Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad8abb
João V B Del Piero, Roberto H Miwa, Wanderlã L Scopel
Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe2. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe2. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.
{"title":"Vanadium incorporation in 2D-layered MoSe<sub>2</sub>.","authors":"João V B Del Piero, Roberto H Miwa, Wanderlã L Scopel","doi":"10.1088/1361-648X/ad8abb","DOIUrl":"10.1088/1361-648X/ad8abb","url":null,"abstract":"<p><p>Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe<sub>2</sub>. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe<sub>2</sub>. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad8ab9
Azaz Ahmad, Gautham Varma K, Gargee Sharma
Weyl fermions are one of the simplest objects that link ideas in geometry and topology to high-energy physics and condensed matter physics. Although the existence of Weyl fermions as elementary particles remains dubious, there is mounting evidence of their existence as quasiparticles in certain condensed matter systems. Such systems are termed Weyl semimetals (WSMs). Needless to say, WSMs have emerged as a fascinating class of materials with unique electronic properties, offering a rich playground for both fundamental research and potential technological applications. This review examines recent advancements in understanding electron transport in WSMs. We begin with a pedagogical introduction to the geometric and topological concepts critical to understanding quantum transport in Weyl fermions. We then explore chiral anomaly, a defining feature of WSMs, and its impact on transport phenomena such as longitudinal magnetoconductance and planar Hall effect. The Maxwell-Boltzmann transport theory extended beyond the standard relaxation-time approximation is then discussed in the context of Weyl fermions, which is used to evaluate various transport properties. Attention is also given to the effects of strain-induced gauge fields and external magnetic fields in both time-reversal broken and inversion asymmetric inhomogeneous WSMs. The review synthesizes theoretical insights, experimental observations, and numerical simulations to provide a comprehensive understanding of the complex transport behaviors in WSMs, aiming to bridge the gap between theoretical predictions and experimental verification.
{"title":"Geometry, anomaly, topology, and transport in Weyl fermions.","authors":"Azaz Ahmad, Gautham Varma K, Gargee Sharma","doi":"10.1088/1361-648X/ad8ab9","DOIUrl":"10.1088/1361-648X/ad8ab9","url":null,"abstract":"<p><p>Weyl fermions are one of the simplest objects that link ideas in geometry and topology to high-energy physics and condensed matter physics. Although the existence of Weyl fermions as elementary particles remains dubious, there is mounting evidence of their existence as quasiparticles in certain condensed matter systems. Such systems are termed Weyl semimetals (WSMs). Needless to say, WSMs have emerged as a fascinating class of materials with unique electronic properties, offering a rich playground for both fundamental research and potential technological applications. This review examines recent advancements in understanding electron transport in WSMs. We begin with a pedagogical introduction to the geometric and topological concepts critical to understanding quantum transport in Weyl fermions. We then explore chiral anomaly, a defining feature of WSMs, and its impact on transport phenomena such as longitudinal magnetoconductance and planar Hall effect. The Maxwell-Boltzmann transport theory extended beyond the standard relaxation-time approximation is then discussed in the context of Weyl fermions, which is used to evaluate various transport properties. Attention is also given to the effects of strain-induced gauge fields and external magnetic fields in both time-reversal broken and inversion asymmetric inhomogeneous WSMs. The review synthesizes theoretical insights, experimental observations, and numerical simulations to provide a comprehensive understanding of the complex transport behaviors in WSMs, aiming to bridge the gap between theoretical predictions and experimental verification.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad8b8e
John L Bost, Christopher Shepard, Yosuke Kanai
Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag20nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag20nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.
{"title":"Hot carrier transfer from plasmon decay in Ag<sub>20</sub>at H-Si(111) surface: real-time TDDFT simulation in Wannier gauge.","authors":"John L Bost, Christopher Shepard, Yosuke Kanai","doi":"10.1088/1361-648X/ad8b8e","DOIUrl":"10.1088/1361-648X/ad8b8e","url":null,"abstract":"<p><p>Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag<sub>20</sub>nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag<sub>20</sub>nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad8aba
Qianli Ma, Lei Ni, Duan Li, Yan Zhang
The geometric structure, electronic properties, and optical characteristics of BAs/InS heterostructures are investigated in the present study through the first-principles calculations of Density Functional Theory. The analysis shows that H1-stacking BAs/InS heterostructures with an interlayer distance of 3.6 Å have excellent stability compared with monolayer materials. Furthermore, this heterostructure is classified as a Type-II heterostructure, which promotes the formation of photo-generated electron-hole pairs. The band alignment, direction and magnitude of electronic transfer in BAs/InS heterostructures can be fine-tuned by applying the external electric field and stress, which can also induce a transition from Type-II to Type-I behavior, the indirect bandgap to direct bandgap also occurs. Moreover, absorption coefficient of the heterostructure can also be moderately enhanced and adjusted by external electric fields and stress. These findings suggest that BAs/InS heterostructures have potential applications in photoelectric detectors and laser technology.
本研究通过密度泛函理论(DFT)的第一性原理计算,对 BAs/InS 异质结构的几何结构、电子特性和光学特性进行了研究。分析表明,与单层材料相比,层间距离为 3.6 Å 的 H1 叠层 BA/InS 异质结构具有出色的稳定性。此外,这种异质结构被归类为 II 型异质结构,可促进光生电子-空穴对的形成。通过施加外部电场和应力,可以微调 BAs/InS 异质结构中的带排列、电子转移方向和幅度,从而诱导其从 II 型行为过渡到 I 型行为,间接带隙到直接带隙也会发生。此外,异质结构的吸收系数也可以通过外加电场和应力得到适度增强和调整。这些发现表明,BAs/InS 异质结构在光电探测器和激光技术中具有潜在的应用前景。
{"title":"Tunable electronic and optical properties of BAs/InS heterojunction based on first-principles calculations.","authors":"Qianli Ma, Lei Ni, Duan Li, Yan Zhang","doi":"10.1088/1361-648X/ad8aba","DOIUrl":"10.1088/1361-648X/ad8aba","url":null,"abstract":"<p><p>The geometric structure, electronic properties, and optical characteristics of BAs/InS heterostructures are investigated in the present study through the first-principles calculations of Density Functional Theory. The analysis shows that H1-stacking BAs/InS heterostructures with an interlayer distance of 3.6 Å have excellent stability compared with monolayer materials. Furthermore, this heterostructure is classified as a Type-II heterostructure, which promotes the formation of photo-generated electron-hole pairs. The band alignment, direction and magnitude of electronic transfer in BAs/InS heterostructures can be fine-tuned by applying the external electric field and stress, which can also induce a transition from Type-II to Type-I behavior, the indirect bandgap to direct bandgap also occurs. Moreover, absorption coefficient of the heterostructure can also be moderately enhanced and adjusted by external electric fields and stress. These findings suggest that BAs/InS heterostructures have potential applications in photoelectric detectors and laser technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad912f
Tomasz M Rusin
The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF. The calculated LDOS reveals its dependence on both inter-electron distance and energy. The pseudo-LDOS, derived from the two-body contribution to the LDOS, is examined. This term ensures complete LDOS suppression at r = 0, exhibiting a limited spatial extent, and the reasons for its emergence are elucidated. It is shown that for energies exceeding the effective Hartree energy and inter-electron distances beyond the effective Bohr radius, the impact of manybody contributions to the LDOS can be disregarded. The induced LDOS for an electron pair subjected to an attractive contact potential in two dimensions is evaluated. At small distances a from the potential center, a predicted relative difference in LDOS between even and odd state pair reaches approximately 8%. The calculated LDOS is compared with available experimental findings from a two-dimensional electron gas (2DEG). Both exhibit similar oscillation periods; however, the LDOS of the electron pair decays as 1/a3, significantly faster than the 1/a decay observed for free electrons in a 2DEG.
.
{"title":"LDOS of electron pair and the role of the Pauli exclusion principle.","authors":"Tomasz M Rusin","doi":"10.1088/1361-648X/ad912f","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912f","url":null,"abstract":"<p><p>The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF. The calculated LDOS reveals its dependence on both inter-electron distance and energy. The pseudo-LDOS, derived from the two-body contribution to the LDOS, is examined. This term ensures complete LDOS suppression at r = 0, exhibiting a limited spatial extent, and the reasons for its emergence are elucidated. It is shown that for energies exceeding the effective Hartree energy and inter-electron distances beyond the effective Bohr radius, the impact of manybody contributions to the LDOS can be disregarded. The induced LDOS for an electron pair subjected to an attractive contact potential in two dimensions is evaluated. At small distances a from the potential center, a predicted relative difference in LDOS between even and odd state pair reaches approximately 8%. The calculated LDOS is compared with available experimental findings from a two-dimensional electron gas (2DEG). Both exhibit similar oscillation periods; however, the LDOS of the electron pair decays as 1/a3, significantly faster than the 1/a decay observed for free electrons in a 2DEG.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad8a57
M D Croitoru, A I Buzdin
Recently, the use of circularly polarized radiation for on-demand switching between distinct quantum states in a superconducting nanoring exposed to half-quantum magnetic flux has been proposed. However, the effectiveness of this method depends on the system's stability against local variations in the superconducting characteristics of the ring and flux fluctuations. In this study, we utilize numerical simulations based on the time-dependent Ginzburg-Landau equation to evaluate the influence of these inevitable factors on the switching behavior. The results obtained demonstrate that the switching phenomena remain remarkably robust, providing confidence in their experimental observation.
{"title":"Circularly polarized radiation to control the superconducting states: stability analysis.","authors":"M D Croitoru, A I Buzdin","doi":"10.1088/1361-648X/ad8a57","DOIUrl":"10.1088/1361-648X/ad8a57","url":null,"abstract":"<p><p>Recently, the use of circularly polarized radiation for on-demand switching between distinct quantum states in a superconducting nanoring exposed to half-quantum magnetic flux has been proposed. However, the effectiveness of this method depends on the system's stability against local variations in the superconducting characteristics of the ring and flux fluctuations. In this study, we utilize numerical simulations based on the time-dependent Ginzburg-Landau equation to evaluate the influence of these inevitable factors on the switching behavior. The results obtained demonstrate that the switching phenomena remain remarkably robust, providing confidence in their experimental observation.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad912e
Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, Vishnu Kumar Tiwari, Sarita Rajput, C S Yadav, Vivek K Malik, Tulika Maitra, Jayita Nayak
GdSiAl single crystal has been investigated by means of magnetic and magneto-transport measurements and compared with ab-initio density functional theory (DFT) calculations. Significant non-saturating magnetoresistance reaching ∼ 18% at 12T and 2K was observed, alongside the presence of Shubnikov-de Haas oscillations with the fundamental frequencies 22.09T and 77.33T. Shubnikov-de Haas oscillations provide the information about the nontrivial π Berry phase in GdSiAl with the Fermi surface areas of 0.00211 Å-2and 0.00739 Å-2. Angle-dependent magnetoresistance shows anisotropy with θ, exhibiting a maximum at 180°. The magnetic susceptibility data for H ∥ c and H ⊥ c reveals that the magnetic moments of Gd3+ions orders antiferromagnetically below 32K along with an another transition occurs at ∼ 8K, which is consistent with the heat capacity measurements where a distinct λ-shaped anomaly has been observed near antiferromagnetic ordering temperature 32K. The high value of Debye temperature indicates the contribution of acoustic phonons. Electronic structure calculations suggest the existence of nested Fermi surface pockets characterized by nesting wave vectors that closely align with the observed magnetic ordering wave vector. Furthermore, DFT calculations reveal the presence of Weyl nodes in close proximity to the Fermi surface. Our findings from combined experimental and theoretical techniques indicate GdSiAl to be a potential candidate for an antiferromagnetic topological Weyl semimetal.
{"title":"Exploration of quantum oscillation in antiferromagnetic Weyl semimetal GdSiAl.","authors":"Priyanka Meena, Amarjyoti Choudhury, Mohit Mudgal, Sonika Bagga, Vishnu Kumar Tiwari, Sarita Rajput, C S Yadav, Vivek K Malik, Tulika Maitra, Jayita Nayak","doi":"10.1088/1361-648X/ad912e","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912e","url":null,"abstract":"<p><p>GdSiAl single crystal has been investigated by means of magnetic and magneto-transport measurements and compared with ab-initio density functional theory (DFT) calculations. Significant non-saturating magnetoresistance reaching ∼ 18% at 12T and 2K was observed, alongside the presence of Shubnikov-de Haas oscillations with the fundamental frequencies 22.09T and 77.33T. Shubnikov-de Haas oscillations provide the information about the nontrivial π Berry phase in GdSiAl with the Fermi surface areas of 0.00211 Å<sup>-2</sup>and 0.00739 Å<sup>-2</sup>. Angle-dependent magnetoresistance shows anisotropy with θ, exhibiting a maximum at 180<sup>°</sup>. The magnetic susceptibility data for H ∥ c and H ⊥ c reveals that the magnetic moments of Gd<sup>3+</sup>ions orders antiferromagnetically below 32K along with an another transition occurs at ∼ 8K, which is consistent with the heat capacity measurements where a distinct λ-shaped anomaly has been observed near antiferromagnetic ordering temperature 32K. The high value of Debye temperature indicates the contribution of acoustic phonons. Electronic structure calculations suggest the existence of nested Fermi surface pockets characterized by nesting wave vectors that closely align with the observed magnetic ordering wave vector. Furthermore, DFT calculations reveal the presence of Weyl nodes in close proximity to the Fermi surface. Our findings from combined experimental and theoretical techniques indicate GdSiAl to be a potential candidate for an antiferromagnetic topological Weyl semimetal.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the crystalline acentricity leading to the bulk photovoltaic effect (PV) the ferroelectrics (FEs) are considered as important candidates for creation of the PV cells overcoming the Shockley-Queisser limit of semiconductors. However, this research direction still requires more investigations to develop reliable pathways for PV efficiency optimization. The recent progress in the power conversion efficiency of the cells based on the organic-based compounds such as CH3NH3PbI3perovskite attracted much attention of the scientists. Unfortunately, manufacturing of these multilayer cells implies a very complicated technology and very high price of the devices. Under such circumstances investigations of the PV effect in the single crystals of FE perovskites look very promising. In this paper we report that due to the sample illumination with intensive UV light, CH3NH3PbI3single crystal is transformed from the pristine antiFE into the FE state. As a result, the PV effect characteristic of the FEs is realized in this material. The theoretically maximal value of the power conversion efficiency in this case was found to be one of the largest among the single crystals of this class of ferroics. We also considered the ways allowing to increase the PV efficiency of the potential solar cells based on such materials.
铁电体(FEs)因其晶体中心性而具有块状光伏效应(PV),被认为是制造光伏电池的重要候选材料,可克服半导体的肖克利-奎塞极限。然而,这一研究方向仍然需要更多的调查,以便为光伏效率优化开发可靠的途径。最近,基于 CH3NH3PbI3perovskite 等有机化合物的电池在功率转换效率方面取得的进展引起了科学家们的广泛关注。遗憾的是,制造这些多层电池需要非常复杂的技术,而且设备价格昂贵。在这种情况下,研究 FE 包晶石单晶体的光伏效应显得非常有前景。在本文中,我们报告了由于样品受到强烈紫外线的照射,CH3NH3PbI3 单晶从原始的反FE 状态转变为 FE 状态。因此,在这种材料中实现了 FE 所特有的光伏效应。我们发现,在这种情况下,功率转换效率的理论最大值是该类铁氧体单晶中最大的。我们还考虑了如何提高基于此类材料的潜在太阳能电池的光电转换效率。
{"title":"Photovoltaic effect in methylammonium lead triiodide single crystal.","authors":"Volodymyr Kapustianyk, Volodymyr Kolomiets, Yuriy Eliyashevskyy, Olesia Uhrynovych","doi":"10.1088/1361-648X/ad8b90","DOIUrl":"https://doi.org/10.1088/1361-648X/ad8b90","url":null,"abstract":"<p><p>Due to the crystalline acentricity leading to the bulk photovoltaic effect (PV) the ferroelectrics (FEs) are considered as important candidates for creation of the PV cells overcoming the Shockley-Queisser limit of semiconductors. However, this research direction still requires more investigations to develop reliable pathways for PV efficiency optimization. The recent progress in the power conversion efficiency of the cells based on the organic-based compounds such as CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>perovskite attracted much attention of the scientists. Unfortunately, manufacturing of these multilayer cells implies a very complicated technology and very high price of the devices. Under such circumstances investigations of the PV effect in the single crystals of FE perovskites look very promising. In this paper we report that due to the sample illumination with intensive UV light, CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>single crystal is transformed from the pristine antiFE into the FE state. As a result, the PV effect characteristic of the FEs is realized in this material. The theoretically maximal value of the power conversion efficiency in this case was found to be one of the largest among the single crystals of this class of ferroics. We also considered the ways allowing to increase the PV efficiency of the potential solar cells based on such materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 4","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad882d
Angus Heafield, Mark Wilson
Amorphous boron nitride (a-BN) is modelled over a wide range of densities using a relatively simple potential model augmented with site charges. The local topology (defined, for example, through the total nearest-neighbour coordination number), appears near-constant across a wide range of densities and site charges. Furthermore,totalscattering andtotalpair distribution functions also show few changes as a function of either density or site charge. Variation of the site charges directly controls the level of site (rather than topological) disorder meaning that although total pair functions may be near-constant, the underlying partial contributions may be very different. Direct contact is made with both experiment and (more recent) density-functional theory-based modelling work.
{"title":"Topological and site disorder in boron nitride networks.","authors":"Angus Heafield, Mark Wilson","doi":"10.1088/1361-648X/ad882d","DOIUrl":"10.1088/1361-648X/ad882d","url":null,"abstract":"<p><p>Amorphous boron nitride (a-BN) is modelled over a wide range of densities using a relatively simple potential model augmented with site charges. The local topology (defined, for example, through the total nearest-neighbour coordination number), appears near-constant across a wide range of densities and site charges. Furthermore,<i>total</i>scattering and<i>total</i>pair distribution functions also show few changes as a function of either density or site charge. Variation of the site charges directly controls the level of site (rather than topological) disorder meaning that although total pair functions may be near-constant, the underlying partial contributions may be very different. Direct contact is made with both experiment and (more recent) density-functional theory-based modelling work.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad912d
Haim Diamant, Erdal C Oguz
We revisit the equilibrium statistical mechanics of a classical fluid of point-like particles with repulsive power-law pair interactions, focusing on density and energy fluctuations at finite temperature. Such long-range interactions, decaying with inter-particle distance $r$ as $1/r^s$ in $d$ dimensions, are known to fall into two qualitatively different categories. For $sd$ (``weakly" long-range interactions) screening and hyperuniformity do not occur. Using scaling arguments, variational analysis, and Monte Carlo simulations, we find another qualitative distinction. For $sgeq d/2$ the strong repulsion at short distances leads to enhanced small-wavelength density fluctuations, decorrelating particle positions. This prevents indefinitely negative entropy and large energy fluctuations. The distinct behaviors for $sgeq d/2$ and $s
{"title":"Fluids with power-law repulsion: Hyperuniformity and energy fluctuations.","authors":"Haim Diamant, Erdal C Oguz","doi":"10.1088/1361-648X/ad912d","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912d","url":null,"abstract":"<p><p>We revisit the equilibrium statistical mechanics of a classical fluid of point-like particles with repulsive power-law pair interactions, focusing on density and energy fluctuations at finite temperature. Such long-range interactions, decaying with inter-particle distance $r$ as $1/r^s$ in $d$ dimensions, are known to fall into two qualitatively different categories. For $s<d$ (``strongly\" long-range interactions) there are screening of correlations and suppression of large-wavelength density fluctuations (hyperuniformity). These effects eliminate density modes with arbitrarily large energy. For $s>d$ (``weakly\" long-range interactions) screening and hyperuniformity do not occur. Using scaling arguments, variational analysis, and Monte Carlo simulations, we find another qualitative distinction. For $sgeq d/2$ the strong repulsion at short distances leads to enhanced small-wavelength density fluctuations, decorrelating particle positions. This prevents indefinitely negative entropy and large energy fluctuations. The distinct behaviors for $sgeq d/2$ and $s<d/2$ give rise to qualitatively different dependencies of the entropy, heat capacity, and energy fluctuations on temperature and density. We investigate the effect of introducing an upper cutoff distance in the pair-potential. The effect of the cutoff on energy fluctuations is strong for $s<d/2$ and negligible for $s geq d/2$.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}