首页 > 最新文献

Journal of Molecular Cell Biology最新文献

英文 中文
Inducible RNA targeting and N6-methyladenosine editing by a split-Cas13 architecture. 分裂 Cas13 架构的诱导性 RNA 靶向和 N6-甲基腺苷编辑。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjae002
Yang Li, Qiang Sun, Zhi Yang, Gang Yuan
{"title":"Inducible RNA targeting and N6-methyladenosine editing by a split-Cas13 architecture.","authors":"Yang Li, Qiang Sun, Zhi Yang, Gang Yuan","doi":"10.1093/jmcb/mjae002","DOIUrl":"10.1093/jmcb/mjae002","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure of TRAF7 coiled-coil trimer provides insight into its function in zebrafish embryonic development. TRAF7 螺旋线圈三聚体的结构有助于深入了解其在斑马鱼胚胎发育过程中的功能。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjad083
Xiaozhen Song, Ruixing Hu, Yi Chen, Man Xiao, Hong Zhang, Shengnan Wu, Qing Lu

TRAF7 serves as a crucial intracellular adaptor and E3 ubiquitin ligase involved in signal transduction pathways, contributing to immune responses, tumor progression, and embryonic development. Somatic mutations within the coiled-coil (CC) domain and WD40 repeat domain of TRAF7 could cause brain tumors, while germline pathogenic mutations contribute to severe developmental abnormalities. However, the precise molecular mechanism underlying TRAF7 involvement in embryonic development remains unclear. In this study, we employed zebrafish as an in vivo model system. TRAF7 knock down caused defects in zebrafish embryonic development. We determined the crystal structure of TRAF7 CC domain at 3.3 Å resolution and found that the CC region trimerization was essential for TRAF7 functionality during zebrafish embryonic development. Additionally, disease-causing mutations in TRAF7 CC region could impair the trimer formation, consequently impacting early embryonic development of zebrafish. Therefore, our study sheds light on the molecular mechanism of TRAF7 CC trimer formation and its pivotal role in embryonic development.

TRAF7是一种重要的细胞内适配体和E3泛素连接酶,参与信号转导通路,对免疫反应、肿瘤进展和胚胎发育做出了贡献。TRAF7的盘绕线圈(CC)结构域和WD40重复结构域的体细胞突变可导致脑肿瘤,而种系致病突变则会导致严重的发育异常。然而,TRAF7参与胚胎发育的确切分子机制仍不清楚。在本研究中,我们采用斑马鱼作为体内模型系统。敲除 TRAF7 会导致斑马鱼胚胎发育缺陷。我们以 3.3 Å 的分辨率测定了 TRAF7 CC 结构域的晶体结构,发现在斑马鱼胚胎发育过程中,CC 区域的三聚体化对 TRAF7 的功能至关重要。此外,TRAF7 CC区的致病突变会影响三聚体的形成,从而影响斑马鱼早期胚胎发育。因此,我们的研究揭示了TRAF7 CC三聚体形成的分子机制及其在胚胎发育中的关键作用。
{"title":"The structure of TRAF7 coiled-coil trimer provides insight into its function in zebrafish embryonic development.","authors":"Xiaozhen Song, Ruixing Hu, Yi Chen, Man Xiao, Hong Zhang, Shengnan Wu, Qing Lu","doi":"10.1093/jmcb/mjad083","DOIUrl":"10.1093/jmcb/mjad083","url":null,"abstract":"<p><p>TRAF7 serves as a crucial intracellular adaptor and E3 ubiquitin ligase involved in signal transduction pathways, contributing to immune responses, tumor progression, and embryonic development. Somatic mutations within the coiled-coil (CC) domain and WD40 repeat domain of TRAF7 could cause brain tumors, while germline pathogenic mutations contribute to severe developmental abnormalities. However, the precise molecular mechanism underlying TRAF7 involvement in embryonic development remains unclear. In this study, we employed zebrafish as an in vivo model system. TRAF7 knock down caused defects in zebrafish embryonic development. We determined the crystal structure of TRAF7 CC domain at 3.3 Å resolution and found that the CC region trimerization was essential for TRAF7 functionality during zebrafish embryonic development. Additionally, disease-causing mutations in TRAF7 CC region could impair the trimer formation, consequently impacting early embryonic development of zebrafish. Therefore, our study sheds light on the molecular mechanism of TRAF7 CC trimer formation and its pivotal role in embryonic development.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells. Rbfox1 控制着心肌细胞中局灶粘附基因的替代剪接。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjae003
Peter Zorn, Jaime Calvo Sánchez, Tala Alakhras, Barbara Schreier, Michael Gekle, Stefan Hüttelmaier, Marcel Köhn

Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.

替代剪接是决定蛋白质变体组织特异性表达的主要细胞过程之一。然而,鉴定由替代剪接产生的生理相关性和组织选择性蛋白质仍然具有挑战性。因此,我们更详细地研究了心肌中剪接因子 Rbfox1 的目标谱。通过结合使用硅学靶标预测和细胞内验证,我们确定了几种局灶粘附蛋白是 Rbfox1 的替代剪接靶标。我们重点研究了Vinculin(Metavinculin异构体)和Paxillin(扩展的Paxillin异构体)的替代剪接模式,并发现这两种蛋白都是Rbfox1的潜在靶标。微型基因分析表明,Rbfox1通过与内含子结合促进了这两种异构体的形成。病灶粘连在心肌中起着重要作用,因为它们主要影响细胞形状、细胞骨架组织和细胞与基质的结合。我们的数据证实,耗尽 Rbfox1 会改变心肌母细胞的形态、细胞骨架组织和分化后的多核性,这可能是由于局灶粘附蛋白的替代剪接发生了变化。因此,我们的研究结果表明,Rbfox1 促进了心肌细胞中局灶粘附基因的替代剪接,这可能是导致心脏病进展的原因之一,而在心脏病中经常观察到 Rbfox1 的下调。
{"title":"Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells.","authors":"Peter Zorn, Jaime Calvo Sánchez, Tala Alakhras, Barbara Schreier, Michael Gekle, Stefan Hüttelmaier, Marcel Köhn","doi":"10.1093/jmcb/mjae003","DOIUrl":"10.1093/jmcb/mjae003","url":null,"abstract":"<p><p>Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathologically relevant aldoses and environmental aldehydes cause cilium disassembly via formyl group-mediated mechanisms. 病理相关醛糖和环境醛通过甲酰基介导的机制引起纤毛的破坏。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjad079
Te Li, Min Liu, Fan Yu, Song Yang, Weiwen Bu, Kai Liu, Jia Yang, Hua Ni, Mulin Yang, Hanxiao Yin, Renjie Hong, Dengwen Li, Huijie Zhao, Jun Zhou

Carbohydrate metabolism disorders (CMDs), such as diabetes, galactosemia, and mannosidosis, cause ciliopathy-like multiorgan defects. However, the mechanistic link of cilia to CMD complications is still poorly understood. Herein, we describe significant cilium disassembly upon treatment of cells with pathologically relevant aldoses rather than the corresponding sugar alcohols. Moreover, environmental aldehydes are able to trigger cilium disassembly by the steric hindrance effect of their formyl groups. Mechanistic studies reveal that aldehydes stimulate extracellular calcium influx across the plasma membrane, which subsequently activates the calmodulin-Aurora A-histone deacetylase 6 pathway to deacetylate axonemal microtubules and triggers cilium disassembly. In vivo experiments further show that Hdac6 knockout mice are resistant to aldehyde-induced disassembly of tracheal cilia and sperm flagella. These findings reveal a previously unrecognized role for formyl group-mediated cilium disassembly in the complications of CMDs.

碳水化合物代谢紊乱(CMDs),如糖尿病、半乳糖血症和甘露糖病,可引起纤毛病样多器官缺陷。然而,纤毛与CMD并发症的机制联系仍然知之甚少。在这里,我们描述了在病理相关醛糖而不是相应的糖醇处理细胞时显著的纤毛解体。此外,环境醛能够通过其甲酰基的空间位阻效应引发纤毛的分解。机制研究表明,醛刺激细胞外钙通过质膜流入,随后激活钙调素-极光a组蛋白去乙酰化酶6途径,使轴突微管去乙酰化并引发纤毛分解。体内实验进一步表明,Hdac6基因敲除小鼠对醛诱导的气管纤毛和精子鞭毛的脱落具有抗性。这些发现揭示了甲酰基介导的纤毛脱落在CMDs并发症中的作用。
{"title":"Pathologically relevant aldoses and environmental aldehydes cause cilium disassembly via formyl group-mediated mechanisms.","authors":"Te Li, Min Liu, Fan Yu, Song Yang, Weiwen Bu, Kai Liu, Jia Yang, Hua Ni, Mulin Yang, Hanxiao Yin, Renjie Hong, Dengwen Li, Huijie Zhao, Jun Zhou","doi":"10.1093/jmcb/mjad079","DOIUrl":"10.1093/jmcb/mjad079","url":null,"abstract":"<p><p>Carbohydrate metabolism disorders (CMDs), such as diabetes, galactosemia, and mannosidosis, cause ciliopathy-like multiorgan defects. However, the mechanistic link of cilia to CMD complications is still poorly understood. Herein, we describe significant cilium disassembly upon treatment of cells with pathologically relevant aldoses rather than the corresponding sugar alcohols. Moreover, environmental aldehydes are able to trigger cilium disassembly by the steric hindrance effect of their formyl groups. Mechanistic studies reveal that aldehydes stimulate extracellular calcium influx across the plasma membrane, which subsequently activates the calmodulin-Aurora A-histone deacetylase 6 pathway to deacetylate axonemal microtubules and triggers cilium disassembly. In vivo experiments further show that Hdac6 knockout mice are resistant to aldehyde-induced disassembly of tracheal cilia and sperm flagella. These findings reveal a previously unrecognized role for formyl group-mediated cilium disassembly in the complications of CMDs.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The next decade of SET: from an oncoprotein to beyond. SET 的下一个十年:从肿瘤蛋白到超越。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjad082
Han Yao, Meng Zhang, Donglai Wang

This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.

今年是对 1992 年发现的 SET 蛋白进行研究的第四个十年。SET 最初被确定为一种肿瘤蛋白,但后来被证明是一种多方面的蛋白,在生理和病理生理条件下参与调节许多生物过程。SET 功能障碍与癌症和阿尔茨海默病等疾病密切相关。随着人们对 SET 的工作原理及其在细胞中的调控方式的了解不断加深,靶向异常 SET 已成为一种潜在的疾病干预策略。在这篇综述中,我们全面概述了 SET 研究的进展,包括其生物功能、调控网络、临床影响和药理抑制剂。此外,我们还深入探讨了 SET 研究的未来前景,并特别强调了其在免疫调节领域的巨大潜力。
{"title":"The next decade of SET: from an oncoprotein to beyond.","authors":"Han Yao, Meng Zhang, Donglai Wang","doi":"10.1093/jmcb/mjad082","DOIUrl":"10.1093/jmcb/mjad082","url":null,"abstract":"<p><p>This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139074342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia by inhibiting the EGFR-Stat3/Akt pathway. 通过抑制表皮生长因子受体-Stat3/Akt通路,消耗Gsdma1/2/3可减轻PMA诱导的表皮增生。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1093/jmcb/mjad080
Qiyao Liu, Manyun Li, Minli Sun, Ruyue Xin, Yushu Wang, Qin Chen, Xiang Gao, Zhaoyu Lin

Homeostasis of the skin barrier is essential for maintaining normal skin function. Gasdermin A (GSDMA) is highly expressed in the skin and associated with many skin diseases, such as melanoma and psoriasis. In mice, GSDMA is encoded by three gene homologues, namely Gsdma1, Gsdma2, and Gsdma3. Although Gsdma3 gain-of-function mutations cause hair loss and skin inflammation, Gsdma3-deficient mice do not show any visible phenotypes in skin and hair structures. To explore the physiological function of GSDMA, we generated conventional Gsdma1/2/3 knockout (KO) mice. These mice showed significantly alleviated epidermal hyperplasia and inflammation induced by phorbol 12-myristate 13-acetate (PMA). Furthermore, the alleviation of epidermal hyperplasia depended on the expression of Gsdma1/2/3 specifically in keratinocytes. Mechanistically, Gsdma1/2/3 depletion downregulated epidermal growth factor receptor (EGFR) ligands, leading to the decreased EGFR-Stat3/Akt signalling. These results demonstrate that depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia partially by inhibiting the EGFR-Stat3/Akt pathway.

皮肤屏障的平衡对维持皮肤的正常功能至关重要。Gasdermin A(GSDMA)在皮肤中高度表达,与许多皮肤病有关,如黑色素瘤和银屑病。在小鼠体内,GSDMA 由三个同源基因编码,即 Gsdma1、Gsdma2 和 Gsdma3。虽然 Gsdma3 功能增益突变会导致脱毛和皮肤炎症,但 Gsdma3 缺失的小鼠在皮肤或毛发结构上没有表现出任何表型。为了探索 GSDMA 的生理功能,我们产生了传统的 Gsdma1/2/3 基因敲除(KO)小鼠。我们发现,Gsdma1/2/3 KO 小鼠的表皮增生和光甘油 12-肉豆蔻酸 13-乙酸酯(PMA)诱导的炎症明显减少。此外,我们还发现表皮增生的缓解取决于特异性表达于角质形成细胞中的 Gsdma1/2/3。从机制上讲,Gsdma1/2/3 的消耗会下调表皮生长因子受体(EGFR)配体,从而导致 EGFR-Stat3/Akt 信号的减少。这些结果表明,通过抑制表皮生长因子受体-Stat3/Akt通路,消耗Gsdma1/2/3可部分缓解PMA诱导的表皮增生。
{"title":"Depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia by inhibiting the EGFR-Stat3/Akt pathway.","authors":"Qiyao Liu, Manyun Li, Minli Sun, Ruyue Xin, Yushu Wang, Qin Chen, Xiang Gao, Zhaoyu Lin","doi":"10.1093/jmcb/mjad080","DOIUrl":"10.1093/jmcb/mjad080","url":null,"abstract":"<p><p>Homeostasis of the skin barrier is essential for maintaining normal skin function. Gasdermin A (GSDMA) is highly expressed in the skin and associated with many skin diseases, such as melanoma and psoriasis. In mice, GSDMA is encoded by three gene homologues, namely Gsdma1, Gsdma2, and Gsdma3. Although Gsdma3 gain-of-function mutations cause hair loss and skin inflammation, Gsdma3-deficient mice do not show any visible phenotypes in skin and hair structures. To explore the physiological function of GSDMA, we generated conventional Gsdma1/2/3 knockout (KO) mice. These mice showed significantly alleviated epidermal hyperplasia and inflammation induced by phorbol 12-myristate 13-acetate (PMA). Furthermore, the alleviation of epidermal hyperplasia depended on the expression of Gsdma1/2/3 specifically in keratinocytes. Mechanistically, Gsdma1/2/3 depletion downregulated epidermal growth factor receptor (EGFR) ligands, leading to the decreased EGFR-Stat3/Akt signalling. These results demonstrate that depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia partially by inhibiting the EGFR-Stat3/Akt pathway.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell analysis defines LGALS1 + fibroblasts that promote proliferation and migration of intrahepatic cholangiocarcinoma. 单细胞分析确定了促进肝内胆管癌增殖和迁移的 LGALS1 + 成纤维细胞。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-06-11 DOI: 10.1093/jmcb/mjae023
Qiqi Cao, Jinxian Yang, Lixuan Jiang, Zhao Yang, Zhecai Fan, Shuzhen Chen, Sibo Zhu, Lei Yin, Hongyang Wang, Wen Wen

The incidence rate of intrahepatic cholangiocarcinoma (ICC), which has a poor prognosis, is rapidly increasing. To investigate the intratumor heterogeneity of ICC, we analyzed single-cell RNA sequencing data from the primary tumor and adjacent normal tissues of 14 treatment-naïve patients. We identified ten major cell types, along with 45 subclusters of cells. Notably, we identified a fibroblast cluster, Fibroblast_LUM+, which was preferably enriched in tumor tissues and actively interacted with cholangiocytes. LGALS1 was verified as a marker gene of Fibroblast_LUM+, contributing to the malignant phenotype of ICC. The higher amount of LGALS1 + fibroblasts were associated with poorer overall survival in ICC patients. LGALS1 + fibroblasts activated the proliferation and migration of tumor cells by upregulating the expression levels of CCR2, ADAM15, and β-integrin. Silencing LGALS1 in cancer-associated fibroblasts (CAFs) suppressed CAF-augmented tumor cell migration and invasion in vitro as well as tumor formation in vivo, suggesting that blockade of LGALS1 serves as a potential therapeutic approach for ICC. Taken together, our single-cell analysis provides insight into the interaction between malignant cells and specific subtypes of fibroblasts. Our work will further the understanding of the intratumor heterogeneity of ICC and provide novel strategies for the treatment of ICC by targeting fibroblasts in the tumor microenvironment.

预后不良的肝内胆管癌(ICC)的发病率正在迅速上升。为了研究 ICC 的瘤内异质性,我们分析了 14 例未经治疗的患者的原发肿瘤和邻近正常组织的单细胞 RNA 测序数据。我们发现了十种主要细胞类型和 45 个细胞亚群。值得注意的是,我们发现了一个成纤维细胞集群(Fibroblast_LUM+),它在肿瘤组织中富集,并与胆管细胞积极互动。LGALS1被证实是成纤维细胞_LUM+的标记基因,有助于ICC的恶性表型。LGALS1 +成纤维细胞的数量越多,ICC患者的总生存率越低。LGALS1 +成纤维细胞通过上调CCR2、ADAM15和β-整合素的表达水平,激活肿瘤细胞的增殖和迁移。抑制癌相关成纤维细胞(CAFs)中的LGALS1可抑制体外CAF增强的肿瘤细胞迁移和侵袭以及体内肿瘤的形成,这表明阻断LGALS1可作为ICC的一种潜在治疗方法。总之,我们的单细胞分析深入揭示了恶性细胞与特定亚型成纤维细胞之间的相互作用。我们的工作将进一步加深对ICC瘤内异质性的理解,并通过靶向肿瘤微环境中的成纤维细胞为ICC的治疗提供新的策略。
{"title":"Single-cell analysis defines LGALS1 + fibroblasts that promote proliferation and migration of intrahepatic cholangiocarcinoma.","authors":"Qiqi Cao, Jinxian Yang, Lixuan Jiang, Zhao Yang, Zhecai Fan, Shuzhen Chen, Sibo Zhu, Lei Yin, Hongyang Wang, Wen Wen","doi":"10.1093/jmcb/mjae023","DOIUrl":"https://doi.org/10.1093/jmcb/mjae023","url":null,"abstract":"<p><p>The incidence rate of intrahepatic cholangiocarcinoma (ICC), which has a poor prognosis, is rapidly increasing. To investigate the intratumor heterogeneity of ICC, we analyzed single-cell RNA sequencing data from the primary tumor and adjacent normal tissues of 14 treatment-naïve patients. We identified ten major cell types, along with 45 subclusters of cells. Notably, we identified a fibroblast cluster, Fibroblast_LUM+, which was preferably enriched in tumor tissues and actively interacted with cholangiocytes. LGALS1 was verified as a marker gene of Fibroblast_LUM+, contributing to the malignant phenotype of ICC. The higher amount of LGALS1 + fibroblasts were associated with poorer overall survival in ICC patients. LGALS1 + fibroblasts activated the proliferation and migration of tumor cells by upregulating the expression levels of CCR2, ADAM15, and β-integrin. Silencing LGALS1 in cancer-associated fibroblasts (CAFs) suppressed CAF-augmented tumor cell migration and invasion in vitro as well as tumor formation in vivo, suggesting that blockade of LGALS1 serves as a potential therapeutic approach for ICC. Taken together, our single-cell analysis provides insight into the interaction between malignant cells and specific subtypes of fibroblasts. Our work will further the understanding of the intratumor heterogeneity of ICC and provide novel strategies for the treatment of ICC by targeting fibroblasts in the tumor microenvironment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle. ZW10:细胞分裂周期中细胞器动力学的新兴协调者
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-06-03 DOI: 10.1093/jmcb/mjae026
Sm Faysal Bellah, Fengrui Yang, Fangyuan Xiong, Zhen Dou, Xuebiao Yao, Xing Liu

Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membranous organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membranous organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.

Zeste white 10(ZW10)是果蝇 ZW10 基因编码的一种中心粒/着丝点蛋白。ZW10 在元古宙有丝分裂染色体分离过程中引导纺锤体装配检查点信号。最近的研究表明,ZW10 还参与了细胞间期的膜细胞器相互作用,并在内质网和高尔基体之间的膜运输中发挥了重要作用。尽管有这些发现,但ZW10调控间期膜细胞器之间相互作用以及有丝分裂期无膜细胞器动核组装的确切分子机制仍未确定。在这里,我们重点介绍了ZW10如何在细胞周期中形成依赖于上下文的蛋白质复合物。这些复合物对于介导间期的膜运输和确保有丝分裂中染色体的准确分离至关重要。
{"title":"ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle.","authors":"Sm Faysal Bellah, Fengrui Yang, Fangyuan Xiong, Zhen Dou, Xuebiao Yao, Xing Liu","doi":"10.1093/jmcb/mjae026","DOIUrl":"https://doi.org/10.1093/jmcb/mjae026","url":null,"abstract":"<p><p>Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membranous organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membranous organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation of SPIN1 through its IDR facilitates histone methylation readout and tumorigenesis. SPIN1 通过其 IDR 的相分离促进了组蛋白甲基化读出和肿瘤发生。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-05-22 DOI: 10.1093/jmcb/mjae024
Yukun Wang, Yuhan Chen, Mengyao Li, Jiayue Wang, Yuhan Jiang, Rong Xie, Yifeng Zhang, Zhihua Li, Zhenzhen Yan, Chen Wu

Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 has remained unclear. Here, we discovered that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.

Spindlin1(SPIN1)是一种独特的多价组蛋白修饰阅读器,在核糖体 RNA 转录、染色体分离和肿瘤发生中发挥作用。然而,SPIN1 N 端延长区域的功能一直不清楚。在这里,我们发现 SPIN1 可以通过其 N 端内在无序区(IDR)在体外和体内形成相分离的液态凝结物。SPIN1 的相分离将组蛋白甲基转移酶 MLL1 吸引到相同的凝聚物上,并富集 H3K4 甲基化标记。这一过程也促进了 SPIN1 与 H3K4me3 的结合,并激活肿瘤发生相关基因。此外,SPIN1-IDR 还能增强 SPIN1 的全基因组染色质结合,并促进其定位到与 MAPK 信号通路相关的基因上。这些发现为我们提供了关于IDR在调控SPIN1活性方面的生物学功能的新见解,并揭示了SPIN1-IDR在组蛋白甲基化读出方面以前未被认识到的作用。我们的研究揭示了 SPIN1 适当的生物物理特性在促进基因表达中的关键作用,并将相分离与肿瘤发生联系起来,这为理解 SPIN1 的功能提供了一个新的视角。
{"title":"Phase separation of SPIN1 through its IDR facilitates histone methylation readout and tumorigenesis.","authors":"Yukun Wang, Yuhan Chen, Mengyao Li, Jiayue Wang, Yuhan Jiang, Rong Xie, Yifeng Zhang, Zhihua Li, Zhenzhen Yan, Chen Wu","doi":"10.1093/jmcb/mjae024","DOIUrl":"https://doi.org/10.1093/jmcb/mjae024","url":null,"abstract":"<p><p>Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 has remained unclear. Here, we discovered that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSD17B13 liquid–liquid phase separation promotes leukocyte adhesion in chronic liver inflammation HSD17B13液-液相分离促进慢性肝脏炎症中的白细胞粘附
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-05-02 DOI: 10.1093/jmcb/mjae018
Jing Ye, Xiyu Huang, Manman Yuan, Jinglin Wang, Ru Jia, Tianyi Wang, Yang Tan, Shun Zhu, Qiang Xu, Xingxin Wu
The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid–liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13−/− mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.
研究发现,17-β羟类固醇脱氢酶13(HSD17B13)的rs72613567:TA多态性可减少脂肪变性向非酒精性脂肪性肝炎的发展。在这项研究中,我们试图确定 HSD17B13 在引发肝脏炎症中的致病作用。在这里,我们发现 HSD17B13 在非酒精性脂肪性肝炎患者肝脏中的脂滴周围形成液-液相分离(LLPS)。HSD17B13 的二聚化支持 LLPS 的形成并促进其酶功能。HSD17B13 LLPS 可增加血小板活化因子(PAF)的生物合成,进而促进纤维蛋白原的合成和白细胞的粘附。阻断 PAFR 或 STAT3 通路可抑制纤维蛋白原合成和白细胞粘附。重要的是,腺相关病毒介导的人 HSD17B13 异种表达会加剧西式饮食/四氯化碳诱导的 Hsd17b13-/ 小鼠肝脏炎症。总之,我们的研究结果表明,HSD17B13 LLPS通过促进PAF介导的白细胞粘附引发肝脏炎症,靶向HSD17B13相变可能是治疗慢性肝病肝脏炎症的一种有前景的治疗方法。
{"title":"HSD17B13 liquid–liquid phase separation promotes leukocyte adhesion in chronic liver inflammation","authors":"Jing Ye, Xiyu Huang, Manman Yuan, Jinglin Wang, Ru Jia, Tianyi Wang, Yang Tan, Shun Zhu, Qiang Xu, Xingxin Wu","doi":"10.1093/jmcb/mjae018","DOIUrl":"https://doi.org/10.1093/jmcb/mjae018","url":null,"abstract":"The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid–liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13−/− mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"11 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1