As the United Kingdom reduces its CO2 emissions in order to meet its 2050 net zero greenhouse gas targets, there will be a significant evolution of the UK's energy mix. The reliance on hydrocarbons will decrease while there is predicted to be an increase in low carbon energy sources such as renewables and nuclear. In order to decarbonise and achieve the net zero emissions targets while concurrently producing enough energy to provide for national energy needs, large-scale, low carbon energy generation projects need to be developed alongside energy storage facilities to provide flexibility within a low carbon energy supply. Robust CCUS programmes will need be developed in order to capture and store unavoidable carbon dioxide emissions. The subsurface geology of the UK provides opportunities for the development of low carbon energy generation, energy storage and CCS, and the Upper Permian Zechstein Supergroup deposited in eastern England and offshore in the Southern North Sea is a potential host for these new developments. In NE England, salt cavern gas storage sites have been developed in thick Zechstein evaporites since the mid 20th centrury. In this paper we present new isopach maps and well correlation panels which will help to outline optimal locations for the development of additional salt caverns for gas storage. A review of the Zechstein Supergroup indicates that it does not exhibit great potential for the development of CCS, due both to its complex reservoir characteristics and to difficulties with both subsurface imaging and monitoring. However thick Zechstein evaporites could provide an excellent seal for CO2 storage in the underlying Lower Permian Rotliegend Group.
The Mid North Sea High (MNSH) region represents one of the least explored areas for the Late Permian Zechstein Hauptdolomit play in the Southern Permian Basin although some of the first offshore wells drilled in the UK were located here. In other parts of the basin such as onshore Poland, the Hauptdolomit Formation (“Hauptdolomit”) is an active and attractive exploration target, with oil and gas production from commercial-sized fields. In the UK, the play has been overshadowed by drilling campaigns in areas to the south of the MNSH which tested plays in the underlying Rotliegend and Carboniferous successions. However, with these areas now in decline, there is increased exploration interest in the Hauptdolomit in the MNSH region, particularly since 2019 when 3D seismic data were acquired and the first hydrocarbon discovery was made at Ossian (well 42/04-01/1Z). Geochemical data from the latter discovery have pointed to the presence of a prolific petroleum system with the potential for Hauptdolomit reservoirs to be charged both by Zechstein-generated oils and Carboniferous condensate/gas. With regard to hydrocarbon migration and preservation in the southern MNSH, a detailed evaluation of the effects of the Mid Miocene Unconformity has allowed for a greater understanding of the main factors controlling hydrocarbon preservation and remigration. Reservoir characterization of the Hauptdolomit play has been achieved by integrating petrographic microfacies analyses, core data and petrophysical interpretations. The most important factors controlling reservoir quality are the presence and extent of anhydrite cementation and the presence of high energy shoal facies. Thicker and coarser grained shoal facies are expected to occur along the yet-to-be explored Orchard platform margin where numerous prospects have been mapped and refined using recently acquired 3D seismic data.