Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1521
P. Sonprasarn, W. Prakaypan, S. Polsilapa, N. Kongkajun, E. Laitila, N. Chuankrerkkul, Parinya Chakartnarodom
Fiber-reinforced cement composites (FRCC) are widely used in the construction of houses and commercial buildings in many countries such as the United States, the United Kingdom, the European countries, and the Asian countries such as China, India, and Thailand. Conventionally, the FRCC is manufactured from Portland cement, silica sand, and cellulose fiber using the so-called autoclaved curing under a designate hydrothermal condition to accelerate the hydration reaction resulting in superior properties. However, the autoclave-curing process needs a huge investment and generates highly environmental impact specially greenhouse gases due to its heavy energy consumption. Hence, this research aims to develop the FRCC with lowering embodied energy via the energy-free moisture curing process. The use of different crystal modifiers (CM) including synthetic tobermorite, alumino-silicate complex, and modified lithium compound in addition of the usual FRCC composition to drive the hydration kinetic and then properties achieved were characterized by the relevance of higher heat of hydration. Moreover, scanning electron microscope (SEM) were used to reveal the favorable effects of appropriate CM through the microstructure. The results approved that the FRCC with qualified mechanical performance and densified microstructure was successfully produced by using the appropriate moisture curing condition and CM. Additionally, using alumino-silicate complex as CM at 3% of cement weight produced FRCC with the highest modulus of elasticity of 9,067 ± 492 MPa, and the lowest % water absorption of 27.42 ± 1.65 %.
{"title":"The Influence of Different Crystal Modifiers on Ultra-Low Embodied Energy Curing Fiber-Reinforced Cement Composites","authors":"P. Sonprasarn, W. Prakaypan, S. Polsilapa, N. Kongkajun, E. Laitila, N. Chuankrerkkul, Parinya Chakartnarodom","doi":"10.55713/jmmm.v32i3.1521","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1521","url":null,"abstract":"Fiber-reinforced cement composites (FRCC) are widely used in the construction of houses and commercial buildings in many countries such as the United States, the United Kingdom, the European countries, and the Asian countries such as China, India, and Thailand. Conventionally, the FRCC is manufactured from Portland cement, silica sand, and cellulose fiber using the so-called autoclaved curing under a designate hydrothermal condition to accelerate the hydration reaction resulting in superior properties. However, the autoclave-curing process needs a huge investment and generates highly environmental impact specially greenhouse gases due to its heavy energy consumption. Hence, this research aims to develop the FRCC with lowering embodied energy via the energy-free moisture curing process. The use of different crystal modifiers (CM) including synthetic tobermorite, alumino-silicate complex, and modified lithium compound in addition of the usual FRCC composition to drive the hydration kinetic and then properties achieved were characterized by the relevance of higher heat of hydration. Moreover, scanning electron microscope (SEM) were used to reveal the favorable effects of appropriate CM through the microstructure. The results approved that the FRCC with qualified mechanical performance and densified microstructure was successfully produced by using the appropriate moisture curing condition and CM. Additionally, using alumino-silicate complex as CM at 3% of cement weight produced FRCC with the highest modulus of elasticity of 9,067 ± 492 MPa, and the lowest % water absorption of 27.42 ± 1.65 %.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"22 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74634556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1524
Supranee Laoubol, P. Ngernchuklin, Malinee Leekrajang
A sequential treatment for cellulose isolation from the banana stalk (BNSF) and water hyacinth (WHCF) based on the simultaneous fractionation of hemicelluloses and lignin by alkaline peroxide extraction has been studied. The crude cellulose was then purified by using an acetic acid-nitric acid mixture and further bleached with acidified sodium chlorite. The isolated cellulose was subject to analyses of associated hemicelluloses and lignin content. The structural changes between crude and purified celluloses were revealed by using FT-IR, TGA, and XRD analyses. The successive alkaline and bleaching treatments led to a significant loss in hemicelluloses and lignin, enrichment of the cellulose fraction, and increase in cellulose crystallinity but led to 3.1% to 5.4% degradation of the original cellulose. The crystallinity index of isolated cellulose was found to be increased from 38% to 90% for WHCF and 62% to 95% for BNSF. The cement composite with purified WHCF and BNSF exhibited comparable flexural strength to pure cement. The results showed that the flexural strength of the composites with 2.33 wt% of α-WHCF, 2.33 wt% of α-BNSF, and without fibers was 13.89 10.65 and 8.65 MPa, respectively. In other words, the flexural strength of the composite with α-WHCF was improved by 125%.
{"title":"Extraction, characterization, and improvement of banana stem and water hyacinth cellulose fibers as reinforcement in cementitious composites","authors":"Supranee Laoubol, P. Ngernchuklin, Malinee Leekrajang","doi":"10.55713/jmmm.v32i3.1524","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1524","url":null,"abstract":"A sequential treatment for cellulose isolation from the banana stalk (BNSF) and water hyacinth (WHCF) based on the simultaneous fractionation of hemicelluloses and lignin by alkaline peroxide extraction has been studied. The crude cellulose was then purified by using an acetic acid-nitric acid mixture and further bleached with acidified sodium chlorite. The isolated cellulose was subject to analyses of associated hemicelluloses and lignin content. The structural changes between crude and purified celluloses were revealed by using FT-IR, TGA, and XRD analyses. The successive alkaline and bleaching treatments led to a significant loss in hemicelluloses and lignin, enrichment of the cellulose fraction, and increase in cellulose crystallinity but led to 3.1% to 5.4% degradation of the original cellulose. The crystallinity index of isolated cellulose was found to be increased from 38% to 90% for WHCF and 62% to 95% for BNSF. The cement composite with purified WHCF and BNSF exhibited comparable flexural strength to pure cement. The results showed that the flexural strength of the composites with 2.33 wt% of α-WHCF, 2.33 wt% of α-BNSF, and without fibers was 13.89 10.65 and 8.65 MPa, respectively. In other words, the flexural strength of the composite with α-WHCF was improved by 125%.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"63 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76615889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1522
Eakkasit Punrat, Naphat Piyasart, Chalinee Auanphui, Rutanachai Thaipratum, S. Motomizu, W. Wonsawat
In this study, we developed a simple high-throughput and cost-effective method for monitoring toxic metal ion in an environmental aqueous sample. Mercury ion determination with Sequential Injection Analysis system (SIAs) coupled with the electrochemical detection on the modified screen-printed carbon working electrode (SPCE) is an alternative green analysis of mercury ion. The gold film was used as the modified material for improved mercury ion analysis in the automated system without memory effect on the electrode. Mercury oxidation signal was found at the potential of 0.7 V in 0.1 M HNO3 and 1.0 M HCl with the concentration low to 0.25 ± 0.18 mg×L-1. Online sample preparation and separation will study in the further experiment.
在这项研究中,我们开发了一种简单、高通量、低成本的方法来监测环境水样中的有毒金属离子。顺序进样分析系统(SIAs)与改性丝网印刷碳工作电极(SPCE)电化学检测相结合的汞离子测定是一种替代的绿色汞离子分析方法。采用金膜作为修饰材料,改进了自动化系统中汞离子的分析,对电极无记忆效应。在0.1 M HNO3和1.0 M HCl溶液中,当电位为0.7 V时,在0.25±0.18 mg×L-1范围内发现了汞氧化信号。在线样品制备和分离将在进一步的实验中进行研究。
{"title":"Sequential injection analysis for mercury ion with modified screen – printed carbon electrode","authors":"Eakkasit Punrat, Naphat Piyasart, Chalinee Auanphui, Rutanachai Thaipratum, S. Motomizu, W. Wonsawat","doi":"10.55713/jmmm.v32i3.1522","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1522","url":null,"abstract":"In this study, we developed a simple high-throughput and cost-effective method for monitoring toxic metal ion in an environmental aqueous sample. Mercury ion determination with Sequential Injection Analysis system (SIAs) coupled with the electrochemical detection on the modified screen-printed carbon working electrode (SPCE) is an alternative green analysis of mercury ion. The gold film was used as the modified material for improved mercury ion analysis in the automated system without memory effect on the electrode. Mercury oxidation signal was found at the potential of 0.7 V in 0.1 M HNO3 and 1.0 M HCl with the concentration low to 0.25 ± 0.18 mg×L-1. Online sample preparation and separation will study in the further experiment.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"50 4 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79872372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1519
Zainab Ali Hrbe, Samaher Waheed Hashim
Two-dimensional materials are suitable for energy storage applications due to their chemical stability, high electrical conductivity and large specific surface area. In this work, tungsten disulfide (WS2) nanosheets were synthesized by chemical exfoliation method and combined with nickel oxide (NiO) nanoparticles to be used as a working electrode for storing energy. The WS2 electrode alone shows a capacitance of about 21.87 mF⸳cm-2, which is improved up to 64.58 mF⸳cm-2 by adding NiO nanoparticles. The occurrence of redox reactions plays an important role in increasing the final capacitance. Moreover, the proposed hybrid maintains 93% of its initial capacitance after 5000 charge-discharge cycles, which indicates its stable and reliable performance.
{"title":"Tungsten disulfide-nickel oxide hybrids as high-performance supercapacitors","authors":"Zainab Ali Hrbe, Samaher Waheed Hashim","doi":"10.55713/jmmm.v32i3.1519","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1519","url":null,"abstract":"Two-dimensional materials are suitable for energy storage applications due to their chemical stability, high electrical conductivity and large specific surface area. In this work, tungsten disulfide (WS2) nanosheets were synthesized by chemical exfoliation method and combined with nickel oxide (NiO) nanoparticles to be used as a working electrode for storing energy. The WS2 electrode alone shows a capacitance of about 21.87 mF⸳cm-2, which is improved up to 64.58 mF⸳cm-2 by adding NiO nanoparticles. The occurrence of redox reactions plays an important role in increasing the final capacitance. Moreover, the proposed hybrid maintains 93% of its initial capacitance after 5000 charge-discharge cycles, which indicates its stable and reliable performance.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"10 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74719812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1271
C. Aumnate, Nithiwach Nawaukkaratharnant, N. Chuankrerkkul
Feedstock for powder injection moulding of silver was prepared using water-soluble binder composed of polyethylene glycol (PEG) and polyvinyl butyrol (PVB). Silver powders with particle size in range of 1 μm to 20 μm can be mixed with PEG/PVB binder system to form feedstocks having powder loadings of 42 vol% and 45 vol%. PEG can be removed using water leaching method while PVB can be removed by thermal debinding. Specimens retained their shapes during debinding and after debinding. Components fabricated with relatively higher powder loading resulted in higher density with lower porosity. Density of specimens containing powder loading of 42 vol% and 45 vol% and heated at 700℃ is about 43% and 46% of the theoretical value, respectively. Therefore, it can be further developed for porous materials applications.
{"title":"Preparation of feedstock containing water-soluble binder for powder injection moulding of silver","authors":"C. Aumnate, Nithiwach Nawaukkaratharnant, N. Chuankrerkkul","doi":"10.55713/jmmm.v32i3.1271","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1271","url":null,"abstract":"Feedstock for powder injection moulding of silver was prepared using water-soluble binder composed of polyethylene glycol (PEG) and polyvinyl butyrol (PVB). Silver powders with particle size in range of 1 μm to 20 μm can be mixed with PEG/PVB binder system to form feedstocks having powder loadings of 42 vol% and 45 vol%. PEG can be removed using water leaching method while PVB can be removed by thermal debinding. Specimens retained their shapes during debinding and after debinding. Components fabricated with relatively higher powder loading resulted in higher density with lower porosity. Density of specimens containing powder loading of 42 vol% and 45 vol% and heated at 700℃ is about 43% and 46% of the theoretical value, respectively. Therefore, it can be further developed for porous materials applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"119 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85242945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1525
S. Rajput, S. Keshri
This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf = 908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.
{"title":"Effect of A-site modification on structural and microwave dielectric properties of calcium titanate","authors":"S. Rajput, S. Keshri","doi":"10.55713/jmmm.v32i3.1525","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1525","url":null,"abstract":"This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf = 908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"125 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83718882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1268
R. Sumang, R. Kodsueb, Narathip Vitayakorn, Ruangwut Chutima
Calcined clay pellets are popular planting material for those who love to grow plants in pots. The calcined clay pellets consist of clay (C), phosphate rock (PR), and rice husk ash (RHA). [(1-x)(50C–50PR)-xRHA], x(RHA) = 0, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and 0.65 wt% were prepared by a conventional solid-state reaction method. The samples were made into a spherical shape with a diameter of 10 mm and fired at 600℃ to 1000℃. The effect of x contents on phase formation, microstructure, and chemical properties of [(1-x)(50C–50PR)-xRHA] was studied. X-ray diffraction revealed the typical assemblages with quartz, illite, and kaolinite in all the samples. SEM images of samples showed irregular packing and a highly porous microstructure. The addition of x(RHA) contents results in porous microstructure in all the samples. The surface area and pore volume of samples increased from 8.83 m2·g-1 to 14.71 m2·g-1 and 0.938 cm3·g-1 to 0.942 cm3·g-1, respectively, with the increase of x(RHA). The density of the samples slightly decreased from 2.45±0.06 g·cm-3 to 1.94±0.05 g·cm-3, with an increase in x(RHA) contents. The capability of calcined clay pellets to immobilize plant growth-promoting fungi was then studied. The results showed that orchid endophytes, as plant growth-promoting fungi, grow well on the calcined clay pellets saturated with potato dextrose broth (PDB). Besides, all fungi can live on calcined clay pellets and stay viable for at least 35 days after inoculation. These results suggested that the calcined clay pellets could serve as planting material that enhances plant growth (via its nutrients and growth-promoting fungi) simultaneously.
{"title":"The correlation between phase formation and the structure of the pellets with the fungal immobilization study as a commercial substrate culture/planting material","authors":"R. Sumang, R. Kodsueb, Narathip Vitayakorn, Ruangwut Chutima","doi":"10.55713/jmmm.v32i3.1268","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1268","url":null,"abstract":"Calcined clay pellets are popular planting material for those who love to grow plants in pots. The calcined clay pellets consist of clay (C), phosphate rock (PR), and rice husk ash (RHA). [(1-x)(50C–50PR)-xRHA], x(RHA) = 0, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and 0.65 wt% were prepared by a conventional solid-state reaction method. The samples were made into a spherical shape with a diameter of 10 mm and fired at 600℃ to 1000℃. The effect of x contents on phase formation, microstructure, and chemical properties of [(1-x)(50C–50PR)-xRHA] was studied. X-ray diffraction revealed the typical assemblages with quartz, illite, and kaolinite in all the samples. SEM images of samples showed irregular packing and a highly porous microstructure. The addition of x(RHA) contents results in porous microstructure in all the samples. The surface area and pore volume of samples increased from 8.83 m2·g-1 to 14.71 m2·g-1 and 0.938 cm3·g-1 to 0.942 cm3·g-1, respectively, with the increase of x(RHA). The density of the samples slightly decreased from 2.45±0.06 g·cm-3 to 1.94±0.05 g·cm-3, with an increase in x(RHA) contents. The capability of calcined clay pellets to immobilize plant growth-promoting fungi was then studied. The results showed that orchid endophytes, as plant growth-promoting fungi, grow well on the calcined clay pellets saturated with potato dextrose broth (PDB). Besides, all fungi can live on calcined clay pellets and stay viable for at least 35 days after inoculation. These results suggested that the calcined clay pellets could serve as planting material that enhances plant growth (via its nutrients and growth-promoting fungi) simultaneously.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"54 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90869339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1518
H. Sadabadi, Omid Ghaderi, Amir Kordijazi, P. Rohatgi
Due to the extraordinary mechanical, thermal, and electrical properties of graphene, graphene oxide (GO), and reduced graphene oxide (rGO), these materials have the potential to become ideal nanofillers in the electrodeposited nanocomposite coatings. This article provides an overview of literature on the improvements of properties associated with graphene, GO, and rGO-reinforced coatings, along with the processing parameters and mechanisms that would lead to these improvements in electrodeposited metal matrix nanocomposite coatings, where those affected the microstructural, mechanical, tribological, and anti-corrosion characteristics of coatings. The challenges associated with the electroplating of nanocomposite coatings are addressed. The results of this survey indicated that adding graphene into the plating bath led to a finer crystalline size in the composite coating due to increasing the potential development of specific crystalline planes and the number of heterogeneous nucleation sites. This consequently caused an improvement in hardness and in tribological properties of the electrodeposited coating. In graphene reinforced metallic composites, the severe adhesive wear mechanism for pure metallic coatings was replaced by abrasive wear and slight adhesive wear, where the formation of a tribolayer at the contact surface increased the wear resistance and decreased friction coefficient. Furthermore, superhydrophobicity and smaller grain size resulted from embedding graphene in the coating. It also provided a smaller cathode/anode surface ratio against localized corrosion, which has been found to be the main anti-corrosion mechanism for graphene/metal coating. Lastly, the study offers a discussion of the areas of research that need further attention to make these high-performance nanocomposite coatings more suitable for industrial applications.
{"title":"Graphene derivatives reinforced metal matrix nanocomposite coatings: A review","authors":"H. Sadabadi, Omid Ghaderi, Amir Kordijazi, P. Rohatgi","doi":"10.55713/jmmm.v32i3.1518","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1518","url":null,"abstract":"Due to the extraordinary mechanical, thermal, and electrical properties of graphene, graphene oxide (GO), and reduced graphene oxide (rGO), these materials have the potential to become ideal nanofillers in the electrodeposited nanocomposite coatings. This article provides an overview of literature on the improvements of properties associated with graphene, GO, and rGO-reinforced coatings, along with the processing parameters and mechanisms that would lead to these improvements in electrodeposited metal matrix nanocomposite coatings, where those affected the microstructural, mechanical, tribological, and anti-corrosion characteristics of coatings. The challenges associated with the electroplating of nanocomposite coatings are addressed. The results of this survey indicated that adding graphene into the plating bath led to a finer crystalline size in the composite coating due to increasing the potential development of specific crystalline planes and the number of heterogeneous nucleation sites. This consequently caused an improvement in hardness and in tribological properties of the electrodeposited coating. In graphene reinforced metallic composites, the severe adhesive wear mechanism for pure metallic coatings was replaced by abrasive wear and slight adhesive wear, where the formation of a tribolayer at the contact surface increased the wear resistance and decreased friction coefficient. Furthermore, superhydrophobicity and smaller grain size resulted from embedding graphene in the coating. It also provided a smaller cathode/anode surface ratio against localized corrosion, which has been found to be the main anti-corrosion mechanism for graphene/metal coating. Lastly, the study offers a discussion of the areas of research that need further attention to make these high-performance nanocomposite coatings more suitable for industrial applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"8 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74494197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1337
A. Maddu, Habiburahmat Yulwan, I. Sofian, A. Sulaeman, Permono Adi Putro
Calcium copper titanate (CaCu3Ti4O12, CCTO) has been synthesized utilizing eggshell waste as a source of calcium through the hydrothermal route, followed by annealing treatment at temperatures 950°C and 1050°C. The sample with annealing temperatures of 950°C and 1050°C is named CTO-A and CCTO-B, respectively. The structure, microstructure, and dielectric properties of CCTO samples were investigated. The X-ray diffraction analysis results confirmed that the pure phase of CCTO has been successfully synthesized as identified in the diffraction pattern. The average crystallite size of CCTO is quite large due to annealing at high-temperature. The morphology of CCTO by electron microscopy investigation showed the grains tends to agglomerate as the annealing temperature increases due to the solid-state diffusion. Dielectric property investigation showed the CCTO samples have a high dielectric constant at low frequencies and decrease with increasing frequency. Sample CCTO-A annealed at 950oC has a higher dielectric constant than sample CCTO-B annealed at 1050oC, otherwise, it has a lower tangent loss than the sample CCTO-B.
{"title":"Synthesis of CaCu3Ti4O12 utilizing eggshell waste as a calcium source: Structure, morphology, and dielectric properties","authors":"A. Maddu, Habiburahmat Yulwan, I. Sofian, A. Sulaeman, Permono Adi Putro","doi":"10.55713/jmmm.v32i3.1337","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1337","url":null,"abstract":"Calcium copper titanate (CaCu3Ti4O12, CCTO) has been synthesized utilizing eggshell waste as a source of calcium through the hydrothermal route, followed by annealing treatment at temperatures 950°C and 1050°C. The sample with annealing temperatures of 950°C and 1050°C is named CTO-A and CCTO-B, respectively. The structure, microstructure, and dielectric properties of CCTO samples were investigated. The X-ray diffraction analysis results confirmed that the pure phase of CCTO has been successfully synthesized as identified in the diffraction pattern. The average crystallite size of CCTO is quite large due to annealing at high-temperature. The morphology of CCTO by electron microscopy investigation showed the grains tends to agglomerate as the annealing temperature increases due to the solid-state diffusion. Dielectric property investigation showed the CCTO samples have a high dielectric constant at low frequencies and decrease with increasing frequency. Sample CCTO-A annealed at 950oC has a higher dielectric constant than sample CCTO-B annealed at 1050oC, otherwise, it has a lower tangent loss than the sample CCTO-B.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"24 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73178697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.55713/jmmm.v32i3.1270
Songwuit Chanthee, Jenjira Jirasangthong, Channarong Asasvatesanupap, M. Santikunaporn
Copper oxides (CuxO) have received considerable attention as a result of their biological activity. Nanoparticles (NPs) of CuxO attached to different substrates exhibit a wide spectrum of antimicrobial activity against bacteria and viruses, with similar properties to silver. The antimicrobial activity of CuxO-NPs doped on distinctive carbon materials was investigated for three carbon substrates: apricot stone activated carbon (AAC), reduced graphene oxide (rGO) and carbon nanofiber (CNF). The CuxO-NPs (5 wt%) doped AAC and rGO substrates were prepared by impregnation of copper nitrate followed by a thermal treatment process, while a similar weight of CuxO-NPs doped CNF was fabricated by electrospinning copper nitrate with polyacrylonitrile precursor, followed by carbonization. The CuxO species and chemical functions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. Surface morphology was measured using scanning electron microscopy. The antimicrobial activities of the substrates were evaluated by inhibition zone measurement of Staphylococcus aureus and Escherichia coli. The results demonstrated significant inhibition distances for different carbon substrates. Interestingly, CuxO-NPs doped over both AAC and rGO surfaces revealed clear zones against bacteria, whereas the inhibition zone was not recorded for CuxO-NPs doped over a CNF substrate. Various parameters such as carbon substrates, particle size, and copper oxide species were investigated.
{"title":"Synthesis and antimicrobial studies of nano-copper doped carbon substrates; activated carbon, reduced graphene oxide, and carbon nanofiber","authors":"Songwuit Chanthee, Jenjira Jirasangthong, Channarong Asasvatesanupap, M. Santikunaporn","doi":"10.55713/jmmm.v32i3.1270","DOIUrl":"https://doi.org/10.55713/jmmm.v32i3.1270","url":null,"abstract":"Copper oxides (CuxO) have received considerable attention as a result of their biological activity. Nanoparticles (NPs) of CuxO attached to different substrates exhibit a wide spectrum of antimicrobial activity against bacteria and viruses, with similar properties to silver. The antimicrobial activity of CuxO-NPs doped on distinctive carbon materials was investigated for three carbon substrates: apricot stone activated carbon (AAC), reduced graphene oxide (rGO) and carbon nanofiber (CNF). The CuxO-NPs (5 wt%) doped AAC and rGO substrates were prepared by impregnation of copper nitrate followed by a thermal treatment process, while a similar weight of CuxO-NPs doped CNF was fabricated by electrospinning copper nitrate with polyacrylonitrile precursor, followed by carbonization. The CuxO species and chemical functions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. Surface morphology was measured using scanning electron microscopy. The antimicrobial activities of the substrates were evaluated by inhibition zone measurement of Staphylococcus aureus and Escherichia coli. The results demonstrated significant inhibition distances for different carbon substrates. Interestingly, CuxO-NPs doped over both AAC and rGO surfaces revealed clear zones against bacteria, whereas the inhibition zone was not recorded for CuxO-NPs doped over a CNF substrate. Various parameters such as carbon substrates, particle size, and copper oxide species were investigated.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"61 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73697264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}