首页 > 最新文献

Journal of Non-Equilibrium Thermodynamics最新文献

英文 中文
Efficient ecological function analysis and multi-objective optimizations for an endoreversible simple air refrigerator cycle 内可逆简单空气制冷循环的高效生态功能分析和多目标优化
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-10-05 DOI: 10.1515/jnet-2024-0045
Zijian Xu, Yanlin Ge, Lingen Chen, Huijun Feng
Combining finite time thermodynamics and exergetic analysis, analogous to the definition of ecological efficient power for heat engines, this paper proposes a unified performance indicator for various cycles, exergy-based efficient ecological function (E ɛ ) which is defined as product of exergy-based ecological function and coefficient of performance, and introduces it into performance optimization of endoreversible simple air refrigerator cycle coupled to constant-temperature heat reservoirs. Relations among E ɛ , pressure ratio (π) and heat conductance distribution ratio (u) are derived by using numerical method. The cycle performance indicators which include cooling load (R), coefficient of performance (ɛ), and exergetic loss rate (E out/T 0) under the different maximum objective criteria are compared. Taking π as optimal variable, and taking R, ɛ, cooling load density (r), E ɛ and their combinations as optimization objectives, multi-objective optimizations, totally 15 optimization combinations, are performed by using NASG-II algorithm. The results demonstrate that, the maximum E ɛ criteria can better reflect the compromise among R, ɛ and E out/T 0. The Pareto solution sets are majorly distributed in 2.5–20 when quadru-objective optimizations are performed. The option selected by LINMAP decision-making method is closer to ideal solution when bi-objective optimization of ɛ and r is carried out.
本文结合有限时间热力学和能效分析,类比热机生态效率功率的定义,提出了各种循环的统一性能指标--基于能效的高效生态函数(E ɛ ),定义为基于能效的生态函数与性能系数的乘积,并将其引入到与恒温蓄热器耦合的内逆简单空气制冷循环的性能优化中。通过数值方法推导出 E ɛ、压力比 (π) 和热传导分布比 (u) 之间的关系。比较了不同最大目标标准下的循环性能指标,包括冷却负荷(R)、性能系数(ɛ)和能效损失率(E out/T 0)。以 π 为最优变量,以 R、ɛ、冷却负荷密度 (r)、E ɛ 及其组合为优化目标,采用 NASG-II 算法进行多目标优化,共优化组合 15 个。结果表明,最大 E ɛ 标准能较好地反映 R、ɛ 和 E out/T 0 之间的折衷关系,在进行四目标优化时,帕累托解集主要分布在 2.5-20 之间。当对 ɛ 和 r 进行双目标优化时,LINMAP 决策方法选择的方案更接近理想方案。
{"title":"Efficient ecological function analysis and multi-objective optimizations for an endoreversible simple air refrigerator cycle","authors":"Zijian Xu, Yanlin Ge, Lingen Chen, Huijun Feng","doi":"10.1515/jnet-2024-0045","DOIUrl":"https://doi.org/10.1515/jnet-2024-0045","url":null,"abstract":"Combining finite time thermodynamics and exergetic analysis, analogous to the definition of ecological efficient power for heat engines, this paper proposes a unified performance indicator for various cycles, exergy-based efficient ecological function (<jats:italic>E</jats:italic> <jats:sub> <jats:italic>ɛ</jats:italic> </jats:sub>) which is defined as product of exergy-based ecological function and coefficient of performance, and introduces it into performance optimization of endoreversible simple air refrigerator cycle coupled to constant-temperature heat reservoirs. Relations among <jats:italic>E</jats:italic> <jats:sub> <jats:italic>ɛ</jats:italic> </jats:sub>, pressure ratio (<jats:italic>π</jats:italic>) and heat conductance distribution ratio (<jats:italic>u</jats:italic>) are derived by using numerical method. The cycle performance indicators which include cooling load (<jats:italic>R</jats:italic>), coefficient of performance (<jats:italic>ɛ</jats:italic>), and exergetic loss rate (<jats:italic>E</jats:italic> <jats:sub>out</jats:sub>/<jats:italic>T</jats:italic> <jats:sub>0</jats:sub>) under the different maximum objective criteria are compared. Taking <jats:italic>π</jats:italic> as optimal variable, and taking <jats:italic>R</jats:italic>, <jats:italic>ɛ</jats:italic>, cooling load density (<jats:italic>r</jats:italic>), <jats:italic>E</jats:italic> <jats:sub> <jats:italic>ɛ</jats:italic> </jats:sub> and their combinations as optimization objectives, multi-objective optimizations, totally 15 optimization combinations, are performed by using NASG-II algorithm. The results demonstrate that, the maximum <jats:italic>E</jats:italic> <jats:sub> <jats:italic>ɛ</jats:italic> </jats:sub> criteria can better reflect the compromise among <jats:italic>R</jats:italic>, <jats:italic>ɛ</jats:italic> and <jats:italic>E</jats:italic> <jats:sub>out</jats:sub>/<jats:italic>T</jats:italic> <jats:sub>0</jats:sub>. The Pareto solution sets are majorly distributed in 2.5–20 when quadru-objective optimizations are performed. The option selected by LINMAP decision-making method is closer to ideal solution when bi-objective optimization of <jats:italic>ɛ</jats:italic> and <jats:italic>r</jats:italic> is carried out.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"3 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma 通过求解麦克斯韦-玻尔兹曼 PDEs 系统建立非均质带电气流的新型不可逆模型:多组分等离子体的不可逆分析
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-26 DOI: 10.1515/jnet-2024-0055
Taha Z. Abdel Wahid, Zaki Mrzog Alaofi
A novel modeling and new irreversibility analysis of non-homogeneous charged gas flow is presented as an extension and further development of our previous article [J. Non-equilibrium. Thermodyne. 49 (2024), 1–21]. We study the non-equilibrium irreversible thermodynamics (NIT) properties of the exact solution to the dilute non-homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas is non-homogeneous under the influence of induced electromagnetic forces, the flat plate moving damping with time, and the effect of positive ions is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving eight non-homogeneous partial differential equations (PDE). We used a Laplace transformation technique and small parameters methods. To the best of our knowledge, as two new scientific achievements, we introduced a new mathematical model for a mixture of charged gas to calculate the thermodynamic forces, kinetic coefficients, and fluxes variables, see Appendices. Second, we present a fantastic new technique by a flowchart to identify the equilibrium time of multi-component plasma step-by-step using the velocity distribution function (VDF). We indicate that electrons, which are faster lighter components, reach equilibrium faster than slower heavier components. A standard laboratory argon plasma model is used to apply the results.
作为我们之前文章[J. Non-equilibrium. Thermodyne. 49 (2024), 1-21]的延伸和进一步发展,提出了非均质带电气体流动的新模型和新的不可逆分析。我们研究了稀释非均质带电气体问题的非稳态瑞利流精确解的非平衡不可逆热力学(NIT)特性。与以往的研究不同的是,在诱导电磁力的影响下,带电气体是非均质的,平板移动阻尼随时间变化,并且考虑了正离子的影响,从而在理解自然等离子体动力学方面取得了重大进展。我们正在求解八个非均质偏微分方程(PDE)。我们使用了拉普拉斯变换技术和小参数方法。据我们所知,作为两项新的科学成就,我们为带电气体混合物引入了一个新的数学模型,用于计算热动力、动力学系数和通量变量(见附录)。其次,我们提出了一项神奇的新技术,即利用速度分布函数(VDF),通过流程图逐步确定多组分等离子体的平衡时间。我们指出,电子作为速度较快的轻组分,比速度较慢的重组分更快达到平衡。我们使用了一个标准实验室氩等离子体模型来应用这些结果。
{"title":"Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma","authors":"Taha Z. Abdel Wahid, Zaki Mrzog Alaofi","doi":"10.1515/jnet-2024-0055","DOIUrl":"https://doi.org/10.1515/jnet-2024-0055","url":null,"abstract":"A novel modeling and new irreversibility analysis of non-homogeneous charged gas flow is presented as an extension and further development of our previous article [J. Non-equilibrium. Thermodyne. 49 (2024), 1–21]. We study the non-equilibrium irreversible thermodynamics (NIT) properties of the exact solution to the dilute non-homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas is non-homogeneous under the influence of induced electromagnetic forces, the flat plate moving damping with time, and the effect of positive ions is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving eight non-homogeneous partial differential equations (PDE). We used a Laplace transformation technique and small parameters methods. To the best of our knowledge, as two new scientific achievements, we introduced a new mathematical model for a mixture of charged gas to calculate the thermodynamic forces, kinetic coefficients, and fluxes variables, see Appendices. Second, we present a fantastic new technique by a flowchart to identify the equilibrium time of multi-component plasma step-by-step using the velocity distribution function (VDF). We indicate that electrons, which are faster lighter components, reach equilibrium faster than slower heavier components. A standard laboratory argon plasma model is used to apply the results.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"67 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics and dynamic stability: extended theories of heat conduction 热力学和动态稳定性:热传导的扩展理论
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-24 DOI: 10.1515/jnet-2024-0041
Réka Somogyfoki, Alessio Famá, Liliana Restuccia, Peter Ván
The stability of homogeneous thermodynamic equilibrium is analyzed in heat conduction theories in the framework of nonequilibrium thermodynamics, where the internal energy, the heat flux and a second order tensor are thermodynamic state variables. It is shown, that the thermodynamic conditions of concave entropy and nonnegative entropy production can ensure the linear stability. Various special heat conduction theories, including Extended Thermodynamics, are compared in the general framework.
在非平衡热力学框架内,分析了热传导理论中均相热力学平衡的稳定性,其中内能、热通量和二阶张量是热力学状态变量。研究表明,凹熵和非负熵产生的热力学条件可以确保线性稳定性。在一般框架内比较了各种特殊热传导理论,包括扩展热力学。
{"title":"Thermodynamics and dynamic stability: extended theories of heat conduction","authors":"Réka Somogyfoki, Alessio Famá, Liliana Restuccia, Peter Ván","doi":"10.1515/jnet-2024-0041","DOIUrl":"https://doi.org/10.1515/jnet-2024-0041","url":null,"abstract":"The stability of homogeneous thermodynamic equilibrium is analyzed in heat conduction theories in the framework of nonequilibrium thermodynamics, where the internal energy, the heat flux and a second order tensor are thermodynamic state variables. It is shown, that the thermodynamic conditions of concave entropy and nonnegative entropy production can ensure the linear stability. Various special heat conduction theories, including Extended Thermodynamics, are compared in the general framework.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"6 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit 权衡利弊下的量子谐波奥托发动机和制冷机性能分析
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-28 DOI: 10.1515/jnet-2024-0034
Kirandeep Kaur, Shishram Rebari, Varinder Singh
We investigate the optimal performance of the quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator under a trade-off figure of merit for both adiabatic and nonadiabatic (sudden-switch) frequency modulations. For heat engines (refrigerators), the chosen trade-off figure of merit is an objective function defined by the product of efficiency (coefficient of performance) and work output (cooling load), thus representing a compromise between them. We obtain analytical expressions for the efficiency and coefficient of performance of the harmonic Otto cycle for the optimal performance of the thermal machine in various operational regimes. Particularly, in the sudden-switch regime, we discuss the implications of the nonadiabatic driving on the performance of the thermal machine under consideration and obtain analytic expressions for the maximum achievable efficiency and coefficient of performance of the harmonic Otto thermal machine. Particularly, we show that the quantum harmonic Otto cycle driven by sudden-switch protocol cannot work as a heat engine or refrigerator in the low-temperature limit. Finally, we show that in the high-temperature limit, the frictional effects give rise to a richer structure of the phase diagram of the harmonic Otto cycle. We identify the parametric regime for the operation of the Otto cycle as a heat engine, refrigerator, accelerator, and heater.
我们研究了时变谐波振荡器的量子奥托发动机和制冷循环在绝热和非绝热(突然切换)频率调制的优劣权衡下的最佳性能。对于热机(制冷机)而言,所选择的权衡优点是一个目标函数,由效率(性能系数)和功输出(制冷负荷)的乘积定义,因此代表了两者之间的折衷。我们获得了谐波奥托循环的效率和性能系数的分析表达式,从而使热机在各种运行状态下都能达到最佳性能。特别是在突然开关状态下,我们讨论了非绝热驱动对所考虑的热机性能的影响,并获得了谐波奥托热机的最大可实现效率和性能系数的解析表达式。特别是,我们证明了由突然开关协议驱动的量子谐波奥托循环在低温极限下不能作为热机或冰箱工作。最后,我们证明了在高温极限下,摩擦效应会使谐波奥托循环的相图结构更加丰富。我们确定了奥托循环作为热机、冰箱、加速器和加热器运行的参数机制。
{"title":"Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit","authors":"Kirandeep Kaur, Shishram Rebari, Varinder Singh","doi":"10.1515/jnet-2024-0034","DOIUrl":"https://doi.org/10.1515/jnet-2024-0034","url":null,"abstract":"We investigate the optimal performance of the quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator under a trade-off figure of merit for both adiabatic and nonadiabatic (sudden-switch) frequency modulations. For heat engines (refrigerators), the chosen trade-off figure of merit is an objective function defined by the product of efficiency (coefficient of performance) and work output (cooling load), thus representing a compromise between them. We obtain analytical expressions for the efficiency and coefficient of performance of the harmonic Otto cycle for the optimal performance of the thermal machine in various operational regimes. Particularly, in the sudden-switch regime, we discuss the implications of the nonadiabatic driving on the performance of the thermal machine under consideration and obtain analytic expressions for the maximum achievable efficiency and coefficient of performance of the harmonic Otto thermal machine. Particularly, we show that the quantum harmonic Otto cycle driven by sudden-switch protocol cannot work as a heat engine or refrigerator in the low-temperature limit. Finally, we show that in the high-temperature limit, the frictional effects give rise to a richer structure of the phase diagram of the harmonic Otto cycle. We identify the parametric regime for the operation of the Otto cycle as a heat engine, refrigerator, accelerator, and heater.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"5 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM 研究在梅苏阿魏生物柴油中分散了纳米氧化铬 (Cr2O3) 的柴油发动机的运行特性:使用 ANNs 和 RSM 的实验和预测方法
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-16 DOI: 10.1515/jnet-2024-0021
Jagadish Kari, Vanthala Varaha Siva Prasad, Jaikumar Sagari
This study investigates the effects of using biodiesel from Mesua ferrea (BD20) and chromium oxide (Cr2O3) nanoparticles in diesel engines. The Response Surface Methodology (RSM) model and artificial neural networks (ANNs) were developed to make precise predictions of the operating parameters. The amount of Cr2O3 nanoparticles was set at 80 mg/L, and surfactant and dispersant were applied to the nanoparticles in the same amounts. The study was carried out with different compression ratios and load conditions. The parameters evaluated were engine load, fuel samples and compression ratio as inputs and BTE, BSFC, CP, NHRR, CO, UHC, NO x and smoke opacity as outputs. The addition of the QPAN80 additive at the same dosage of 80 mg/L together with the BD20 fuel blend containing Cr2O3 at a concentration of 80 mg/L resulted in a significant increase in BTE by 16.58 % and a reduction in BSFC by 0.58 %. While the NHRR increased by 85.40 %, the CP increased sharply by 24.47 %. The CO concentration decreased by 31.85 %, the UHC concentration by 22.22 %, the NO x concentration by 6.16 % and the smoke emission by 62.61 %. For each output parameter, the correlation coefficient (R 2), calculated using ANNs and RSM was between 0.96 and 0.98. The observed range of values demonstrates a robust correlation between the experimental data and the predicted outcomes.
本研究探讨了在柴油发动机中使用阿魏(Mesua ferrea)生物柴油(BD20)和纳米氧化铬(Cr2O3)的效果。开发了响应面方法(RSM)模型和人工神经网络(ANN),以精确预测运行参数。Cr2O3 纳米粒子的用量设定为 80 mg/L,表面活性剂和分散剂的用量相同。研究在不同的压缩比和负载条件下进行。评估参数包括作为输入的发动机负荷、燃料样品和压缩比,以及作为输出的 BTE、BSFC、CP、NHRR、CO、UHC、NO x 和烟雾不透明度。在含有 80 毫克/升浓度 Cr2O3 的 BD20 混合燃料中添加相同剂量(80 毫克/升)的 QPAN80 添加剂后,BTE 显著增加了 16.58%,BSFC 降低了 0.58%。虽然 NHRR 增加了 85.40%,但 CP 急剧增加了 24.47%。CO 浓度降低了 31.85 %,UHC 浓度降低了 22.22 %,NO x 浓度降低了 6.16 %,烟雾排放降低了 62.61 %。对于每个输出参数,使用 ANN 和 RSM 计算出的相关系数(R 2)在 0.96 和 0.98 之间。观察到的数值范围表明,实验数据与预测结果之间具有很强的相关性。
{"title":"Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM","authors":"Jagadish Kari, Vanthala Varaha Siva Prasad, Jaikumar Sagari","doi":"10.1515/jnet-2024-0021","DOIUrl":"https://doi.org/10.1515/jnet-2024-0021","url":null,"abstract":"This study investigates the effects of using biodiesel from <jats:italic>Mesua ferrea</jats:italic> (BD20) and chromium oxide (Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) nanoparticles in diesel engines. The Response Surface Methodology (RSM) model and artificial neural networks (ANNs) were developed to make precise predictions of the operating parameters. The amount of Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanoparticles was set at 80 mg/L, and surfactant and dispersant were applied to the nanoparticles in the same amounts. The study was carried out with different compression ratios and load conditions. The parameters evaluated were engine load, fuel samples and compression ratio as inputs and BTE, BSFC, CP, NHRR, CO, UHC, NO<jats:sub> <jats:italic>x</jats:italic> </jats:sub> and smoke opacity as outputs. The addition of the QPAN80 additive at the same dosage of 80 mg/L together with the BD20 fuel blend containing Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> at a concentration of 80 mg/L resulted in a significant increase in BTE by 16.58 % and a reduction in BSFC by 0.58 %. While the NHRR increased by 85.40 %, the CP increased sharply by 24.47 %. The CO concentration decreased by 31.85 %, the UHC concentration by 22.22 %, the NO<jats:sub> <jats:italic>x</jats:italic> </jats:sub> concentration by 6.16 % and the smoke emission by 62.61 %. For each output parameter, the correlation coefficient (<jats:italic>R</jats:italic> <jats:sup>2</jats:sup>), calculated using ANNs and RSM was between 0.96 and 0.98. The observed range of values demonstrates a robust correlation between the experimental data and the predicted outcomes.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"23 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia 磁性纳米粒子热疗过程中肿瘤内非平衡生物传热的分析解决方案
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-07-23 DOI: 10.1515/jnet-2024-0035
Zuhur Alqahtani, Ibrahim Abbas
This paper presents mathematical responses for the dual-phase-lag (DPL) hypothesis, which accounts for nonequilibrium heat transfer during magnetic nanoparticle hyperthermia in tumor. To get this precision, volume averaging is used for the local instantaneous energy formulation for tissues and blood. This study proposes a hybrid numerical strategy to solve this problem by combining change of variables, improved discretization techniques, and Laplace transforms. Using the Arrhenius formulas, the range of denatured proteins is used to assess the degree of heat damages to the tumor and healthy tissues. The impacts of porosity, the blood perfusion and metabolism on the temperature and the thermal injuries are studied. The numerical estimations of temperature and the resulting of thermal injuries are shown on a graph, and a comparison with earlier research establishes the results’ validity.
本文介绍了双相滞后(DPL)假说的数学响应,该假说考虑了肿瘤中磁性纳米粒子热疗过程中的非平衡传热。为了获得这种精度,组织和血液的局部瞬时能量公式采用了体积平均法。本研究提出了一种混合数值策略,通过结合变量变化、改进的离散化技术和拉普拉斯变换来解决这一问题。利用阿伦尼乌斯公式,变性蛋白质的范围被用来评估肿瘤和健康组织的热损伤程度。研究了孔隙率、血液灌注和新陈代谢对温度和热损伤的影响。温度和热损伤的数值估算结果显示在图表上,与早期研究的比较证明了结果的正确性。
{"title":"Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia","authors":"Zuhur Alqahtani, Ibrahim Abbas","doi":"10.1515/jnet-2024-0035","DOIUrl":"https://doi.org/10.1515/jnet-2024-0035","url":null,"abstract":"This paper presents mathematical responses for the dual-phase-lag (DPL) hypothesis, which accounts for nonequilibrium heat transfer during magnetic nanoparticle hyperthermia in tumor. To get this precision, volume averaging is used for the local instantaneous energy formulation for tissues and blood. This study proposes a hybrid numerical strategy to solve this problem by combining change of variables, improved discretization techniques, and Laplace transforms. Using the Arrhenius formulas, the range of denatured proteins is used to assess the degree of heat damages to the tumor and healthy tissues. The impacts of porosity, the blood perfusion and metabolism on the temperature and the thermal injuries are studied. The numerical estimations of temperature and the resulting of thermal injuries are shown on a graph, and a comparison with earlier research establishes the results’ validity.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"80 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets 大功率加热下的复合液体:水包水燃料液滴微爆炸中的水过热现象
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-07-23 DOI: 10.1515/jnet-2024-0017
Alexey Melkikh, Pavel Skripov
The article analyses the degree of water superheating with respect to the liquid-vapour equilibrium line in experiments on the micro-explosion of a composite droplet comprised of two immiscible liquids. The analyses were carried out for water-in-fuel drops under conditions of high-power heating. This degree is compared with the mechanical effect of droplet decay, involving the formation of daughter droplets. Our attention was drawn to the smallness of the degree of superheating preceding the decay. A model of the boiling up of such a droplet is constructed taking into account the sources of premature boiling up of water inherent in micro-explosive experiments. The dependencies of the boiling up temperature of water on the heating rate obtained in the model turned out to be in accordance with the experimental data across a wide range of heating rates. A hypothesis about the local superheating of the transition layer, which is not detected in the experiment, is formulated. Thus, a step has been taken to clarify the essence of the mismatch of the degree of superheating of water recorded by macroscopic equipment along with a completely satisfactory generation of daughter droplets serving as the basis for advanced fuel technology.
文章分析了在由两种不相溶液体组成的复合液滴微爆炸实验中,水相对于液气平衡线的过热程度。分析是在大功率加热条件下对燃料水滴进行的。这种程度与液滴衰变的机械效应(包括子液滴的形成)进行了比较。我们注意到衰变前的过热程度很小。考虑到微爆炸实验中固有的水过早沸腾的来源,我们构建了这样一个液滴沸腾模型。模型中得出的水沸腾温度与加热速率的关系在很大的加热速率范围内都与实验数据相符。实验中没有检测到过渡层的局部过热,因此提出了一个假设。因此,在完全令人满意地生成作为先进燃料技术基础的子液滴的同时,我们已经迈出了一步,澄清了宏观设备记录的水过热程度不匹配的本质。
{"title":"Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets","authors":"Alexey Melkikh, Pavel Skripov","doi":"10.1515/jnet-2024-0017","DOIUrl":"https://doi.org/10.1515/jnet-2024-0017","url":null,"abstract":"The article analyses the degree of water superheating with respect to the liquid-vapour equilibrium line in experiments on the micro-explosion of a composite droplet comprised of two immiscible liquids. The analyses were carried out for water-in-fuel drops under conditions of high-power heating. This degree is compared with the mechanical effect of droplet decay, involving the formation of daughter droplets. Our attention was drawn to the smallness of the degree of superheating preceding the decay. A model of the boiling up of such a droplet is constructed taking into account the sources of premature boiling up of water inherent in micro-explosive experiments. The dependencies of the boiling up temperature of water on the heating rate obtained in the model turned out to be in accordance with the experimental data across a wide range of heating rates. A hypothesis about the local superheating of the transition layer, which is not detected in the experiment, is formulated. Thus, a step has been taken to clarify the essence of the mismatch of the degree of superheating of water recorded by macroscopic equipment along with a completely satisfactory generation of daughter droplets serving as the basis for advanced fuel technology.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"51 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures 三激光光学数字干涉仪在二元和三元混合物热重分析中的应用
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-07-16 DOI: 10.1515/jnet-2023-0126
Ane Errarte, Antton Sanjuan, Aliaksandr Mialdun, Marcos Alonso, Imanol Andonegui, Valentina Shevtsova, M. Mounir Bou-Ali
We discuss the application of the three-laser optical digital interferometry method for the determination of transport properties such as the thermodiffusion, the molecular diffusion and the Soret coefficients by the thermogravitational column technique. The primary objective of this study is to illustrate the capabilities and limitations of the method for quantifying these properties in both binary and ternary liquid mixtures from an optical viewpoint. It is concluded that the system is highly robust for the analysis of binary mixtures, with the combination of the results obtained by the three wavelengths increasing the accuracy of the measurement. The study of ternary mixtures, on the contrary, is limited to certain types of conditions. While the accuracy of a three-laser interferometer can be improved, the method may be compromised if the optical contrast factor matrices are poorly conditioned.
我们讨论了三激光光学数字干涉测量法在通过热重柱技术测定热扩散、分子扩散和索雷特系数等传输特性方面的应用。本研究的主要目的是从光学角度说明该方法在量化二元和三元液体混合物中这些特性的能力和局限性。研究得出的结论是,该系统对二元混合物的分析具有很强的鲁棒性,三种波长获得的结果相结合,提高了测量的准确性。相反,对三元混合物的研究仅限于某些类型的条件。虽然三激光干涉仪的精度可以提高,但如果光学对比因子矩阵的条件较差,该方法可能会受到影响。
{"title":"Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures","authors":"Ane Errarte, Antton Sanjuan, Aliaksandr Mialdun, Marcos Alonso, Imanol Andonegui, Valentina Shevtsova, M. Mounir Bou-Ali","doi":"10.1515/jnet-2023-0126","DOIUrl":"https://doi.org/10.1515/jnet-2023-0126","url":null,"abstract":"We discuss the application of the three-laser optical digital interferometry method for the determination of transport properties such as the thermodiffusion, the molecular diffusion and the Soret coefficients by the thermogravitational column technique. The primary objective of this study is to illustrate the capabilities and limitations of the method for quantifying these properties in both binary and ternary liquid mixtures from an optical viewpoint. It is concluded that the system is highly robust for the analysis of binary mixtures, with the combination of the results obtained by the three wavelengths increasing the accuracy of the measurement. The study of ternary mixtures, on the contrary, is limited to certain types of conditions. While the accuracy of a three-laser interferometer can be improved, the method may be compromised if the optical contrast factor matrices are poorly conditioned.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"240 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass transfer at vapor-liquid interfaces of H2O + CO2 mixtures studied by molecular dynamics simulation 通过分子动力学模拟研究 H2O + CO2 混合物汽液界面的传质问题
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-07-16 DOI: 10.1515/jnet-2024-0010
Simon Stephan, Vilde Bråten, Hans Hasse
In many industrial applications as well as in nature, the mass transfer of CO2 at vapor-liquid interfaces in aqueous systems plays an important role. In this work, this process was studied on the atomistic level using non-equilibrium molecular dynamics simulations. In a first step, a molecular model of the system water + CO2 was developed that represents both bulk and interfacial equilibrium properties well. This system is characterized by a very large adsorption and enrichment of CO2 at the vapor-liquid interface. Then, non-equilibrium mass transfer simulations were carried out using a method that was developed recently: CO2 is inserted into the vapor phase of a simulation box which contains a liquid slab. Surprising effects are observed at the interface such as a net repulsion of CO2 particles from the interface and a complex time dependence of the amount of CO2 adsorbed at the interface.
在许多工业应用和自然界中,二氧化碳在水性体系的汽液界面上的传质都发挥着重要作用。在这项工作中,我们利用非平衡分子动力学模拟在原子水平上研究了这一过程。首先,我们建立了水 + CO2 系统的分子模型,该模型能很好地反映体液和界面的平衡特性。该系统的特点是二氧化碳在汽液界面上的大量吸附和富集。然后,使用最近开发的一种方法进行了非平衡传质模拟:在包含液态板坯的模拟箱中的气相中加入二氧化碳。在界面上观察到了令人惊讶的效应,如二氧化碳颗粒对界面的净排斥以及界面上二氧化碳吸附量的复杂时间依赖性。
{"title":"Mass transfer at vapor-liquid interfaces of H2O + CO2 mixtures studied by molecular dynamics simulation","authors":"Simon Stephan, Vilde Bråten, Hans Hasse","doi":"10.1515/jnet-2024-0010","DOIUrl":"https://doi.org/10.1515/jnet-2024-0010","url":null,"abstract":"In many industrial applications as well as in nature, the mass transfer of CO<jats:sub>2</jats:sub> at vapor-liquid interfaces in aqueous systems plays an important role. In this work, this process was studied on the atomistic level using non-equilibrium molecular dynamics simulations. In a first step, a molecular model of the system water + CO<jats:sub>2</jats:sub> was developed that represents both bulk and interfacial equilibrium properties well. This system is characterized by a very large adsorption and enrichment of CO<jats:sub>2</jats:sub> at the vapor-liquid interface. Then, non-equilibrium mass transfer simulations were carried out using a method that was developed recently: CO<jats:sub>2</jats:sub> is inserted into the vapor phase of a simulation box which contains a liquid slab. Surprising effects are observed at the interface such as a net repulsion of CO<jats:sub>2</jats:sub> particles from the interface and a complex time dependence of the amount of CO<jats:sub>2</jats:sub> adsorbed at the interface.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"26 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized energy-conserving dissipative particle dynamics with mass transfer: coupling between energy and mass exchange 具有质量转移的广义能量守恒耗散粒子动力学:能量和质量交换之间的耦合
IF 6.6 3区 工程技术 Q1 MECHANICS Pub Date : 2024-05-30 DOI: 10.1515/jnet-2023-0129
Giuseppe Colella, Allan D. Mackie, James P. Larentzos, John K. Brennan, Martin Lísal, Josep Bonet Avalos
The complete description of energy and material transport within the Generalized energy-conserving dissipative particle dynamics with mass transfer (GenDPDE-M) methodology is presented. In particular, the dynamic coupling between mass and energy is incorporated into the GenDPDE-M, which was previously introduced with dynamically decoupled fluxes (J. Bonet Avalos et al., J. Chem. Theory Comput., 18 (12): 7639–7652, 2022). From a theoretical perspective, we have derived the appropriate Fluctuation-Dissipation theorems along with Onsager’s reciprocal relations, suitable for mesoscale models featuring this coupling. Equilibrium and non-equilibrium simulations are performed to demonstrate the internal thermodynamic consistency of the method, as well as the ability to capture the Ludwig–Soret effect, and tune its strength through the mesoscopic parameters. In view of the completeness of the presented approach, GenDPDE-M is the most general Lagrangian method to deal with complex fluids and systems at the mesoscale, where thermal agitation is relevant.
本文介绍了广义能量守恒耗散粒子动力学传质(GenDPDE-M)方法中能量和物质传输的完整描述。特别是,质量和能量之间的动态耦合被纳入 GenDPDE-M,而 GenDPDE-M 之前是通过动态解耦通量引入的(J. Bonet Avalos 等人,J. Chem.理论计算》,18 (12):7639-7652, 2022).从理论角度看,我们推导出了适当的波动-消散定理和昂萨格倒易关系,适用于具有这种耦合的中尺度模型。我们进行了平衡和非平衡模拟,以证明该方法的内部热力学一致性,以及捕捉路德维希-索雷特效应并通过中观参数调整其强度的能力。鉴于所提出方法的完整性,GenDPDE-M 是处理中观尺度复杂流体和系统的最通用的拉格朗日方法,其中热搅拌是相关的。
{"title":"Generalized energy-conserving dissipative particle dynamics with mass transfer: coupling between energy and mass exchange","authors":"Giuseppe Colella, Allan D. Mackie, James P. Larentzos, John K. Brennan, Martin Lísal, Josep Bonet Avalos","doi":"10.1515/jnet-2023-0129","DOIUrl":"https://doi.org/10.1515/jnet-2023-0129","url":null,"abstract":"The complete description of energy and material transport within the Generalized energy-conserving dissipative particle dynamics with mass transfer (GenDPDE-M) methodology is presented. In particular, the dynamic coupling between mass and energy is incorporated into the GenDPDE-M, which was previously introduced with dynamically decoupled fluxes (J. Bonet Avalos et al., <jats:italic>J. Chem. Theory Comput.</jats:italic>, 18 (12): 7639–7652, 2022). From a theoretical perspective, we have derived the appropriate Fluctuation-Dissipation theorems along with Onsager’s reciprocal relations, suitable for mesoscale models featuring this coupling. Equilibrium and non-equilibrium simulations are performed to demonstrate the internal thermodynamic consistency of the method, as well as the ability to capture the Ludwig–Soret effect, and tune its strength through the mesoscopic parameters. In view of the completeness of the presented approach, GenDPDE-M is the most general Lagrangian method to deal with complex fluids and systems at the mesoscale, where thermal agitation is relevant.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"20 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Non-Equilibrium Thermodynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1