首页 > 最新文献

Journal of Multivariate Analysis最新文献

英文 中文
High-dimensional projection-based ANOVA test
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-12-15 DOI: 10.1016/j.jmva.2024.105401
Weihao Yu , Qi Zhang , Weiyu Li
In bioinformation and medicine, an enormous amount of high-dimensional multi-population data is collected. For the inference of several-samples mean problem, traditional tests do not perform well and many new theories mainly focus on normal distribution and low correlation assumptions. Motivated by the weighted sign test, we propose two projection-based tests which are robust against the choice of correlation matrix. One test utilizes Scheffe’s transformation to generate a group of new samples and derives the optimal projection direction. The other test is adaptive to projection direction and is generalized to the assumption of the whole elliptical distribution and independent component model. Further the theoretical properties are deduced and numerical experiments are carried out to examine the finite sample performance. They show that our tests outperform others under certain circumstances.
{"title":"High-dimensional projection-based ANOVA test","authors":"Weihao Yu ,&nbsp;Qi Zhang ,&nbsp;Weiyu Li","doi":"10.1016/j.jmva.2024.105401","DOIUrl":"10.1016/j.jmva.2024.105401","url":null,"abstract":"<div><div>In bioinformation and medicine, an enormous amount of high-dimensional multi-population data is collected. For the inference of several-samples mean problem, traditional tests do not perform well and many new theories mainly focus on normal distribution and low correlation assumptions. Motivated by the weighted sign test, we propose two projection-based tests which are robust against the choice of correlation matrix. One test utilizes Scheffe’s transformation to generate a group of new samples and derives the optimal projection direction. The other test is adaptive to projection direction and is generalized to the assumption of the whole elliptical distribution and independent component model. Further the theoretical properties are deduced and numerical experiments are carried out to examine the finite sample performance. They show that our tests outperform others under certain circumstances.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105401"},"PeriodicalIF":1.4,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143134416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic inference with dense functional responses
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-12-14 DOI: 10.1016/j.jmva.2024.105400
Pratim Guha Niyogi , Ping-Shou Zhong
We address the challenge of estimation in the context of constant linear effect models with dense functional responses. In this framework, the conditional expectation of the response curve is represented by a linear combination of functional covariates with constant regression parameters. In this paper, we present an alternative solution by employing the quadratic inference approach, a well-established method for analyzing correlated data, to estimate the regression coefficients. Our approach leverages non-parametrically estimated basis functions, eliminating the need for choosing working correlation structures. Furthermore, we demonstrate that our method achieves a parametric n-convergence rate, contingent on an appropriate choice of bandwidth. This convergence is observed when the number of repeated measurements per trajectory exceeds a certain threshold, specifically, when it surpasses na0, with n representing the number of trajectories. Additionally, we establish the asymptotic normality of the resulting estimator. The performance of the proposed method is compared with that of existing methods through extensive simulation studies, where our proposed method outperforms. Real data analysis is also conducted to demonstrate the proposed method.
{"title":"Quadratic inference with dense functional responses","authors":"Pratim Guha Niyogi ,&nbsp;Ping-Shou Zhong","doi":"10.1016/j.jmva.2024.105400","DOIUrl":"10.1016/j.jmva.2024.105400","url":null,"abstract":"<div><div>We address the challenge of estimation in the context of constant linear effect models with dense functional responses. In this framework, the conditional expectation of the response curve is represented by a linear combination of functional covariates with constant regression parameters. In this paper, we present an alternative solution by employing the quadratic inference approach, a well-established method for analyzing correlated data, to estimate the regression coefficients. Our approach leverages non-parametrically estimated basis functions, eliminating the need for choosing working correlation structures. Furthermore, we demonstrate that our method achieves a parametric <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-convergence rate, contingent on an appropriate choice of bandwidth. This convergence is observed when the number of repeated measurements per trajectory exceeds a certain threshold, specifically, when it surpasses <span><math><msup><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>, with <span><math><mi>n</mi></math></span> representing the number of trajectories. Additionally, we establish the asymptotic normality of the resulting estimator. The performance of the proposed method is compared with that of existing methods through extensive simulation studies, where our proposed method outperforms. Real data analysis is also conducted to demonstrate the proposed method.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105400"},"PeriodicalIF":1.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143134411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient estimation of a partially linear panel data model with cross-sectional dependence
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-12-05 DOI: 10.1016/j.jmva.2024.105393
Alexandra Soberon , Massimiliano Mazzanti , Antonio Musolesi , Juan M. Rodriguez-Poo
This paper considers efficiency improvements in a partially linear panel data model that accounts for possible nonlinear effects of common covariates and allows for cross-sectional dependence arising simultaneously from unobserved common factors and spatial dependence. A generalized least squares-type estimator is proposed by taking into account this dependence structure. Also, possible gains in terms of the rate of convergence are studied. A Monte Carlo study is carried out to investigate the proposed estimators’ finite sample performance. Further, an empirical application is conducted to assess the impact of the carbon price linked to the European Union Emission Trading System on carbon dioxide emissions.
{"title":"Efficient estimation of a partially linear panel data model with cross-sectional dependence","authors":"Alexandra Soberon ,&nbsp;Massimiliano Mazzanti ,&nbsp;Antonio Musolesi ,&nbsp;Juan M. Rodriguez-Poo","doi":"10.1016/j.jmva.2024.105393","DOIUrl":"10.1016/j.jmva.2024.105393","url":null,"abstract":"<div><div>This paper considers efficiency improvements in a partially linear panel data model that accounts for possible nonlinear effects of common covariates and allows for cross-sectional dependence arising simultaneously from unobserved common factors and spatial dependence. A generalized least squares-type estimator is proposed by taking into account this dependence structure. Also, possible gains in terms of the rate of convergence are studied. A Monte Carlo study is carried out to investigate the proposed estimators’ finite sample performance. Further, an empirical application is conducted to assess the impact of the carbon price linked to the European Union Emission Trading System on carbon dioxide emissions.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105393"},"PeriodicalIF":1.4,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equality tests of covariance matrices under a low-dimensional factor structure
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-12-03 DOI: 10.1016/j.jmva.2024.105397
Masashi Hyodo , Takahiro Nishiyama , Hiroki Watanabe , Tomoyuki Nakagawa , Kouji Tahata
We propose an equality test to compare two covariance matrices in a high-dimensional framework while accommodating a low-dimensional latent factor model. We show that null limiting distributions of the test statistics follow a weighted mixture of chi-square distributions under a high-dimensional asymptotic regime combined with weak technical conditions. This distribution depends on the noise covariance matrix and the number of latent factors. Because latent factors are often unknown, we employ an estimation that builds on recent advances in random matrix theory. A numerical study demonstrates the asymptotic power of the proposed test and confirms its favorable analytical properties compared to existing procedures.
{"title":"Equality tests of covariance matrices under a low-dimensional factor structure","authors":"Masashi Hyodo ,&nbsp;Takahiro Nishiyama ,&nbsp;Hiroki Watanabe ,&nbsp;Tomoyuki Nakagawa ,&nbsp;Kouji Tahata","doi":"10.1016/j.jmva.2024.105397","DOIUrl":"10.1016/j.jmva.2024.105397","url":null,"abstract":"<div><div>We propose an equality test to compare two covariance matrices in a high-dimensional framework while accommodating a low-dimensional latent factor model. We show that null limiting distributions of the test statistics follow a weighted mixture of chi-square distributions under a high-dimensional asymptotic regime combined with weak technical conditions. This distribution depends on the noise covariance matrix and the number of latent factors. Because latent factors are often unknown, we employ an estimation that builds on recent advances in random matrix theory. A numerical study demonstrates the asymptotic power of the proposed test and confirms its favorable analytical properties compared to existing procedures.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105397"},"PeriodicalIF":1.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-29 DOI: 10.1016/j.jmva.2024.105396
Jakub Woźny , Piotr Jaworski , Damian Jelito , Marcin Pitera , Agnieszka Wyłomańska
We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to exemplary commodity and equity market data.
{"title":"Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule","authors":"Jakub Woźny ,&nbsp;Piotr Jaworski ,&nbsp;Damian Jelito ,&nbsp;Marcin Pitera ,&nbsp;Agnieszka Wyłomańska","doi":"10.1016/j.jmva.2024.105396","DOIUrl":"10.1016/j.jmva.2024.105396","url":null,"abstract":"<div><div>We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to exemplary commodity and equity market data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105396"},"PeriodicalIF":1.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-28 DOI: 10.1016/j.jmva.2024.105395
Li Ma , Shenghao Qin , Yin Xia
Tensor-valued data arise frequently from a wide variety of scientific applications, and many among them can be translated into an alteration detection problem of tensor dependence structures. In this article, we formulate the problem under the popularly adopted tensor-normal distributions and aim at two-sample correlation/partial correlation comparisons of tensor-valued observations. Through decorrelation and centralization, a separable covariance structure is employed to pool sample information from different tensor modes to enhance the power of the test. Additionally, we propose a novel Sparsity-Exploited Reranking Algorithm (SERA) to further improve the multiple testing efficiency. Such efficiency gain is achieved by incorporating a carefully constructed auxiliary tensor sequence to rerank the p-values. Besides the tensor framework, SERA is also generally applicable to a wide range of two-sample large-scale inference problems with sparsity structures, and is of independent interest. The asymptotic properties of the proposed test are derived and the algorithm is shown to control the false discovery at the pre-specified level. We demonstrate the efficacy of the proposed method through intensive simulations and two scientific applications.
{"title":"Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm","authors":"Li Ma ,&nbsp;Shenghao Qin ,&nbsp;Yin Xia","doi":"10.1016/j.jmva.2024.105395","DOIUrl":"10.1016/j.jmva.2024.105395","url":null,"abstract":"<div><div>Tensor-valued data arise frequently from a wide variety of scientific applications, and many among them can be translated into an alteration detection problem of tensor dependence structures. In this article, we formulate the problem under the popularly adopted tensor-normal distributions and aim at two-sample correlation/partial correlation comparisons of tensor-valued observations. Through decorrelation and centralization, a separable covariance structure is employed to pool sample information from different tensor modes to enhance the power of the test. Additionally, we propose a novel Sparsity-Exploited Reranking Algorithm (SERA) to further improve the multiple testing efficiency. Such efficiency gain is achieved by incorporating a carefully constructed auxiliary tensor sequence to rerank the <span><math><mi>p</mi></math></span>-values. Besides the tensor framework, SERA is also generally applicable to a wide range of two-sample large-scale inference problems with sparsity structures, and is of independent interest. The asymptotic properties of the proposed test are derived and the algorithm is shown to control the false discovery at the pre-specified level. We demonstrate the efficacy of the proposed method through intensive simulations and two scientific applications.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105395"},"PeriodicalIF":1.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New multivariate Gini’s indices
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-28 DOI: 10.1016/j.jmva.2024.105394
Marco Capaldo , Jorge Navarro
The Gini’s mean difference was defined as the expected absolute difference between a random variable and its independent copy. The corresponding normalized version, namely Gini’s index, denotes two times the area between the egalitarian line and the Lorenz curve. Both are dispersion indices because they quantify how far a random variable and its independent copy are. Aiming to measure dispersion in the multivariate case, we define and study new Gini’s indices. For the bivariate case we provide several results and we point out that they are “dependence-dispersion” indices. Covariance representations are exhibited, with an interpretation also in terms of conditional distributions. Further results, bounds and illustrative examples are discussed too. Multivariate extensions are defined, aiming to apply both indices in more general settings. Then, we define efficiency Gini’s indices for any semi-coherent system and we discuss about their interpretation. Empirical versions are considered as well in order to apply multivariate Gini’s indices to data.
{"title":"New multivariate Gini’s indices","authors":"Marco Capaldo ,&nbsp;Jorge Navarro","doi":"10.1016/j.jmva.2024.105394","DOIUrl":"10.1016/j.jmva.2024.105394","url":null,"abstract":"<div><div>The Gini’s mean difference was defined as the expected absolute difference between a random variable and its independent copy. The corresponding normalized version, namely Gini’s index, denotes two times the area between the egalitarian line and the Lorenz curve. Both are dispersion indices because they quantify how far a random variable and its independent copy are. Aiming to measure dispersion in the multivariate case, we define and study new Gini’s indices. For the bivariate case we provide several results and we point out that they are “dependence-dispersion” indices. Covariance representations are exhibited, with an interpretation also in terms of conditional distributions. Further results, bounds and illustrative examples are discussed too. Multivariate extensions are defined, aiming to apply both indices in more general settings. Then, we define efficiency Gini’s indices for any semi-coherent system and we discuss about their interpretation. Empirical versions are considered as well in order to apply multivariate Gini’s indices to data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105394"},"PeriodicalIF":1.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate robust linear models for multivariate longitudinal data 多元纵向数据的多元鲁棒线性模型
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-26 DOI: 10.1016/j.jmva.2024.105392
Keunbaik Lee , Jongwoo Choi , Eun Jin Jang , Dipak Dey
Linear models commonly used in longitudinal data analysis often assume a multivariate normal distribution. This assumption, however, can lead to biased mean parameter estimates in the presence of outliers. To address this, alternative linear models based on multivariate t distributions have been developed. In this paper, we review the commonly used multivariate distributions applicable to multivariate longitudinal data and introduce multivariate Laplace linear models (MLLMs) that are designed to handle outliers effectively. These models incorporate a scale matrix that is autoregressive, heteroscedastic, and positive definite, using modified Cholesky and hypersphere decompositions. We conduct simulation studies and apply these models to a real data example, comparing the performance of MLLMs with multivariate normal linear models (MNLMs) and multivariate t linear models (MTLMs), and providing insights on when each model is most appropriate.
纵向数据分析中常用的线性模型通常假设多元正态分布。然而,在异常值存在的情况下,这种假设可能导致有偏的平均参数估计。为了解决这个问题,已经开发了基于多元t分布的替代线性模型。在本文中,我们回顾了适用于多变量纵向数据的常用多元分布,并介绍了用于有效处理异常值的多变量拉普拉斯线性模型(mllm)。这些模型结合了一个自回归、异方差和正定的尺度矩阵,使用改进的Cholesky和超球分解。我们进行了仿真研究,并将这些模型应用于实际数据示例,比较了mllm与多元正态线性模型(mnlm)和多元t线性模型(mtlm)的性能,并提供了每种模型何时最合适的见解。
{"title":"Multivariate robust linear models for multivariate longitudinal data","authors":"Keunbaik Lee ,&nbsp;Jongwoo Choi ,&nbsp;Eun Jin Jang ,&nbsp;Dipak Dey","doi":"10.1016/j.jmva.2024.105392","DOIUrl":"10.1016/j.jmva.2024.105392","url":null,"abstract":"<div><div>Linear models commonly used in longitudinal data analysis often assume a multivariate normal distribution. This assumption, however, can lead to biased mean parameter estimates in the presence of outliers. To address this, alternative linear models based on multivariate t distributions have been developed. In this paper, we review the commonly used multivariate distributions applicable to multivariate longitudinal data and introduce multivariate Laplace linear models (MLLMs) that are designed to handle outliers effectively. These models incorporate a scale matrix that is autoregressive, heteroscedastic, and positive definite, using modified Cholesky and hypersphere decompositions. We conduct simulation studies and apply these models to a real data example, comparing the performance of MLLMs with multivariate normal linear models (MNLMs) and multivariate t linear models (MTLMs), and providing insights on when each model is most appropriate.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105392"},"PeriodicalIF":1.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general approach for testing independence in Hilbert spaces 检验希尔伯特空间独立性的一般方法
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-16 DOI: 10.1016/j.jmva.2024.105384
Daniel Gaigall , Shunyao Wu , Hua Liang
We generalize the projection correlation idea for testing independence of random vectors which is known as a powerful method in multivariate analysis. A universal Hilbert space approach makes the new testing procedures useful in various cases and ensures the applicability to high or even infinite dimensional data. We prove that the new tests keep the significance level under the null hypothesis of independence exactly and can detect any alternative of dependence in the limit, in particular in settings where the dimensions of the observations is infinite or tend to infinity simultaneously with the sample size. Simulations demonstrate that the generalization does not impair the good performance of the approach and confirm our theoretical findings. Furthermore, we describe the implementation of the new approach and present a real data example for illustration.
我们推广了测试随机向量独立性的投影相关思想,这是众所周知的多元分析中的一种强大方法。通用的希尔伯特空间方法使新的检验程序适用于各种情况,并确保其适用于高维甚至无限维数据。我们证明,新的检验方法能准确地保持独立性零假设下的显著性水平,并能在极限情况下检测出任何依赖性替代方案,尤其是在观测维数无限大或与样本量同时趋于无限大的情况下。模拟结果表明,泛化并不影响该方法的良好性能,并证实了我们的理论发现。此外,我们还介绍了新方法的实施,并提供了一个真实数据示例进行说明。
{"title":"A general approach for testing independence in Hilbert spaces","authors":"Daniel Gaigall ,&nbsp;Shunyao Wu ,&nbsp;Hua Liang","doi":"10.1016/j.jmva.2024.105384","DOIUrl":"10.1016/j.jmva.2024.105384","url":null,"abstract":"<div><div>We generalize the projection correlation idea for testing independence of random vectors which is known as a powerful method in multivariate analysis. A universal Hilbert space approach makes the new testing procedures useful in various cases and ensures the applicability to high or even infinite dimensional data. We prove that the new tests keep the significance level under the null hypothesis of independence exactly and can detect any alternative of dependence in the limit, in particular in settings where the dimensions of the observations is infinite or tend to infinity simultaneously with the sample size. Simulations demonstrate that the generalization does not impair the good performance of the approach and confirm our theoretical findings. Furthermore, we describe the implementation of the new approach and present a real data example for illustration.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105384"},"PeriodicalIF":1.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse functional varying-coefficient mixture regression 稀疏函数变化系数混合回归
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-15 DOI: 10.1016/j.jmva.2024.105383
Qingzhi Zhong , Xinyuan Song
The functional varying-coefficient model (FVCM) provides a simple yet efficient method for function on scalar regression. However, classical FVCM typically assumes that varying associations between functional responses and scalar covariates are identical for all subjects and nonzero in the entire domain of functional measures. This study considers sparse functional varying-coefficient mixture regression, which allows heterogeneous regression associations and dependency structure among multiple functional responses and accommodates functional sparsity in varying coefficient functions. Moreover, we devise a computationally efficient EM algorithm with a double-sparse penalty for estimation. We show that the proposed estimator is consistent, can uncover sparse subregions, and simultaneously select the number of clusters with probability tending to one. Simulation studies and an application to the Alzheimer’s Disease Neuroimaging Initiative study confirm that the proposed method yields more interpretable results and a much lower classification error than existing methods.
功能变化系数模型(FVCM)为标量回归函数提供了一种简单而有效的方法。然而,经典的 FVCM 通常假定所有受试者的功能反应和标量协变量之间的变化关联是相同的,并且在整个功能测量域中都不为零。本研究考虑了稀疏功能变化系数混合回归,它允许多种功能反应之间存在异质回归关联和依赖结构,并适应变化系数函数中的功能稀疏性。此外,我们还设计了一种计算高效的 EM 算法,采用双稀疏惩罚进行估计。我们证明了所提出的估计方法是一致的,可以发现稀疏的子区域,并同时以趋近于 1 的概率选择簇的数量。模拟研究和阿尔茨海默病神经成像计划研究的应用证实,与现有方法相比,所提出的方法能产生更多可解释的结果,分类误差也更小。
{"title":"Sparse functional varying-coefficient mixture regression","authors":"Qingzhi Zhong ,&nbsp;Xinyuan Song","doi":"10.1016/j.jmva.2024.105383","DOIUrl":"10.1016/j.jmva.2024.105383","url":null,"abstract":"<div><div>The functional varying-coefficient model (FVCM) provides a simple yet efficient method for function on scalar regression. However, classical FVCM typically assumes that varying associations between functional responses and scalar covariates are identical for all subjects and nonzero in the entire domain of functional measures. This study considers sparse functional varying-coefficient mixture regression, which allows heterogeneous regression associations and dependency structure among multiple functional responses and accommodates functional sparsity in varying coefficient functions. Moreover, we devise a computationally efficient EM algorithm with a double-sparse penalty for estimation. We show that the proposed estimator is consistent, can uncover sparse subregions, and simultaneously select the number of clusters with probability tending to one. Simulation studies and an application to the Alzheimer’s Disease Neuroimaging Initiative study confirm that the proposed method yields more interpretable results and a much lower classification error than existing methods.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105383"},"PeriodicalIF":1.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Multivariate Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1