Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen
During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bi-polar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression. The Aurora B-mediated tension-sensing machinery to correct erroneous kinetochore-microtubule attachments has been well studied. However, preventative mechanisms to avoid merotelic attachments that occur in the earlier mitotic stage are poorly understood. In this study, we found that inactivation of mitotic kinase Aurora B/AIR-2 increases merotelic attachments in Caenorhabditis elegans. On one hand, Aurora B/AIR-2-deficient cells exhibited a delay in the occurrence of centromere resolution and a disruption in targeting condensin II components to chromatin. On the other hand, loss of Aurora B/AIR-2 results in an increased localization of centromeric proteins CENP-A/HCP-3 and M18BP1/KNL-2 as well as the kinetochore protein MIS-12 on chromatin, which may generate ectopic kinetochores causing erroneous attachments. To conclude, this study elucidated that Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 deposition to actively prevent merotely and chromosome instability in cells.
在细胞分裂过程中,来自纺锤体两极的微管准确捕捉染色体中心粒上的姊妹着丝点,是染色体忠实分离的关键。为确保姐妹染色单体正确分离,姐妹染色单体的中心粒在微管附着前要进行解析,以实现双极定向。如果中心粒解析失败,就会增加合并附着的频率,使来自两极的微管附着到同一个姐妹动核上,从而导致染色体滞后、非整倍体甚至癌症进展。人们已经对极光 B 介导的张力感应机制进行了深入研究,以纠正错误的动子核心-微管连接。然而,人们对避免有丝分裂早期阶段发生的有丝分裂附着的预防机制还知之甚少。在这项研究中,我们发现有丝分裂激酶极光 B/AIR-2 失活会增加秀丽隐杆线虫的有丝分裂附着。一方面,Aurora B/AIR-2缺失的细胞表现出中心粒解析的延迟,以及凝集素II成分靶向染色质的中断。另一方面,Aurora B/AIR-2缺失会导致中心粒蛋白CENP-A/HCP-3和M18BP1/KNL-2以及动点核蛋白MIS-12在染色质上的定位增加,从而可能产生异位动点核,造成错误的连接。总之,本研究阐明了极光B/AIR-2可调控姐妹中心粒解析和CENP-A/HCP-3沉积,从而积极防止细胞的分生和染色体不稳定。
{"title":"Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments.","authors":"Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen","doi":"10.1093/jmcb/mjae045","DOIUrl":"https://doi.org/10.1093/jmcb/mjae045","url":null,"abstract":"<p><p>During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bi-polar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression. The Aurora B-mediated tension-sensing machinery to correct erroneous kinetochore-microtubule attachments has been well studied. However, preventative mechanisms to avoid merotelic attachments that occur in the earlier mitotic stage are poorly understood. In this study, we found that inactivation of mitotic kinase Aurora B/AIR-2 increases merotelic attachments in Caenorhabditis elegans. On one hand, Aurora B/AIR-2-deficient cells exhibited a delay in the occurrence of centromere resolution and a disruption in targeting condensin II components to chromatin. On the other hand, loss of Aurora B/AIR-2 results in an increased localization of centromeric proteins CENP-A/HCP-3 and M18BP1/KNL-2 as well as the kinetochore protein MIS-12 on chromatin, which may generate ectopic kinetochores causing erroneous attachments. To conclude, this study elucidated that Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 deposition to actively prevent merotely and chromosome instability in cells.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite advances in screening and prevention, cervical cancer (CC) remains an unresolved public health issue and poses a significant global challenge, particularly for women in low-income regions. Human papillomavirus (HPV) infection, especially with the high-risk strains, is a primary driver of cervical carcinogenesis. Emerging evidence indicates that integrating HPV testing with existing approaches, such as cervical cytology and visual inspection, offers enhanced sensitivity and specificity in CC screening. HPV infection-associated biomarkers, including HPV E6/E7 oncogenes, p16^INK4a, DNA methylation signatures, and non-coding RNAs, offer valuable insights into disease progression and the development of personalized interventions. Preventive and therapeutic vaccination against HPV, along with tertiary prevention strategies such as the use of antiviral and immune-modulating drugs for HPV-related lesions, show great clinical potential. At the mechanistic level, single-cell RNA sequencing analysis and the development of organoid models for HPV infection provide new cellular and molecular insights into HPV-related CC pathogenesis. This review focuses on the crucial roles of HPV in the prevention, diagnosis, and treatment of CC, with particular emphasis on the latest advancements in screening and disease intervention.
尽管在筛查和预防方面取得了进展,但宫颈癌(CC)仍然是一个尚未解决的公共卫生问题,尤其对低收入地区的妇女而言,它构成了一项重大的全球性挑战。人类乳头瘤病毒(HPV)感染,尤其是高危病毒株感染,是宫颈癌发生的主要驱动因素。新的证据表明,将 HPV 检测与宫颈细胞学和肉眼检查等现有方法相结合,可提高 CC 筛查的灵敏度和特异性。与 HPV 感染相关的生物标志物,包括 HPV E6/E7 致癌基因、p16^INK4a、DNA 甲基化特征和非编码 RNA,为了解疾病进展和制定个性化干预措施提供了宝贵的信息。针对人乳头瘤病毒的预防性和治疗性疫苗接种,以及三级预防策略,如针对人乳头瘤病毒相关病变使用抗病毒和免疫调节药物,都显示出巨大的临床潜力。在机理层面,单细胞 RNA 测序分析和类器官模型的开发为 HPV 相关 CC 的发病机制提供了新的细胞和分子见解。本综述重点讨论了HPV在CC的预防、诊断和治疗中的关键作用,特别强调了筛查和疾病干预方面的最新进展。
{"title":"Targeting HPV for the prevention, diagnosis, and treatment of Cervical Cancer.","authors":"Huiling Ni, Canhua Huang, Zhi Ran, Shan Li, Chunmei Kuang, Yu Zhang, Kai Yuan","doi":"10.1093/jmcb/mjae046","DOIUrl":"https://doi.org/10.1093/jmcb/mjae046","url":null,"abstract":"<p><p>Despite advances in screening and prevention, cervical cancer (CC) remains an unresolved public health issue and poses a significant global challenge, particularly for women in low-income regions. Human papillomavirus (HPV) infection, especially with the high-risk strains, is a primary driver of cervical carcinogenesis. Emerging evidence indicates that integrating HPV testing with existing approaches, such as cervical cytology and visual inspection, offers enhanced sensitivity and specificity in CC screening. HPV infection-associated biomarkers, including HPV E6/E7 oncogenes, p16^INK4a, DNA methylation signatures, and non-coding RNAs, offer valuable insights into disease progression and the development of personalized interventions. Preventive and therapeutic vaccination against HPV, along with tertiary prevention strategies such as the use of antiviral and immune-modulating drugs for HPV-related lesions, show great clinical potential. At the mechanistic level, single-cell RNA sequencing analysis and the development of organoid models for HPV infection provide new cellular and molecular insights into HPV-related CC pathogenesis. This review focuses on the crucial roles of HPV in the prevention, diagnosis, and treatment of CC, with particular emphasis on the latest advancements in screening and disease intervention.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cohesin is a ring complex closed with SMC-1, SMC-3, and a kleisin subunit, mediating sister chromatid cohesion in mitosis and meiosis. Kleisin N- and C-terminal domains interact with SMC-3 and SMC-1, forming two distinct cohesin gates. Whether these gates are specialized for mitosis and meiosis remains elusive. Here, we create Caenorhabditis elegans mutants that express chimeric proteins swapping N- and C-terminal domains between different kleisins to investigate how these gates are specialized for different cell division programs. Replacing the meiotic REC-8 N-terminus with that of a cell division-unrelated kleisin COH-1 or the mitotic kleisin SCC-1 disrupts inter-sister chromatid cohesion and causes severe meiotic defects. Swapping the REC-8 C-terminus with that of COH-1 or SCC-1 largely retains the meiotic functions of REC-8 but causes age-related chromosome abnormalities. A specialized C-terminus is also required for the functions of SCC-1. Furthermore, point mutations in REC-8 C-terminus cause severe meiotic defects without impairing SMC-1-kleisin interaction, suggesting an integrated SMC-1-kleisin gate. These findings suggest the requirements for specialized cohesin gates in different biological processes.
凝聚素是一个由 SMC-1、SMC-3 和 kleisin 亚基组成的环状复合体,在有丝分裂和减数分裂过程中介导姐妹染色单体的内聚。Kleisin N 端和 C 端结构域与 SMC-3 和 SMC-1 相互作用,形成两个不同的粘合门。这些门是否专门用于有丝分裂和减数分裂仍未确定。在这里,我们创建了表达嵌合蛋白的秀丽隐杆线虫突变体,将不同克里蛋白的 N 端和 C 端结构域互换,以研究这些门如何专门用于不同的细胞分裂程序。用与细胞分裂无关的kleisin COH-1或有丝分裂kleisin SCC-1的N-端取代减数分裂期REC-8的N-端,会破坏姐妹染色单体间的内聚力并导致严重的减数分裂缺陷。将 REC-8 的 C 末端与 COH-1 或 SCC-1 的 C 末端互换后,REC-8 的减数分裂功能基本保留,但会导致与年龄相关的染色体异常。SCC-1 的功能也需要一个专门的 C 端。此外,REC-8 C末端的点突变会导致严重的减数分裂缺陷,但不会影响SMC-1-kleisin的相互作用,这表明SMC-1-kleisin有一个整合的闸门。这些发现表明,在不同的生物过程中需要专门的凝聚素门。
{"title":"Cohesin ring gates are specialized for meiotic cell division.","authors":"Yuanyuan Liu, Bohan Liu, Ruirui Zhang, Zixuan Zhu, Li Zhao, Ruijie Jiang, Yinghao Wang, Feifei Qi, Ruoxi Wang, Huijie Zhao, Jun Zhou, Jinmin Gao","doi":"10.1093/jmcb/mjae047","DOIUrl":"https://doi.org/10.1093/jmcb/mjae047","url":null,"abstract":"<p><p>Cohesin is a ring complex closed with SMC-1, SMC-3, and a kleisin subunit, mediating sister chromatid cohesion in mitosis and meiosis. Kleisin N- and C-terminal domains interact with SMC-3 and SMC-1, forming two distinct cohesin gates. Whether these gates are specialized for mitosis and meiosis remains elusive. Here, we create Caenorhabditis elegans mutants that express chimeric proteins swapping N- and C-terminal domains between different kleisins to investigate how these gates are specialized for different cell division programs. Replacing the meiotic REC-8 N-terminus with that of a cell division-unrelated kleisin COH-1 or the mitotic kleisin SCC-1 disrupts inter-sister chromatid cohesion and causes severe meiotic defects. Swapping the REC-8 C-terminus with that of COH-1 or SCC-1 largely retains the meiotic functions of REC-8 but causes age-related chromosome abnormalities. A specialized C-terminus is also required for the functions of SCC-1. Furthermore, point mutations in REC-8 C-terminus cause severe meiotic defects without impairing SMC-1-kleisin interaction, suggesting an integrated SMC-1-kleisin gate. These findings suggest the requirements for specialized cohesin gates in different biological processes.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jihyun Jang, Mette Bentsen, Jin Bu, Ling Chen, Alexandre Rosa Campos, Mario Looso, Deqiang Li
Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle and undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that HDAC7-mediated CM proliferation is contingent on dedifferentiation, which is accomplished through suppressing MEF2. Hdac7 overexpression in CM shifts the chromatin state from binding MEF2, which favors the differentiation transcriptional program to AP-1, which favors the proliferative transcriptional program. Further, we found that HDAC7 interacts with minichromosome maintenance complex (MCM) components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.
哺乳动物出生后的心肌细胞(CMs)会迅速失去增殖能力,退出细胞周期并进一步分化和成熟。细胞周期激活一直是刺激出生后 CM 增殖的主要策略,尽管效果一般。一个障碍是,出生后的 CM 在增殖之前可能需要经历去分化,如果不是同时进行的话。在这里,我们报告了在新生小鼠 CM 中过表达 Hdac7 会导致 CM 明显的去分化和增殖。从机理上讲,我们发现 HDAC7 介导的 CM 增殖取决于去分化,而去分化是通过抑制 MEF2 实现的。Hdac7在CM中的过表达使染色质状态从有利于分化转录程序的MEF2结合状态转变为有利于增殖转录程序的AP-1结合状态。此外,我们还发现 HDAC7 与迷你染色体维护复合体(MCM)成分相互作用,启动细胞周期的进展。我们的研究结果表明,HDAC7通过对CM去分化和增殖的双重作用促进CM增殖,为心脏再生/修复揭示了一种潜在的新策略。
{"title":"HDAC7 promotes cardiomyocyte proliferation by suppressing Myocyte Enhancer Factor 2.","authors":"Jihyun Jang, Mette Bentsen, Jin Bu, Ling Chen, Alexandre Rosa Campos, Mario Looso, Deqiang Li","doi":"10.1093/jmcb/mjae044","DOIUrl":"https://doi.org/10.1093/jmcb/mjae044","url":null,"abstract":"<p><p>Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle and undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that HDAC7-mediated CM proliferation is contingent on dedifferentiation, which is accomplished through suppressing MEF2. Hdac7 overexpression in CM shifts the chromatin state from binding MEF2, which favors the differentiation transcriptional program to AP-1, which favors the proliferative transcriptional program. Further, we found that HDAC7 interacts with minichromosome maintenance complex (MCM) components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenya Yu, Xiang Liu, Hong Chen, Jiahe Tian, Meina Li, Wei Mu, Yang Ge
Gender differences in the health workforce matter for women's health and healthcare, and is also crucial for both health and economic development. Drawing on limited national gender data from China over the last 10 years, during which the country was undergoing a healthcare reform, this study dissects gender-related issues to identify existing problems, monitor progress, and develop strategies to promote change. Although women constituted the majority of health workers, they are predominantly engaged in service-oriented occupations. The gender distribution substantially differed between urban and rural primary health institutions. Moreover, significant differences in gender distribution among professional public health institutions were observed. The gender distribution of administrators varied in different types of health institutions. Women had lighter workloads because of the imbalanced distribution of specialties. Academicians comprised very few female scientists. To promote a more balanced gender distribution, policies should be developed to encourage a more reasonable division of family responsibilities. Further, equal higher education opportunities should be ensured for girls, especially in rural areas. Solutions to free more women from work-marriage-childcare conflicts and to decrease turnover rates deserve further discussion. Gender data should be highlighted and optimized to further advance gender differences among the health workforce and for women's health in China.
{"title":"Gender differences in the health workforce in China: an analysis of national data.","authors":"Wenya Yu, Xiang Liu, Hong Chen, Jiahe Tian, Meina Li, Wei Mu, Yang Ge","doi":"10.1093/jmcb/mjae040","DOIUrl":"https://doi.org/10.1093/jmcb/mjae040","url":null,"abstract":"<p><p>Gender differences in the health workforce matter for women's health and healthcare, and is also crucial for both health and economic development. Drawing on limited national gender data from China over the last 10 years, during which the country was undergoing a healthcare reform, this study dissects gender-related issues to identify existing problems, monitor progress, and develop strategies to promote change. Although women constituted the majority of health workers, they are predominantly engaged in service-oriented occupations. The gender distribution substantially differed between urban and rural primary health institutions. Moreover, significant differences in gender distribution among professional public health institutions were observed. The gender distribution of administrators varied in different types of health institutions. Women had lighter workloads because of the imbalanced distribution of specialties. Academicians comprised very few female scientists. To promote a more balanced gender distribution, policies should be developed to encourage a more reasonable division of family responsibilities. Further, equal higher education opportunities should be ensured for girls, especially in rural areas. Solutions to free more women from work-marriage-childcare conflicts and to decrease turnover rates deserve further discussion. Gender data should be highlighted and optimized to further advance gender differences among the health workforce and for women's health in China.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan
The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical-reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using 2nd antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and 2nd antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.
{"title":"Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes.","authors":"Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan","doi":"10.1093/jmcb/mjae041","DOIUrl":"https://doi.org/10.1093/jmcb/mjae041","url":null,"abstract":"<p><p>The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical-reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using 2nd antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and 2nd antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in human and rodent models of obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.
{"title":"Hypoxia signaling in the adipose tissue.","authors":"Phu M Huynh, Fenfen Wang, Yu A An","doi":"10.1093/jmcb/mjae039","DOIUrl":"https://doi.org/10.1093/jmcb/mjae039","url":null,"abstract":"<p><p>Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in human and rodent models of obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyrine Bentaleb, Souad Adrouche, Jade Finkelstein, Christelle Devisme, Nathalie Callens, Claude Capron, Morgane Bomsel, Fernando Real
Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line. We observed HIV-1 DNA provirus integration into the megakaryocyte cell genome, self-limiting virus production, and HIV-1 protein and RNA compartmentalization, which are hallmarks of HIV-1 infection in myeloid cells. In addition, following HIV-1 infection of megakaryocyte precursors, the expression of interferon-induced transmembrane protein 3 (IFITM3), an antiviral factor constitutively expressed in megakaryocytes, was inhibited in terminally differentiated HIV-1-infected megakaryocytes. IFITM3 knockdown in MEG-01 cells prior to infection led to enhanced HIV-1 infection, indicating that IFITM3 acts as an HIV-1 restriction factor in megakaryocytes. Together, these findings indicate that megakaryocyte precursors are susceptible to HIV-1 infection, leading to terminally differentiated megakaryocytes harboring virus in a process regulated by IFITM3. Megakaryocytes may thus constitute a neglected HIV-1 reservoir that warrants further study in order to develop improved antiretroviral therapies and to facilitate HIV-1 eradication.
{"title":"HIV-1 inhibits IFITM3 expression to promote the infection of megakaryocytes.","authors":"Cyrine Bentaleb, Souad Adrouche, Jade Finkelstein, Christelle Devisme, Nathalie Callens, Claude Capron, Morgane Bomsel, Fernando Real","doi":"10.1093/jmcb/mjae042","DOIUrl":"https://doi.org/10.1093/jmcb/mjae042","url":null,"abstract":"<p><p>Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line. We observed HIV-1 DNA provirus integration into the megakaryocyte cell genome, self-limiting virus production, and HIV-1 protein and RNA compartmentalization, which are hallmarks of HIV-1 infection in myeloid cells. In addition, following HIV-1 infection of megakaryocyte precursors, the expression of interferon-induced transmembrane protein 3 (IFITM3), an antiviral factor constitutively expressed in megakaryocytes, was inhibited in terminally differentiated HIV-1-infected megakaryocytes. IFITM3 knockdown in MEG-01 cells prior to infection led to enhanced HIV-1 infection, indicating that IFITM3 acts as an HIV-1 restriction factor in megakaryocytes. Together, these findings indicate that megakaryocyte precursors are susceptible to HIV-1 infection, leading to terminally differentiated megakaryocytes harboring virus in a process regulated by IFITM3. Megakaryocytes may thus constitute a neglected HIV-1 reservoir that warrants further study in order to develop improved antiretroviral therapies and to facilitate HIV-1 eradication.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yueling Zhu, Shiyan Lin, Lingshen Meng, Min Sun, Maili Liu, Jingyuan Li, Chun Tang, Zhou Gong
ATP has been recognized as a hydrotrope in the phase separation process of intrinsically disordered proteins (IDPs). Surprisingly, when using the disordered RG/RGG-rich motif from HNRNPG protein as a model system, we discover a biphasic relationship between the ATP concentration and IDP phase separation. We show that at a relatively low ATP concentration, ATP dynamically interacts with the IDP, which neutralizes protein surface charges, promotes intermolecular interactions, and consequently promotes phase separation. We further demonstrate that ATP induces a compact conformation of the IDP, accounting for the reduced solvent exchange rate and lower compression ratio during phase separation. As ATP concentration increases, its hydrotropic properties emerge, leading to the dissolution of the phase-separated droplets. Our finding uncovers a complex mechanism by which ATP molecules modulate the structure, interaction, and phase separation of IDPs, and accounts for the distinct phase separation behaviors for the charge-rich RGG motif and other low-complexity IDPs.
ATP 被认为是本征无序蛋白(IDPs)相分离过程中的一种催化剂。令人惊奇的是,当使用 HNRNPG 蛋白中富含 RG/RGG 的无序结构作为模型系统时,我们发现 ATP 浓度与 IDP 相分离之间存在双相关系。我们发现,在 ATP 浓度相对较低时,ATP 会与 IDP 发生动态相互作用,从而中和蛋白质表面电荷,促进分子间相互作用,进而促进相分离。我们进一步证明,ATP 会诱导 IDP 形成紧凑的构象,这也是相分离过程中溶剂交换率降低和压缩率降低的原因。随着 ATP 浓度的增加,它的趋水特性逐渐显现,从而导致相分离液滴的溶解。我们的发现揭示了 ATP 分子调节 IDP 的结构、相互作用和相分离的复杂机制,并解释了富电荷 RGG 主题和其他低复杂度 IDP 的不同相分离行为。
{"title":"ATP promotes protein coacervation through conformational compaction.","authors":"Yueling Zhu, Shiyan Lin, Lingshen Meng, Min Sun, Maili Liu, Jingyuan Li, Chun Tang, Zhou Gong","doi":"10.1093/jmcb/mjae038","DOIUrl":"https://doi.org/10.1093/jmcb/mjae038","url":null,"abstract":"<p><p>ATP has been recognized as a hydrotrope in the phase separation process of intrinsically disordered proteins (IDPs). Surprisingly, when using the disordered RG/RGG-rich motif from HNRNPG protein as a model system, we discover a biphasic relationship between the ATP concentration and IDP phase separation. We show that at a relatively low ATP concentration, ATP dynamically interacts with the IDP, which neutralizes protein surface charges, promotes intermolecular interactions, and consequently promotes phase separation. We further demonstrate that ATP induces a compact conformation of the IDP, accounting for the reduced solvent exchange rate and lower compression ratio during phase separation. As ATP concentration increases, its hydrotropic properties emerge, leading to the dissolution of the phase-separated droplets. Our finding uncovers a complex mechanism by which ATP molecules modulate the structure, interaction, and phase separation of IDPs, and accounts for the distinct phase separation behaviors for the charge-rich RGG motif and other low-complexity IDPs.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhan Lou, Litao Wu, Wanlin Cai, Huan Deng, Rong Sang, Shanshan Xie, Xiao Xu, Xin Yuan, Cheng Wu, Man Xu, Wanzhong Ge, Yongmei Xi, Xiaohang Yang
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
{"title":"The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells.","authors":"Yuhan Lou, Litao Wu, Wanlin Cai, Huan Deng, Rong Sang, Shanshan Xie, Xiao Xu, Xin Yuan, Cheng Wu, Man Xu, Wanzhong Ge, Yongmei Xi, Xiaohang Yang","doi":"10.1093/jmcb/mjae017","DOIUrl":"10.1093/jmcb/mjae017","url":null,"abstract":"<p><p>Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}