Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 remains unclear. Here, we demonstrated that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.
{"title":"Phase separation of SPIN1 through its IDR facilitates histone methylation readout and tumorigenesis.","authors":"Yukun Wang, Yuhan Chen, Mengyao Li, Jiayue Wang, Yuhan Jiang, Rong Xie, Yifeng Zhang, Zhihua Li, Zhenzhen Yan, Chen Wu","doi":"10.1093/jmcb/mjae024","DOIUrl":"10.1093/jmcb/mjae024","url":null,"abstract":"<p><p>Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 remains unclear. Here, we demonstrated that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unleashing the power of antigen-presenting neutrophils.","authors":"Yingcheng Wu, Jiaqiang Ma, Qiang Gao","doi":"10.1093/jmcb/mjae034","DOIUrl":"10.1093/jmcb/mjae034","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incidence rate of intrahepatic cholangiocarcinoma (ICC), which has a poor prognosis, is rapidly increasing. To investigate the intratumor heterogeneity in ICC, we analyzed single-cell RNA sequencing data from the primary tumor and adjacent normal tissues of 14 treatment-naïve patients. We identified 10 major cell types, along with 45 subclusters of cells. Notably, we identified a fibroblast cluster, Fibroblast_LUM+, which was preferably enriched in tumor tissues and actively interacted with cholangiocytes. LGALS1 was verified as a marker gene of Fibroblast_LUM+, contributing to the malignant phenotype of ICC. Higher amount of LGALS1+ fibroblasts was associated with poorer overall survival of ICC patients. Mechanistically, LGALS1+ fibroblasts activated the proliferation and migration of tumor cells by upregulating the expression levels of CCR2, ADAM15, and β-integrin. Silencing LGALS1 in cancer-associated fibroblasts (CAFs) suppressed CAF-augmented tumor cell migration and invasion in vitro as well as tumor formation in vivo, suggesting that blockade of LGALS1 serves as a potential therapeutic approach for ICC. Taken together, our single-cell analysis provides insight into the interaction between malignant cells and specific subtypes of fibroblasts, which contributes to better understanding of the intratumor heterogeneity in ICC and the development of novel strategies for the treatment of ICC by targeting fibroblasts in the tumor microenvironment.
{"title":"Single-cell analysis defines LGALS1+ fibroblasts that promote proliferation and migration of intrahepatic cholangiocarcinoma.","authors":"Qiqi Cao, Jinxian Yang, Lixuan Jiang, Zhao Yang, Zhecai Fan, Shuzhen Chen, Sibo Zhu, Lei Yin, Hongyang Wang, Wen Wen","doi":"10.1093/jmcb/mjae023","DOIUrl":"10.1093/jmcb/mjae023","url":null,"abstract":"<p><p>The incidence rate of intrahepatic cholangiocarcinoma (ICC), which has a poor prognosis, is rapidly increasing. To investigate the intratumor heterogeneity in ICC, we analyzed single-cell RNA sequencing data from the primary tumor and adjacent normal tissues of 14 treatment-naïve patients. We identified 10 major cell types, along with 45 subclusters of cells. Notably, we identified a fibroblast cluster, Fibroblast_LUM+, which was preferably enriched in tumor tissues and actively interacted with cholangiocytes. LGALS1 was verified as a marker gene of Fibroblast_LUM+, contributing to the malignant phenotype of ICC. Higher amount of LGALS1+ fibroblasts was associated with poorer overall survival of ICC patients. Mechanistically, LGALS1+ fibroblasts activated the proliferation and migration of tumor cells by upregulating the expression levels of CCR2, ADAM15, and β-integrin. Silencing LGALS1 in cancer-associated fibroblasts (CAFs) suppressed CAF-augmented tumor cell migration and invasion in vitro as well as tumor formation in vivo, suggesting that blockade of LGALS1 serves as a potential therapeutic approach for ICC. Taken together, our single-cell analysis provides insight into the interaction between malignant cells and specific subtypes of fibroblasts, which contributes to better understanding of the intratumor heterogeneity in ICC and the development of novel strategies for the treatment of ICC by targeting fibroblasts in the tumor microenvironment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Yu, Jie Ji, Jingwei Weng, Zhijun Liu, Wenning Wang
The intrinsic regulation of spindle orientation during asymmetric cell division depends on the evolutionarily conserved protein complex LGN (Pins)/NuMA (Mud)/Gα⋅GDP. While the role of LGN and its Drosophila orthologue Pins is well-established, the function of AGS3, the paralogue of LGN, in spindle orientation during cell division remains controversial. This study substantiates the contentious nature of AGS3's function through systematic biochemical characterizations. The results confirm the high conservation of AGS3 in its functional structural domains, similar to LGN, and its comparable ability to bind to partners including NuMA, Insc, and Gαi3⋅GDP. However, in contrast to LGN, AGS3 and the microtubule-binding protein NuMA are unable to form stable hetero-hexamers or higher-order oligomeric complexes that are pivotal for effective regulation of spindle orientation. It was found that this notable difference between AGS3 and LGN stems from the N-terminal sequence preceding the conserved TPR motifs, which spans ∼20 residues. Furthermore, our findings substantiate the disruptive effect of Insc on the oligomeric AGS3/NuMA complex, while showing no impact on the oligomeric LGN/NuMA complex. Consequently, Insc emerges as an additional regulatory factor that distinguishes the functional roles of AGS3 and LGN, leading to the impairment of AGS3's ability to actively reorient the mitotic spindle. These results elucidate the molecular basis underlying the observed functional disparity in spindle orientation between LGN and AGS3, providing valuable insights into the regulation of cell division at the molecular level.
{"title":"Molecular insights into AGS3's role in spindle orientation: a biochemical perspective.","authors":"Shi Yu, Jie Ji, Jingwei Weng, Zhijun Liu, Wenning Wang","doi":"10.1093/jmcb/mjae049","DOIUrl":"https://doi.org/10.1093/jmcb/mjae049","url":null,"abstract":"<p><p>The intrinsic regulation of spindle orientation during asymmetric cell division depends on the evolutionarily conserved protein complex LGN (Pins)/NuMA (Mud)/Gα⋅GDP. While the role of LGN and its Drosophila orthologue Pins is well-established, the function of AGS3, the paralogue of LGN, in spindle orientation during cell division remains controversial. This study substantiates the contentious nature of AGS3's function through systematic biochemical characterizations. The results confirm the high conservation of AGS3 in its functional structural domains, similar to LGN, and its comparable ability to bind to partners including NuMA, Insc, and Gαi3⋅GDP. However, in contrast to LGN, AGS3 and the microtubule-binding protein NuMA are unable to form stable hetero-hexamers or higher-order oligomeric complexes that are pivotal for effective regulation of spindle orientation. It was found that this notable difference between AGS3 and LGN stems from the N-terminal sequence preceding the conserved TPR motifs, which spans ∼20 residues. Furthermore, our findings substantiate the disruptive effect of Insc on the oligomeric AGS3/NuMA complex, while showing no impact on the oligomeric LGN/NuMA complex. Consequently, Insc emerges as an additional regulatory factor that distinguishes the functional roles of AGS3 and LGN, leading to the impairment of AGS3's ability to actively reorient the mitotic spindle. These results elucidate the molecular basis underlying the observed functional disparity in spindle orientation between LGN and AGS3, providing valuable insights into the regulation of cell division at the molecular level.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.
{"title":"CCT6A alleviates pulmonary fibrosis by inhibiting HIF-1α-mediated lactate production.","authors":"Peishuo Yan, Kun Yang, Mengwei Xu, Miaomiao Zhu, Yudi Duan, Wenwen Li, Lulu Liu, Chenxi Liang, Zhongzheng Li, Xin Pan, Lan Wang, Guoying Yu","doi":"10.1093/jmcb/mjae021","DOIUrl":"10.1093/jmcb/mjae021","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitao Sun, Megan Luo, Mian Zhou, Li Zheng, Hongzhi Li, R Steven Esworthy, Binghui Shen
Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.
核酸酶是水解基因组中磷酸二酯键的超级酶家族。它们的底物千差万别,导致裂解模式的差异,并在维持遗传物质方面发挥着多样化的作用。从原核细胞到真核细胞的细胞进化过程中,核酸酶具有结构特异性,能识别自身或外来基因组 DNA/RNA 构型作为底物,包括瓣膜、气泡和霍利迪连接。这些特殊的结构构型通常是 DNA 复制、修复和重组等过程的中间产物。结构的特异性和功能的多样性使它们对维持正常细胞和癌细胞基因组的完整性和进化至关重要。在本文中,我们将回顾它们在各种途径中的作用,包括 DNA 复制过程中的冈崎片段成熟、DNA 双链断裂同源定向重组修复中的末端切除、DNA 切除修复和外源性 DNA 损伤时的 DNA 片段凋亡以及 HIV 生命周期。由于核酸酶是 DNA 动态、细胞凋亡和癌细胞存活途径的关键点,我们将讨论该领域在开发治疗方案方面所做的努力,并利用最近获得的有关核酸酶多样化结构和功能的知识。
{"title":"Structure-specific nucleases in genome dynamics and strategies for targeting cancers.","authors":"Haitao Sun, Megan Luo, Mian Zhou, Li Zheng, Hongzhi Li, R Steven Esworthy, Binghui Shen","doi":"10.1093/jmcb/mjae019","DOIUrl":"10.1093/jmcb/mjae019","url":null,"abstract":"<p><p>Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
{"title":"Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality.","authors":"Zi Ye, Yu Xu, Mengna Zhang, Cheguo Cai","doi":"10.1093/jmcb/mjae020","DOIUrl":"10.1093/jmcb/mjae020","url":null,"abstract":"<p><p>The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}