Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01018
T. Borodinova, V. Styopkin, A. A. Vasko, V. Cherepanov, V. Kravets
{"title":"Growth of Gold Nanostructures on the MoS2 Surface Modified with Polyvinylpyrrolidone","authors":"T. Borodinova, V. Styopkin, A. A. Vasko, V. Cherepanov, V. Kravets","doi":"10.21272/JNEP.13(1).01018","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01018","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"39 1","pages":"01018-1-01018-4"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79402033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01027
Rajesh Sahu, S. Jain, B. Tripathi
Zinc Sulfide (ZnS) based photocatalytic activity has been focused in solar hydrogen production and water treatment process because to their very strong redox reaction. Due to wide visible light range, ZnS becomes a promising semiconductor in formation of photocatalysts. The bandgap energies ( E g ) of all prepared samples ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated and Methylene Blue (MB) degradation study occurring of ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated under visible light us-ing UV-visible spectroscopy. The author found that removal rate of MB is greater than 95 percentage in the presence of MWCNTs/ZnS composites photocatalysts after 50 min. Crystalline grain size and structure of photocatalyst were characterized by X-ray Diffraction (XRD) spectroscopy. The enhancement of photo-catalytic activity can be associated by many factors like a suitable band gap in visible region, crystalline structure of nanocomposites and particle size in nanometer (nm) of the MWCNTs/ZnS nanocomposites. The suitable photocatalytic reaction and mechanisms of MB degradation also included in this article.
{"title":"Synthesis and Characterization of Multiwalled Carbon Nanotubes (MWCNTs) Dispersed ZnS Based Photocatalytic Activity","authors":"Rajesh Sahu, S. Jain, B. Tripathi","doi":"10.21272/JNEP.13(1).01027","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01027","url":null,"abstract":"Zinc Sulfide (ZnS) based photocatalytic activity has been focused in solar hydrogen production and water treatment process because to their very strong redox reaction. Due to wide visible light range, ZnS becomes a promising semiconductor in formation of photocatalysts. The bandgap energies ( E g ) of all prepared samples ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated and Methylene Blue (MB) degradation study occurring of ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated under visible light us-ing UV-visible spectroscopy. The author found that removal rate of MB is greater than 95 percentage in the presence of MWCNTs/ZnS composites photocatalysts after 50 min. Crystalline grain size and structure of photocatalyst were characterized by X-ray Diffraction (XRD) spectroscopy. The enhancement of photo-catalytic activity can be associated by many factors like a suitable band gap in visible region, crystalline structure of nanocomposites and particle size in nanometer (nm) of the MWCNTs/ZnS nanocomposites. The suitable photocatalytic reaction and mechanisms of MB degradation also included in this article.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85235562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01014
K. Dayana, R. Jothimani, S. Durai
{"title":"Green Synthesis of Copper Oxide Nanoparticles from Catharanthus Roseus Plant Leaf Extract and Its Investigation","authors":"K. Dayana, R. Jothimani, S. Durai","doi":"10.21272/JNEP.13(1).01014","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01014","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88677935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01028
Y. Kumar, J. Tripathi, A. Sharma
{"title":"Magnetic Properties of Ni Thin Films Deposited on to Polystyrene Nanospheres","authors":"Y. Kumar, J. Tripathi, A. Sharma","doi":"10.21272/JNEP.13(1).01028","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01028","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"93 1","pages":"01028-1-01028-4"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90608405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01025
Parita Basnet, D. Samanta, S. Chatterjee
This work describes a comparative assessment between zinc oxide (ZnO) nanoparticles (NP), zinc sulfide (ZnS) NP and ZnS-ZnO nanocomposite (NC). A chemical non-aqueous method was chosen for materials synthesis. From XRD spectra, the crystalline phases and phase purity of the samples were confirmed. The average crystallite sizes were calculated as 69 nm, 5 nm and 10 nm for ZnO NP, ZnS NP and ZnS-ZnO NC, respectively, indicating a relatively pronounced growth and coarsening processes in ZnO NP. The lowering of band gap energy was verified through optical absorption spectra of ZnS-ZnO NC. Morphological investigation revealed that ZnO consisted of plate-like structures, ZnS comprised of agglomerated spheres while ZnS-ZnO NC exhibited both these structures. EDX and XPS spectra of ZnS-ZnO NC confirmed the presence of Zn, S and O in the NC. The photocatalytic degradation of cationic dyes were observed to be the highest by ZnS-ZnO NC compared to its individual components, ZnO and ZnS.
{"title":"Chemical Approach Based ZnS-ZnO Nanocomposite Synthesis and Assessment of their Structural, Morphological and Photocatalytic Properties","authors":"Parita Basnet, D. Samanta, S. Chatterjee","doi":"10.21272/JNEP.13(1).01025","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01025","url":null,"abstract":"This work describes a comparative assessment between zinc oxide (ZnO) nanoparticles (NP), zinc sulfide (ZnS) NP and ZnS-ZnO nanocomposite (NC). A chemical non-aqueous method was chosen for materials synthesis. From XRD spectra, the crystalline phases and phase purity of the samples were confirmed. The average crystallite sizes were calculated as 69 nm, 5 nm and 10 nm for ZnO NP, ZnS NP and ZnS-ZnO NC, respectively, indicating a relatively pronounced growth and coarsening processes in ZnO NP. The lowering of band gap energy was verified through optical absorption spectra of ZnS-ZnO NC. Morphological investigation revealed that ZnO consisted of plate-like structures, ZnS comprised of agglomerated spheres while ZnS-ZnO NC exhibited both these structures. EDX and XPS spectra of ZnS-ZnO NC confirmed the presence of Zn, S and O in the NC. The photocatalytic degradation of cationic dyes were observed to be the highest by ZnS-ZnO NC compared to its individual components, ZnO and ZnS.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"445 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77851710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01021
N. Kherief, S. Latreche, M. Lakhdara, A. Boulgheb, C. Gontrand
{"title":"Effect of Trench Isolation on the Self-heating Phenomenon in Advanced Radio Frequency SiGe Heterojunction Bipolar Transistor","authors":"N. Kherief, S. Latreche, M. Lakhdara, A. Boulgheb, C. Gontrand","doi":"10.21272/JNEP.13(1).01021","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01021","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"33 1","pages":"01021-1-01021-5"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86971872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01026
S. Mangavati, A. Rao, Dheeraj Devadiga, M. Selvakumar, Monika Saxena, G. Okram
{"title":"Investigation of Electrical and Thermoelectric Properties of ZnO/rGO Composites Prepared by Conventional Solid-state Reaction Method","authors":"S. Mangavati, A. Rao, Dheeraj Devadiga, M. Selvakumar, Monika Saxena, G. Okram","doi":"10.21272/JNEP.13(1).01026","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01026","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"13 1","pages":"01026-1-01026-4"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80430770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21272/JNEP.13(1).01007
Bita Farhadi, F. Zabihi, Y. Zhou, A. Liu
An ultrathin perovskite solar cell with 29.33 % theoretical power conversion efficiency (PCE) is designed for flexible applications. The perovskite layer is sandwiched between two multijunctions, i.e. poly(3hexylthiophene) (P3HT), nickel oxide (NiO), and copper (I) thiocyanate (CuSCN) as the hole transporting element, from one side, and zinc oxide (ZnO), tin (IV) oxide (SnO2) and phenyl-C61 butyric acid methyl ester (PCBM) as the electron transporting compartment, from the other side. This study uses a professional software package to accurately simulate a series of highly efficient perovskite-based solar cell structures that use both organic and inorganic materials. Calculations are simultaneously run with SCAPS (version. 3.3.07). The materials system for the electron transporting multijunction, bandgap of the perovskite layer, defection density, temperature of operating conditions, and concentration of charge doping are manipulated as the tuning parameters. An excellent fill factor (84.76 %), a potentially low entire thickness (⁓ 1 m), and compatible nature for both organic and inorganic materials make this layout auspicious for a feasible and versatile high efficiency, but low-cost electronic devices. The constituent materials are selected based on the thickness and photoconversion efficiency. In order to assess the further potentials of materials system, we replaced CuSCN with PTAA (Polytriarylamine) and observed an increase in the theoretical efficiency, and we investigated the effect of varying the doping concentration in the PTAA layer. To simulate this structure, both the electrical and physical properties of the materials are considered, and the results are compared with those of previous works. These results should be of significant interest to experimentalists in the field.
{"title":"A Theoretical Survey on the Potential Performance of a Perovskite Solar Cell Based on an Ultrathin Organic-Inorganic Electron Transporting Layer","authors":"Bita Farhadi, F. Zabihi, Y. Zhou, A. Liu","doi":"10.21272/JNEP.13(1).01007","DOIUrl":"https://doi.org/10.21272/JNEP.13(1).01007","url":null,"abstract":"An ultrathin perovskite solar cell with 29.33 % theoretical power conversion efficiency (PCE) is designed for flexible applications. The perovskite layer is sandwiched between two multijunctions, i.e. poly(3hexylthiophene) (P3HT), nickel oxide (NiO), and copper (I) thiocyanate (CuSCN) as the hole transporting element, from one side, and zinc oxide (ZnO), tin (IV) oxide (SnO2) and phenyl-C61 butyric acid methyl ester (PCBM) as the electron transporting compartment, from the other side. This study uses a professional software package to accurately simulate a series of highly efficient perovskite-based solar cell structures that use both organic and inorganic materials. Calculations are simultaneously run with SCAPS (version. 3.3.07). The materials system for the electron transporting multijunction, bandgap of the perovskite layer, defection density, temperature of operating conditions, and concentration of charge doping are manipulated as the tuning parameters. An excellent fill factor (84.76 %), a potentially low entire thickness (⁓ 1 m), and compatible nature for both organic and inorganic materials make this layout auspicious for a feasible and versatile high efficiency, but low-cost electronic devices. The constituent materials are selected based on the thickness and photoconversion efficiency. In order to assess the further potentials of materials system, we replaced CuSCN with PTAA (Polytriarylamine) and observed an increase in the theoretical efficiency, and we investigated the effect of varying the doping concentration in the PTAA layer. To simulate this structure, both the electrical and physical properties of the materials are considered, and the results are compared with those of previous works. These results should be of significant interest to experimentalists in the field.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"19 1","pages":"01007-1-01007-6"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87368414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.21272/jnep.12(3).03024
L. Poperenko, V. Ukraine, S. Rozouvan, I. Yurgelevych, P. Lishchuk
{"title":"Angular Ellipsometry of Porous Silicon Surface Layers","authors":"L. Poperenko, V. Ukraine, S. Rozouvan, I. Yurgelevych, P. Lishchuk","doi":"10.21272/jnep.12(3).03024","DOIUrl":"https://doi.org/10.21272/jnep.12(3).03024","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"5 1","pages":"03024-1-03024-4"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74391264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.21272/jnep.12(5).05009
R. Yagoub, A. Hadjfatah, S. Louhibi-Fasla, S. Daoud, S. Bahlouli, A. Haichour, C. Zegadi
We report the study of high-pressure phases of YN and ScN compounds, using a recent version of the full potential linear muffin-tin orbital (FPLMTO) method, which enables an accurate treatment of the interstitial regions. The local density approximation (LDA) was used for the exchange and correlation energy density functional. Calculations are given for lattice parameters, bulk modulus and its first derivatives in different structures. Under compression, we found that ScN transforms from NaCl-type structure (B1) to Beta-Sn-type (A5) at a pressure of around 301.3 GPa, with a direct energy gap at Γ of about 0.108 eV. This transition B1 to A5 takes place at a lower pressure than the well-known transition NaCl-type structure (B1) to CsCl-type structure (B2) (found here to be 412 GPa). Our calculations also show that YN transforms from B1 to B2 at a pressure of around 198.5 GPa.
{"title":"First Principles Study of Rare Earth Mononitrides ScN and YN under Pressure","authors":"R. Yagoub, A. Hadjfatah, S. Louhibi-Fasla, S. Daoud, S. Bahlouli, A. Haichour, C. Zegadi","doi":"10.21272/jnep.12(5).05009","DOIUrl":"https://doi.org/10.21272/jnep.12(5).05009","url":null,"abstract":"We report the study of high-pressure phases of YN and ScN compounds, using a recent version of the full potential linear muffin-tin orbital (FPLMTO) method, which enables an accurate treatment of the interstitial regions. The local density approximation (LDA) was used for the exchange and correlation energy density functional. Calculations are given for lattice parameters, bulk modulus and its first derivatives in different structures. Under compression, we found that ScN transforms from NaCl-type structure (B1) to Beta-Sn-type (A5) at a pressure of around 301.3 GPa, with a direct energy gap at Γ of about 0.108 eV. This transition B1 to A5 takes place at a lower pressure than the well-known transition NaCl-type structure (B1) to CsCl-type structure (B2) (found here to be 412 GPa). Our calculations also show that YN transforms from B1 to B2 at a pressure of around 198.5 GPa.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75341398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}