Yaqi Yang, Jiejun Wen, Susu Lou, Yali Han, Yi Pan, Ying Zhong, Qiao He, Yinfeng Zhang, Xi Mo, Jing Ma, Nan She
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite treatment advances, the survival rates of high-risk NB patients remain low. This highlights the urgent need for a deeper understanding of the molecular mechanisms driving NB progression to support the development of new therapeutic strategies. In this study, we demonstrated that the reduced levels of DNAJC12, a protein involved in metabolic regulation, are associated with poor prognosis in NB patients. Our data indicate that low DNAJC12 expression activates glycolysis in NB cells, leading to increased lactic acid production and histone H4 lysine 5 lactylation (H4K5la). Elevated H4K5la upregulates the transcription of COL1A1, a gene implicated in cell metastasis. Immunohistochemistry staining of NB patient samples confirmed that high H4K5la levels correlate with poor clinical outcomes. Furthermore, we showed that inhibiting glycolysis, reducing H4K5la, or targeting COL1A1 can mitigate the invasive behavior of NB cells. These findings reveal a critical link between metabolic reprogramming and epigenetic modifications in the context of NB progression, suggesting that H4K5la could serve as a novel diagnostic and prognostic marker, and shed light on identifying new therapeutic targets within metabolic pathways for the treatment of this aggressive pediatric cancer.
{"title":"DNAJC12 downregulation induces neuroblastoma progression via increased histone H4K5 lactylation.","authors":"Yaqi Yang, Jiejun Wen, Susu Lou, Yali Han, Yi Pan, Ying Zhong, Qiao He, Yinfeng Zhang, Xi Mo, Jing Ma, Nan She","doi":"10.1093/jmcb/mjae056","DOIUrl":"https://doi.org/10.1093/jmcb/mjae056","url":null,"abstract":"<p><p>Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite treatment advances, the survival rates of high-risk NB patients remain low. This highlights the urgent need for a deeper understanding of the molecular mechanisms driving NB progression to support the development of new therapeutic strategies. In this study, we demonstrated that the reduced levels of DNAJC12, a protein involved in metabolic regulation, are associated with poor prognosis in NB patients. Our data indicate that low DNAJC12 expression activates glycolysis in NB cells, leading to increased lactic acid production and histone H4 lysine 5 lactylation (H4K5la). Elevated H4K5la upregulates the transcription of COL1A1, a gene implicated in cell metastasis. Immunohistochemistry staining of NB patient samples confirmed that high H4K5la levels correlate with poor clinical outcomes. Furthermore, we showed that inhibiting glycolysis, reducing H4K5la, or targeting COL1A1 can mitigate the invasive behavior of NB cells. These findings reveal a critical link between metabolic reprogramming and epigenetic modifications in the context of NB progression, suggesting that H4K5la could serve as a novel diagnostic and prognostic marker, and shed light on identifying new therapeutic targets within metabolic pathways for the treatment of this aggressive pediatric cancer.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca Brooks, Xianhui Wei, Mang Leng Lei, Francisca Cisterna Cid, James A Roper, Rosalind C Williamson, Mark D Bass
Upon injury, fibroblasts in the surrounding tissue become activated, migrating into the wound in a controlled manner. Once they arrive, they contract the wound and remodel the stroma. While certain cell surface receptors promote fibroblast migration, others cause repulsion between fibroblasts upon contact, seemingly opposing their clustering within the wound bed. Eph receptor-ephrin interactions on colliding cells trigger this repulsion, but how fibroblasts transition to clustering behaviour during healing remains unclear. Syndecan-4 modulates transmembrane receptors involved in wound healing, including receptors for the extracellular matrix and growth factors. As a result, Sdc4-/- mice experience delayed healing due to impaired fibroblast recruitment. In this study, we report that syndecan-4 also regulates fibroblast repulsion during wound healing. We discover that syndecan-4 inhibits the expression and signalling of EphA2 by activating PKCα. Changes in syndecan-4 expression, such as those observed during wound healing, alter fibroblast behaviour from repulsion to adhesion upon cell collision by modulating EphA2 levels. Moreover, we find that EphA2 expression is suppressed in wound bed fibroblasts in a syndecan-4-dependent manner, explaining how fibroblast clustering is achieved during wound healing.
{"title":"Inhibition of EphA2 by syndecan-4 in wounded skin regulates clustering of fibroblasts.","authors":"Rebecca Brooks, Xianhui Wei, Mang Leng Lei, Francisca Cisterna Cid, James A Roper, Rosalind C Williamson, Mark D Bass","doi":"10.1093/jmcb/mjae054","DOIUrl":"https://doi.org/10.1093/jmcb/mjae054","url":null,"abstract":"<p><p>Upon injury, fibroblasts in the surrounding tissue become activated, migrating into the wound in a controlled manner. Once they arrive, they contract the wound and remodel the stroma. While certain cell surface receptors promote fibroblast migration, others cause repulsion between fibroblasts upon contact, seemingly opposing their clustering within the wound bed. Eph receptor-ephrin interactions on colliding cells trigger this repulsion, but how fibroblasts transition to clustering behaviour during healing remains unclear. Syndecan-4 modulates transmembrane receptors involved in wound healing, including receptors for the extracellular matrix and growth factors. As a result, Sdc4-/- mice experience delayed healing due to impaired fibroblast recruitment. In this study, we report that syndecan-4 also regulates fibroblast repulsion during wound healing. We discover that syndecan-4 inhibits the expression and signalling of EphA2 by activating PKCα. Changes in syndecan-4 expression, such as those observed during wound healing, alter fibroblast behaviour from repulsion to adhesion upon cell collision by modulating EphA2 levels. Moreover, we find that EphA2 expression is suppressed in wound bed fibroblasts in a syndecan-4-dependent manner, explaining how fibroblast clustering is achieved during wound healing.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Li, Jiena Chen, Tao Li, Jie Lin, Haocheng Zheng, Nadia Johnson, Xuebiao Yao, Xia Ding
Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.
{"title":"Modeling gastric intestinal metaplasia in 3D organoids using nitrosoguanidine.","authors":"Yuan Li, Jiena Chen, Tao Li, Jie Lin, Haocheng Zheng, Nadia Johnson, Xuebiao Yao, Xia Ding","doi":"10.1093/jmcb/mjae030","DOIUrl":"10.1093/jmcb/mjae030","url":null,"abstract":"<p><p>Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sm Faysal Bellah, Fengrui Yang, Fangyuan Xiong, Zhen Dou, Xuebiao Yao, Xing Liu
Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membrane-bound organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membrane-bound organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.
Zeste white 10(ZW10)是果蝇 ZW10 基因编码的一种中心粒/着丝点蛋白。ZW10 在元古宙有丝分裂染色体分离过程中引导纺锤体装配检查点信号。最近的研究表明,ZW10 还参与了细胞间期的膜细胞器相互作用,并在内质网和高尔基体之间的膜运输中发挥了重要作用。尽管有这些发现,但ZW10调控间期膜细胞器之间相互作用以及有丝分裂期无膜细胞器动核组装的确切分子机制仍未确定。在这里,我们重点介绍了ZW10如何在细胞周期中形成依赖于上下文的蛋白质复合物。这些复合物对于介导间期的膜运输和确保有丝分裂中染色体的准确分离至关重要。
{"title":"ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle.","authors":"Sm Faysal Bellah, Fengrui Yang, Fangyuan Xiong, Zhen Dou, Xuebiao Yao, Xing Liu","doi":"10.1093/jmcb/mjae026","DOIUrl":"10.1093/jmcb/mjae026","url":null,"abstract":"<p><p>Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membrane-bound organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membrane-bound organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, in the absence of infection, certain endogenous RNAs can serve as the activators of RNA-sensing pathways as well. The inappropriate activation of RNA-sensing pathways by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.
{"title":"Sterile activation of RNA-sensing pathways in autoimmunity.","authors":"Jiaxin Li, Junyan Zhu, Hui Yang, Fajian Hou","doi":"10.1093/jmcb/mjae029","DOIUrl":"10.1093/jmcb/mjae029","url":null,"abstract":"<p><p>RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, in the absence of infection, certain endogenous RNAs can serve as the activators of RNA-sensing pathways as well. The inappropriate activation of RNA-sensing pathways by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PHLDA2 is critical for p53-mediated ferroptosis and tumor suppression.","authors":"Xin Yang, Wei Gu","doi":"10.1093/jmcb/mjae033","DOIUrl":"10.1093/jmcb/mjae033","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Qiang, Shan Yu, Jun Li, Yu Rong, Xiaoshuang Wang, Yong Zhu, Fang Wang
Alternative polyadenylation (APA) is an essential post-transcriptional process that produces mature mRNA isoforms by regulating the usage of polyadenylation sites (PASs). APA is involved in lymphocyte activation; however, its role throughout the entire differentiation trajectory remains elusive. Here, we analyzed single-cell 3'-end transcriptome data from healthy subjects to construct a dynamic-APA landscape from hematopoietic stem and progenitor cells (HSPCs) to terminally differentiated lymphocytes. This analysis covered 19973 cells of 12 clusters from five lineages (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, and plasmacytoid dendritic cells). A total of 2364 genes exhibited differential 3'-untranslated region (3'UTR) PAS usage, and 3021 genes displayed differential intronic cleavage during lymphoid differentiation. We observed a global trend of 3'UTR shortening during lymphoid differentiation. Nevertheless, specific events of both 3'UTR shortening and lengthening were also identified within each cluster. The APA patterns delineated three differentiation stages: HSPCs, precursor cells, and mature cells. Moreover, we demonstrated that the conversion of naïve T cells to memory T cells was accompanied by dynamic APA in transcription factor-encoding genes (TCF7 and NFATC2IP), immune function-related genes (BCL2, CD5, CD28, GOLT1B, and TMEM59), and protein ubiquitination-related genes (UBE2G1, YPEL5, and SUMO3). These findings expand our understanding of the underlying molecular mechanisms of APA and facilitate studies on the regulatory role of APA in lymphoid hematopoiesis.
替代多腺苷酸化(APA)是一个重要的转录后过程,它通过调节多腺苷酸化位点(PAS)的使用来产生成熟的 mRNA 异构体。APA 参与了淋巴细胞的活化;然而,它在整个分化过程中的作用仍然难以捉摸。在这里,我们分析了健康人的单细胞3'端转录组数据,构建了从造血干细胞和祖细胞(HSPC)到终末分化淋巴细胞的动态APA图谱。这项分析涵盖了五个系(B 细胞、CD4+ T 细胞、CD8+ T 细胞、自然杀伤细胞和浆细胞树突状细胞)12 个群组的 19973 个细胞。在淋巴细胞分化过程中,共有 2364 个基因显示出不同的 3'UTR PAS 使用情况,3021 个基因显示出不同的内含子裂解情况。我们观察到淋巴细胞分化过程中 3'UTR 缩短的整体趋势。然而,在每个群组中也发现了3'UTR缩短和延长的特定事件。APA 模式划分了三个分化阶段:HSPCs、前体细胞和成熟细胞。此外,我们还证明了幼稚 T 细胞向记忆 T 细胞的转化伴随着转录因子编码基因(TCF7 和 NFATC2IP)、免疫功能相关基因(BCL2、CD5、CD28、GOLT1B 和 TMEM59)和蛋白质泛素化相关基因(UBE2G1、YPEL5 和 SUMO3)的动态 APA。这些发现拓展了我们对 APA 潜在分子机制的理解,有助于研究 APA 在淋巴造血中的调控作用。
{"title":"Single-cell landscape of alternative polyadenylation in human lymphoid hematopoiesis.","authors":"Jiaqi Qiang, Shan Yu, Jun Li, Yu Rong, Xiaoshuang Wang, Yong Zhu, Fang Wang","doi":"10.1093/jmcb/mjae027","DOIUrl":"10.1093/jmcb/mjae027","url":null,"abstract":"<p><p>Alternative polyadenylation (APA) is an essential post-transcriptional process that produces mature mRNA isoforms by regulating the usage of polyadenylation sites (PASs). APA is involved in lymphocyte activation; however, its role throughout the entire differentiation trajectory remains elusive. Here, we analyzed single-cell 3'-end transcriptome data from healthy subjects to construct a dynamic-APA landscape from hematopoietic stem and progenitor cells (HSPCs) to terminally differentiated lymphocytes. This analysis covered 19973 cells of 12 clusters from five lineages (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, and plasmacytoid dendritic cells). A total of 2364 genes exhibited differential 3'-untranslated region (3'UTR) PAS usage, and 3021 genes displayed differential intronic cleavage during lymphoid differentiation. We observed a global trend of 3'UTR shortening during lymphoid differentiation. Nevertheless, specific events of both 3'UTR shortening and lengthening were also identified within each cluster. The APA patterns delineated three differentiation stages: HSPCs, precursor cells, and mature cells. Moreover, we demonstrated that the conversion of naïve T cells to memory T cells was accompanied by dynamic APA in transcription factor-encoding genes (TCF7 and NFATC2IP), immune function-related genes (BCL2, CD5, CD28, GOLT1B, and TMEM59), and protein ubiquitination-related genes (UBE2G1, YPEL5, and SUMO3). These findings expand our understanding of the underlying molecular mechanisms of APA and facilitate studies on the regulatory role of APA in lymphoid hematopoiesis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangchan Hu, Yuxin Meng, Zirui Zhuang, Yuancong Li, Junjun Nan, Ning Xu, Zu Ye, Ji Jing
Poly(ADP-ribose) glycosylhydrolase (PARG) is an enzyme involved in hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PAR), which are primarily found in the nucleus. Along with poly(ADP-ribose) polymerase (PARP), PARG regulates the level of PAR in cells, playing a crucial role in DNA maintenance and repair processes. Recent studies have revealed elevated levels of PARG in various cancers, such as breast, liver, prostate, and esophageal cancers, indicating a link to unfavorable cancer outcomes. PARG is a significant molecular target for treating PAR-related cancers. This review provides a comprehensive overview of the physiological role of PARG and the development of its inhibitors, highlighting its potential as an innovative target for cancer treatment.
聚(ADP-核糖)糖基水解酶(PARG)是一种参与水解主要存在于细胞核中的聚(ADP-核糖)(PAR)中的核糖-核糖键的酶。PARG 与多(ADP-核糖)聚合酶(PARP)一起调节细胞中的 PAR 水平,在 DNA 维护和修复过程中发挥着至关重要的作用。最近的研究发现,在乳腺癌、肝癌、前列腺癌和食管癌等多种癌症中,PARG 的水平都有所升高,这表明它与癌症的不良预后有关。PARG 是治疗 PAR 相关癌症的重要分子靶点。本综述全面概述了 PARG 的生理作用及其抑制剂的开发,强调了 PARG 作为癌症治疗创新靶点的潜力。
{"title":"Prospects for PARG inhibitors in cancer therapy.","authors":"Yangchan Hu, Yuxin Meng, Zirui Zhuang, Yuancong Li, Junjun Nan, Ning Xu, Zu Ye, Ji Jing","doi":"10.1093/jmcb/mjae050","DOIUrl":"https://doi.org/10.1093/jmcb/mjae050","url":null,"abstract":"<p><p>Poly(ADP-ribose) glycosylhydrolase (PARG) is an enzyme involved in hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PAR), which are primarily found in the nucleus. Along with poly(ADP-ribose) polymerase (PARP), PARG regulates the level of PAR in cells, playing a crucial role in DNA maintenance and repair processes. Recent studies have revealed elevated levels of PARG in various cancers, such as breast, liver, prostate, and esophageal cancers, indicating a link to unfavorable cancer outcomes. PARG is a significant molecular target for treating PAR-related cancers. This review provides a comprehensive overview of the physiological role of PARG and the development of its inhibitors, highlighting its potential as an innovative target for cancer treatment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixian Guo, Feng Xie, Xu Liu, Shouyu Ke, Jieqiong Chen, Yi Zhao, Ning Li, Zeyu Wang, Gang Yi, Yanying Shen, Dan Li, Chunchao Zhu, Zizhen Zhang, Gang Zhao, Hong Lu, Bin Li, Wenyi Zhao
The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.
{"title":"Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells.","authors":"Yixian Guo, Feng Xie, Xu Liu, Shouyu Ke, Jieqiong Chen, Yi Zhao, Ning Li, Zeyu Wang, Gang Yi, Yanying Shen, Dan Li, Chunchao Zhu, Zizhen Zhang, Gang Zhao, Hong Lu, Bin Li, Wenyi Zhao","doi":"10.1093/jmcb/mjad067","DOIUrl":"10.1093/jmcb/mjad067","url":null,"abstract":"<p><p>The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71482559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}