet, reliable clinical tests for assessing bimanual function compatible with B/NHEs are lacking. Here, we introduce the Berlin Bimanual Test for Stroke (BeBiT-S), a 10-task assessment focused on everyday bimanual activities, and evaluate its psychometric properties as well as compatibility with assistive technologies such as B/NHEs.
Methods: BeBiT-S tasks were selected based on their relevance to daily activities, representation of various grasp types, and compatibility with current (neuro-)prosthetic devices. A scoring system was developed to assess key aspects of bimanual function-including reaching, grasping, stabilizing, manipulating, and lifting-based on video recordings of task performance. The BeBiT-S was administered without support of assistive technology (unassisted condition) to 24 stroke survivors (mean age = 56.5 years; 9 female) with upper-limb hemiparesis. We evaluated interrater reliability through the intraclass correlation coefficient (ICC) and construct validity through correlations with the Chedoke Arm and Hand Activity Inventory (CAHAI), and Stroke Impact Scale (SIS). A subgroup of 15 stroke survivors (mean age 50.3 years, 5 female) completed a second session supported by a B/NHE (B/NHE-assisted condition) to assess the BeBiT-S' sensitivity to change related to B/NHE-application.
Results: The BeBiT-S demonstrated high interrater reliability in both the unassisted (ICC = 0.985, P < .001) and B/NHE-assisted (ICC = 0.862, P < .001) conditions. Unassisted BeBiT-S scores correlated with the CAHAI-8 (r(22) = 0.95, P < .001) and the SIS subscales "strength" (r(20) = 0.53, P = .012) and "hand function" (r(20) = 0.50, P = .018), indicating construct validity. BeBiT-S scores improved significantly with B/NHE assistance (Mdn = 60, P < .05), compared to when no assistance was provided (Mdn = 38, P < .05), demonstrating the test's sensitivity to change following the application of a B/NHE.
Conclusions: The findings support that the BeBiT-S is a reliable and valid tool for evaluating bimanual task performance in stroke survivors and is compatible with the use of assistive technology such as B/NHEs. Trial registration NCT04440709, submitted June 18th, 2020.
{"title":"The Berlin bimanual test for stroke survivors (BeBiT-S): evaluating exoskeleton-assisted bimanual motor function after stroke.","authors":"Mareike Vermehren, Annalisa Colucci, Cornelius Angerhöfer, Niels Peekhaus, Won-Seok Kim, Won Kee Chang, Hyunji Kim, Volker Hömberg, Nam-Jong Paik, Surjo R Soekadar","doi":"10.1186/s12984-025-01822-6","DOIUrl":"10.1186/s12984-025-01822-6","url":null,"abstract":"<p><strong>Background: </strong>Brain/neural hand exoskeletons (B/NHEs) can restore motor function after severe stroke, enabling bimanual tasks critical for various activities of daily living. Yet, reliable clinical tests for assessing bimanual function compatible with B/NHEs are lacking. Here, we introduce the Berlin Bimanual Test for Stroke (BeBiT-S), a 10-task assessment focused on everyday bimanual activities, and evaluate its psychometric properties as well as compatibility with assistive technologies such as B/NHEs.</p><p><strong>Methods: </strong>BeBiT-S tasks were selected based on their relevance to daily activities, representation of various grasp types, and compatibility with current (neuro-)prosthetic devices. A scoring system was developed to assess key aspects of bimanual function-including reaching, grasping, stabilizing, manipulating, and lifting-based on video recordings of task performance. The BeBiT-S was administered without support of assistive technology (unassisted condition) to 24 stroke survivors (mean age = 56.5 years; 9 female) with upper-limb hemiparesis. We evaluated interrater reliability through the intraclass correlation coefficient (ICC) and construct validity through correlations with the Chedoke Arm and Hand Activity Inventory (CAHAI), and Stroke Impact Scale (SIS). A subgroup of 15 stroke survivors (mean age 50.3 years, 5 female) completed a second session supported by a B/NHE (B/NHE-assisted condition) to assess the BeBiT-S' sensitivity to change related to B/NHE-application.</p><p><strong>Results: </strong>The BeBiT-S demonstrated high interrater reliability in both the unassisted (ICC = 0.985, P < .001) and B/NHE-assisted (ICC = 0.862, P < .001) conditions. Unassisted BeBiT-S scores correlated with the CAHAI-8 (r(22) = 0.95, P < .001) and the SIS subscales \"strength\" (r(20) = 0.53, P = .012) and \"hand function\" (r(20) = 0.50, P = .018), indicating construct validity. BeBiT-S scores improved significantly with B/NHE assistance (Mdn = 60, P < .05), compared to when no assistance was provided (Mdn = 38, P < .05), demonstrating the test's sensitivity to change following the application of a B/NHE.</p><p><strong>Conclusions: </strong>The findings support that the BeBiT-S is a reliable and valid tool for evaluating bimanual task performance in stroke survivors and is compatible with the use of assistive technology such as B/NHEs. Trial registration NCT04440709, submitted June 18th, 2020.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"261"},"PeriodicalIF":5.2,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12699850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-07DOI: 10.1186/s12984-025-01807-5
Omar Mansour, Hussein Sarwat, Zakir Ullah, Xinyu Song, Jie Jia, Peter B Shull
Background: EMG-based hand-gesture recognition can enable home-based post-stroke rehabilitation, yet one-size-fits-all feature sets overlook differences across recovery stage METHODS: Thirteen post-stroke participants performed seven gestures while EMG was recorded from six forearm sensors. From 38 time- and frequency-domain features, we derived stage-specific subsets for Low (Brunnstrom 1-2, minimal movement), Medium (3-4, partial movement), and High (5-6, near-normal movement) using a wrapper approach Sequential Forward Selection (SFS). For reference, we included a filter comparison using minimum Redundancy-Maximum Relevance (mRMR). To provide fair baselines, we reproduced two literature feature sets within an identical Light Gradient Boosting Machine (LightGBM) pipeline: (i) a healthy-cohort feature set and (ii) a patient-cohort feature set that was not stage-stratified and did not focus on feature selection (we adopted the features as reported). Multiple classifiers-Linear Discriminant Analysis, Support Vector Machines, Random Forest, LightGBM, Logistic Regression, and K-Nearest Neighbors-were evaluated via group-wise cross-validation. Within-stage variability was quantified using pairwise Jaccard overlap of selected features.
Results: Stage-tailored subsets achieved compact yet accurate models: High = 81.5% (14 features, LightGBM), Medium = 80.2% (9 features, LightGBM), Low = 65.0% (7 features, Random Forest). SFS exceeded the mRMR filter comparison and outperformed both literature baselines under the same LightGBM pipeline (paired tests across CV folds, [Formula: see text]). Relative to the healthy-cohort baseline, gains were +6.5% (High), +6.2% (Medium), and +12.0% (Low); relative to the non-stage-stratified patient baseline, gains were +9.5%, +10.2%, and +21.0%, respectively. Time-domain metrics-particularly Difference Absolute Standard Deviation Value and Sample Entropy were most frequently selected. Jaccard analyses indicated within-stage heterogeneity alongside convergence on a small set of core discriminative features.
Conclusions: Brunnstrom stage-specific feature engineering substantially improves EMG gesture-classification accuracy over both healthy-derived and non-stage-stratified patient baselines while reducing computational load. These findings support adaptive, stage-aware designs for wearable rehabilitation systems and motivate larger Low-stage cohorts and models robust to sparse or low-SNR signals.
{"title":"Stage-specific EMG feature optimization for enhanced post-stroke hand gesture recognition.","authors":"Omar Mansour, Hussein Sarwat, Zakir Ullah, Xinyu Song, Jie Jia, Peter B Shull","doi":"10.1186/s12984-025-01807-5","DOIUrl":"10.1186/s12984-025-01807-5","url":null,"abstract":"<p><strong>Background: </strong>EMG-based hand-gesture recognition can enable home-based post-stroke rehabilitation, yet one-size-fits-all feature sets overlook differences across recovery stage METHODS: Thirteen post-stroke participants performed seven gestures while EMG was recorded from six forearm sensors. From 38 time- and frequency-domain features, we derived stage-specific subsets for Low (Brunnstrom 1-2, minimal movement), Medium (3-4, partial movement), and High (5-6, near-normal movement) using a wrapper approach Sequential Forward Selection (SFS). For reference, we included a filter comparison using minimum Redundancy-Maximum Relevance (mRMR). To provide fair baselines, we reproduced two literature feature sets within an identical Light Gradient Boosting Machine (LightGBM) pipeline: (i) a healthy-cohort feature set and (ii) a patient-cohort feature set that was not stage-stratified and did not focus on feature selection (we adopted the features as reported). Multiple classifiers-Linear Discriminant Analysis, Support Vector Machines, Random Forest, LightGBM, Logistic Regression, and K-Nearest Neighbors-were evaluated via group-wise cross-validation. Within-stage variability was quantified using pairwise Jaccard overlap of selected features.</p><p><strong>Results: </strong>Stage-tailored subsets achieved compact yet accurate models: High = 81.5% (14 features, LightGBM), Medium = 80.2% (9 features, LightGBM), Low = 65.0% (7 features, Random Forest). SFS exceeded the mRMR filter comparison and outperformed both literature baselines under the same LightGBM pipeline (paired tests across CV folds, [Formula: see text]). Relative to the healthy-cohort baseline, gains were +6.5% (High), +6.2% (Medium), and +12.0% (Low); relative to the non-stage-stratified patient baseline, gains were +9.5%, +10.2%, and +21.0%, respectively. Time-domain metrics-particularly Difference Absolute Standard Deviation Value and Sample Entropy were most frequently selected. Jaccard analyses indicated within-stage heterogeneity alongside convergence on a small set of core discriminative features.</p><p><strong>Conclusions: </strong>Brunnstrom stage-specific feature engineering substantially improves EMG gesture-classification accuracy over both healthy-derived and non-stage-stratified patient baselines while reducing computational load. These findings support adaptive, stage-aware designs for wearable rehabilitation systems and motivate larger Low-stage cohorts and models robust to sparse or low-SNR signals.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"13"},"PeriodicalIF":5.2,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145701294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-06DOI: 10.1186/s12984-025-01830-6
Charlotte Lang, Jeffrey M Hausdorff, Sjoerd M Bruijn, Matthew A Brodie, Yoshiro Okubo, Walter Maetzler, Moira van Leeuwen, Navrag B Singh, Jaap H van Dieen, Deepak K Ravi
Background: Gait instability is a common and disabling symptom of Parkinson's disease (PD), contributing to frequent falls and reduced quality of life. While clinical balance tests and spatiotemporal gait measures can predict fall risk, they do not fully explain the underlying control mechanisms. In healthy individuals, foot placement is actively adjusted based on an estimate of the Center of Mass (CoM) state to maintain gait stability, known as foot placement control. This estimation relies on the integration of multisensory information, which has been shown to be impaired in PD, potentially disrupting the control of gait stability through foot placement. This study aimed to investigate whether foot placement coordination during overground walking is impaired in people with PD.
Methods: Fifty people with PD and 51 healthy older adults walked overground for 10 min at self-selected walking speed. Foot placement errors were quantified as the deviation between the actual foot placement and the predicted placement derived from the CoM kinematic state during the preceding swing phase.
Results: Foot placement errors were significantly higher in people with PD than in healthy older adults in both mediolateral (p < 0.05) and anteroposterior directions (p < 0.0001), at both mid-swing and terminal swing. Relative explained variance in mediolateral direction was significantly higher in people with PD compared to healthy older adults (p < 0.005).
Conclusion: We provide first evidence of impaired coordination between the CoM and foot placement in PD. Future work should investigate a causal relationship between impaired foot placement control, sensorimotor integration and gait instability.
{"title":"Foot placement coordination is impaired in people with Parkinson's disease.","authors":"Charlotte Lang, Jeffrey M Hausdorff, Sjoerd M Bruijn, Matthew A Brodie, Yoshiro Okubo, Walter Maetzler, Moira van Leeuwen, Navrag B Singh, Jaap H van Dieen, Deepak K Ravi","doi":"10.1186/s12984-025-01830-6","DOIUrl":"10.1186/s12984-025-01830-6","url":null,"abstract":"<p><strong>Background: </strong>Gait instability is a common and disabling symptom of Parkinson's disease (PD), contributing to frequent falls and reduced quality of life. While clinical balance tests and spatiotemporal gait measures can predict fall risk, they do not fully explain the underlying control mechanisms. In healthy individuals, foot placement is actively adjusted based on an estimate of the Center of Mass (CoM) state to maintain gait stability, known as foot placement control. This estimation relies on the integration of multisensory information, which has been shown to be impaired in PD, potentially disrupting the control of gait stability through foot placement. This study aimed to investigate whether foot placement coordination during overground walking is impaired in people with PD.</p><p><strong>Methods: </strong>Fifty people with PD and 51 healthy older adults walked overground for 10 min at self-selected walking speed. Foot placement errors were quantified as the deviation between the actual foot placement and the predicted placement derived from the CoM kinematic state during the preceding swing phase.</p><p><strong>Results: </strong>Foot placement errors were significantly higher in people with PD than in healthy older adults in both mediolateral (p < 0.05) and anteroposterior directions (p < 0.0001), at both mid-swing and terminal swing. Relative explained variance in mediolateral direction was significantly higher in people with PD compared to healthy older adults (p < 0.005).</p><p><strong>Conclusion: </strong>We provide first evidence of impaired coordination between the CoM and foot placement in PD. Future work should investigate a causal relationship between impaired foot placement control, sensorimotor integration and gait instability.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"10"},"PeriodicalIF":5.2,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145696139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-06DOI: 10.1186/s12984-025-01833-3
Paula Soriano-Segura, Mario Ortiz, Cristina Polo-Hortigüela, Eduardo Iáñez, José M Azorín
{"title":"Characterization of error-related potentials during the command of a lower-limb exoskeleton based on deep learning.","authors":"Paula Soriano-Segura, Mario Ortiz, Cristina Polo-Hortigüela, Eduardo Iáñez, José M Azorín","doi":"10.1186/s12984-025-01833-3","DOIUrl":"10.1186/s12984-025-01833-3","url":null,"abstract":"","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"11"},"PeriodicalIF":5.2,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145696124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Background: </strong>Motor control is organized within a hierarchical system in which the sensorimotor cortex generates motor commands that are progressively refined through subcortical and spinal networks before being executed by peripheral muscles. Central factors provide the planning and modulation necessary for movement, while peripheral neuromuscular strategies translate these commands into action.Within this interplay, anticipatory postural adjustments (APAs; feedforward control) and compensatory postural adjustments (CPAs; feedback-based corrections) are key peripheral factors that operate in continuous interaction with cortical processes to preserve motor control and postural stability.</p><p><strong>Objective: </strong>To investigate whether cortical excitability-measured by sensory evoked potentials (SEPs; components N80 and N150) and motor evoked potentials (MEPs)-together with deep trunk muscle activity-assessed using electromyography (EMG) of the abdominal and paraspinal muscles during APA and CPA phases-moderates the relationship between pain characteristics (intensity, duration) and functional outcomes (disability, motor control) in individuals with chronic lumbosacral radicular pain.</p><p><strong>Methods: </strong>This cross-sectional study assessed forty-four participants with chronic unilateral lumbosacral radicular pain secondary to L4/L5 or L5/S1 disc herniation. Moderation analyses were performed using PROCESS (model 1), with predictors (X = pain intensity or duration), outcomes (Y = disability or motor control), and moderators (W = cortical or muscular measures), controlling for age. Conditional effects were estimated at the 16th, 50th, and 84th percentiles. "Ipsilateral" referred to the side of perturbation (non-painful), and "contralateral" to the opposite side.</p><p><strong>Results: </strong>Sensory cortical excitability (N150 amplitude) significantly moderated the association between pain intensity and disability (interaction: β = - 1.87, 95% CI [- 3.69, - 0.06], p = 0.043). The impact of pain intensity on disability was strongest at the 16th percentile of N150 (β = 3.98, 95% CI [2.61, 5.35], p < 0.001) and weakest at the 84th percentile (β = 1.70, 95% CI [0.03, 3.37], p = 0.046). EMG activity of the ipsilateral abdominal muscle during the APA phase also moderated this relationship (interaction: β = - 2.53, 95% CI [- 4.74, - 0.32], p = 0.026), with effects decreasing from β = 3.87 (95% CI [2.68, 5.07], p < 0.001) at the 16th percentile to β = 1.42 (95% CI [- 0.26, 3.09], p = 0.095) at the 84th percentile. For pain duration, paraspinal MEPs showed only a trend toward moderation (interaction: β = - 0.003, 95% CI [- 0.006, 0.0003], p = 0.072). In contrast, sensory cortical excitability indexed by N80 amplitude significantly attenuated the pain duration-disability association (interaction: β = - 0.218, 95% CI [- 0.379, - 0.056], p = 0.010). Ipsilateral abdominal APA activity similarly moderated this association
背景:运动控制是在一个层次系统中组织起来的,在这个系统中,感觉运动皮层产生运动命令,这些命令在被周围肌肉执行之前,通过皮层下和脊髓网络逐步细化。中枢因素提供运动所需的计划和调节,而周围神经肌肉策略将这些命令转化为行动。在这种相互作用中,预期性姿势调整(前馈控制)和代偿性姿势调整(基于反馈的纠正)是关键的外周因素,它们与皮质过程持续相互作用,以保持运动控制和姿势稳定性。目的:探讨皮质兴奋性(通过感觉诱发电位(sep, N80和N150成分)和运动诱发电位(MEPs)测量)以及深干肌肉活动(通过APA和CPA阶段腹部和棘旁肌肉的肌电图(EMG)评估)是否调节慢性腰骶神经根性疼痛患者疼痛特征(强度、持续时间)和功能结果(残疾、运动控制)之间的关系。方法:这项横断面研究评估了44名慢性单侧腰骶神经根痛继发于L4/L5或L5/S1椎间盘突出的参与者。使用PROCESS(模型1)进行适度分析,预测因子(X =疼痛强度或持续时间),结果(Y =残疾或运动控制)和调节因子(W =皮质或肌肉测量)控制年龄。条件效应估计在第16、50和84个百分位数。“同侧”是指摄动的一侧(无痛),“对侧”是指相反的一侧。结果:感觉皮质兴奋性(N150振幅)显著调节疼痛强度和残疾之间的关联(交互作用:β = - 1.87, 95% CI [- 3.69, - 0.06], p = 0.043)。疼痛强度对残疾的影响在N150的第16百分位时最强(β = 3.98, 95% CI [2.61, 5.35], p)。结论:腰骶神经根性疼痛的功能结局受中枢和外周因素的相互作用影响。增强的感觉和运动皮质兴奋性,连同前馈同侧腹肌活动,缓和了疼痛和残疾之间的关系,并与更好地保持运动控制有关。对侧APA活动可能进一步调节疼痛对运动控制的影响,尽管这种影响是边际的。
{"title":"Central and peripheral factors moderating pain effects on motor control and disability in chronic lumbosacral radicular pain.","authors":"Roya Khanmohammadi, Soheila Qanbari, Hanie Sadat Hejazi","doi":"10.1186/s12984-025-01824-4","DOIUrl":"10.1186/s12984-025-01824-4","url":null,"abstract":"<p><strong>Background: </strong>Motor control is organized within a hierarchical system in which the sensorimotor cortex generates motor commands that are progressively refined through subcortical and spinal networks before being executed by peripheral muscles. Central factors provide the planning and modulation necessary for movement, while peripheral neuromuscular strategies translate these commands into action.Within this interplay, anticipatory postural adjustments (APAs; feedforward control) and compensatory postural adjustments (CPAs; feedback-based corrections) are key peripheral factors that operate in continuous interaction with cortical processes to preserve motor control and postural stability.</p><p><strong>Objective: </strong>To investigate whether cortical excitability-measured by sensory evoked potentials (SEPs; components N80 and N150) and motor evoked potentials (MEPs)-together with deep trunk muscle activity-assessed using electromyography (EMG) of the abdominal and paraspinal muscles during APA and CPA phases-moderates the relationship between pain characteristics (intensity, duration) and functional outcomes (disability, motor control) in individuals with chronic lumbosacral radicular pain.</p><p><strong>Methods: </strong>This cross-sectional study assessed forty-four participants with chronic unilateral lumbosacral radicular pain secondary to L4/L5 or L5/S1 disc herniation. Moderation analyses were performed using PROCESS (model 1), with predictors (X = pain intensity or duration), outcomes (Y = disability or motor control), and moderators (W = cortical or muscular measures), controlling for age. Conditional effects were estimated at the 16th, 50th, and 84th percentiles. \"Ipsilateral\" referred to the side of perturbation (non-painful), and \"contralateral\" to the opposite side.</p><p><strong>Results: </strong>Sensory cortical excitability (N150 amplitude) significantly moderated the association between pain intensity and disability (interaction: β = - 1.87, 95% CI [- 3.69, - 0.06], p = 0.043). The impact of pain intensity on disability was strongest at the 16th percentile of N150 (β = 3.98, 95% CI [2.61, 5.35], p < 0.001) and weakest at the 84th percentile (β = 1.70, 95% CI [0.03, 3.37], p = 0.046). EMG activity of the ipsilateral abdominal muscle during the APA phase also moderated this relationship (interaction: β = - 2.53, 95% CI [- 4.74, - 0.32], p = 0.026), with effects decreasing from β = 3.87 (95% CI [2.68, 5.07], p < 0.001) at the 16th percentile to β = 1.42 (95% CI [- 0.26, 3.09], p = 0.095) at the 84th percentile. For pain duration, paraspinal MEPs showed only a trend toward moderation (interaction: β = - 0.003, 95% CI [- 0.006, 0.0003], p = 0.072). In contrast, sensory cortical excitability indexed by N80 amplitude significantly attenuated the pain duration-disability association (interaction: β = - 0.218, 95% CI [- 0.379, - 0.056], p = 0.010). Ipsilateral abdominal APA activity similarly moderated this association ","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"12"},"PeriodicalIF":5.2,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145696096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-06DOI: 10.1186/s12984-025-01798-3
Sang-Yoep Lee, Jaewon Beom, Jin-Oh Hahn, Jae-Young Lim, Kyu-Jin Cho
{"title":"Exhalation-synchronous robotic abdominal compression for user-centered respiratory assistance and training in neurological patients.","authors":"Sang-Yoep Lee, Jaewon Beom, Jin-Oh Hahn, Jae-Young Lim, Kyu-Jin Cho","doi":"10.1186/s12984-025-01798-3","DOIUrl":"10.1186/s12984-025-01798-3","url":null,"abstract":"","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":" ","pages":"50"},"PeriodicalIF":5.2,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12859905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145696200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}