首页 > 最新文献

Journal of Physics: Condensed Matter最新文献

英文 中文
Phase Behavior and Atomic Dynamics in RbxNa1-x: Insights from Machine Learning Interatomic Potentials based on Ab Initio Molecular Dynamics. RbxNa1-x 中的相行为和原子动力学:基于 Ab Initio 分子动力学的机器学习原子间势的启示。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-08 DOI: 10.1088/1361-648X/ad9071
Ayu Irie, Akihide Koura, Kohei Shimamura, Fuyuki Shimojo

Liquid alkali metal alloys have garnered significant attention because of their potential applications in coolant systems and batteries, driven by the need for environmental conservation and technological development. However, research on these complex systems is limited, necessitating a deeper understanding to ensure their safe and effective utilization. This study presents a comprehensive investigation of the factors that determine the phase diagram of RbxNa1-x. By reproducing the experimental results using the thermodynamic integration method and machine learning interatomic potentials based on ab initio molecular dynamics simulations, we uncovered the delicate balance between the energy and entropy contributions that influence the phase stability of these liquid metal alloys. Further analysis of the liquid phase revealed the crucial roles of volume and atomic mass. Additionally, the coordination numbers of the atoms revealed distinct clustering behaviors, where Na atoms tended to avoid proximity to other Na atoms, whereas Rb atoms exhibited a strong tendency to cluster together. Moreover, the diffusion dynamics further illustrated the asymmetry in the behavior of Rb and Na, with Rb showing increased diffusion at higher concentrations and Na exhibiting higher diffusion at lower concentrations. These findings offer significant insights into the phase stability and the dynamic and structural properties of these complex liquid metal alloys.

液态碱金属合金因其在冷却剂系统和电池中的潜在应用而备受关注,这也是环境保护和技术发展的需要。然而,对这些复杂系统的研究还很有限,因此有必要对其进行更深入的了解,以确保对其进行安全有效的利用。本研究对决定 RbxNa1-x 相图的因素进行了全面研究。通过使用热力学积分法和基于原子内分子动力学模拟的机器学习原子间势重现实验结果,我们揭示了影响这些液态金属合金相稳定性的能量和熵贡献之间的微妙平衡。对液相的进一步分析揭示了体积和原子质量的关键作用。此外,原子的配位数显示了不同的聚类行为,Na 原子倾向于避免靠近其他 Na 原子,而 Rb 原子则表现出强烈的聚类倾向。此外,扩散动力学进一步说明了 Rb 和 Na 行为的不对称性,Rb 在浓度较高时扩散量增大,而 Na 在浓度较低时扩散量增大。这些发现为了解这些复杂液态金属合金的相稳定性以及动态和结构特性提供了重要启示。
{"title":"Phase Behavior and Atomic Dynamics in Rb<sub><i>x</i></sub>Na<sub>1-<i>x</i></sub>: Insights from Machine Learning Interatomic Potentials based on Ab Initio Molecular Dynamics.","authors":"Ayu Irie, Akihide Koura, Kohei Shimamura, Fuyuki Shimojo","doi":"10.1088/1361-648X/ad9071","DOIUrl":"https://doi.org/10.1088/1361-648X/ad9071","url":null,"abstract":"<p><p>Liquid alkali metal alloys have garnered significant attention because of their potential applications in coolant systems and batteries, driven by the need for environmental conservation and technological development. However, research on these complex systems is limited, necessitating a deeper understanding to ensure their safe and effective utilization. This study presents a comprehensive investigation of the factors that determine the phase diagram of Rb<sub><i>x</i></sub>Na<sub>1-<i>x</i></sub>. By reproducing the experimental results using the thermodynamic integration method and machine learning interatomic potentials based on ab initio molecular dynamics simulations, we uncovered the delicate balance between the energy and entropy contributions that influence the phase stability of these liquid metal alloys. Further analysis of the liquid phase revealed the crucial roles of volume and atomic mass. Additionally, the coordination numbers of the atoms revealed distinct clustering behaviors, where Na atoms tended to avoid proximity to other Na atoms, whereas Rb atoms exhibited a strong tendency to cluster together. Moreover, the diffusion dynamics further illustrated the asymmetry in the behavior of Rb and Na, with Rb showing increased diffusion at higher concentrations and Na exhibiting higher diffusion at lower concentrations. These findings offer significant insights into the phase stability and the dynamic and structural properties of these complex liquid metal alloys.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetically tunable spin-valley-polarized current via anomalous Nernst effect in monolayer of jacutingaite. 通过单层碧玉石中的反常奈恩斯特效应实现电磁可调自旋谷极化电流
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-08 DOI: 10.1088/1361-648X/ad9070
Yaser Hajati, Mohammad Alipourzadeh, Imam Makhfudz, Jamal Berakdar

Monolayer jacutingaite (Pt2HgSe3) exhibits remarkable properties, including significant spin-orbit coupling and a tunable band gap, attributed to its buckled honeycomb geometry and the presence of heavy atoms. In this study, we explore the spin- and valley-dependent anomalous Nernst effect (ANE) in jacutingaite under the influence of a vertical electric field, off-resonance circularly polarized light (OCPL), and an antiferromagnetic exchange field. Our findings, within the low-energy approximation, reveal the emergence of a perfectly spin-polarized ANE with the application of appropriate OCPL and a perfectly valley-polarized ANE under an antiferromagnetic exchange field. Leveraging the robust spin-orbit coupling inherent in monolayer jacutingaite, our study highlights the potential to attain perfectly spin-valley-polarized Nernst currents across a wide range of Fermi energy levels by combining these fields in pairs with a suitable strength. The findings can be used for the development of spin-valley-based optoelectronic devices. .

单层角烛石(Pt2HgSe3)具有显著的性质,包括明显的自旋轨道耦合和可调带隙,这归因于它的蜂窝状几何形状和重金属原子的存在。在这项研究中,我们探讨了在垂直电场、共振圆偏振光(OCPL)和反铁磁交换场的作用下,角烛石中与自旋和山谷有关的反常内斯特效应(ANE)。在低能近似条件下,我们的发现揭示了在适当的 OCPL 作用下出现的完美自旋极化 ANE,以及在反铁磁交换场作用下出现的完美谷极化 ANE。我们的研究利用了单层金刚石固有的强大自旋轨道耦合,通过将这些电场以合适的强度成对组合,突出了在广泛的费米能级范围内实现完美的自旋-谷极化奈恩斯特电流的潜力。这些发现可用于开发基于自旋谷的光电器件。
{"title":"Electromagnetically tunable spin-valley-polarized current via anomalous Nernst effect in monolayer of jacutingaite.","authors":"Yaser Hajati, Mohammad Alipourzadeh, Imam Makhfudz, Jamal Berakdar","doi":"10.1088/1361-648X/ad9070","DOIUrl":"https://doi.org/10.1088/1361-648X/ad9070","url":null,"abstract":"<p><p>Monolayer jacutingaite (Pt2HgSe3) exhibits remarkable properties, including significant spin-orbit coupling and a tunable band gap, attributed to its buckled honeycomb geometry and the presence of heavy atoms. In this study, we explore the spin- and valley-dependent anomalous Nernst effect (ANE) in jacutingaite under the influence of a vertical electric field, off-resonance circularly polarized light (OCPL), and an antiferromagnetic exchange field. Our findings, within the low-energy approximation, reveal the emergence of a perfectly spin-polarized ANE with the application of appropriate OCPL and a perfectly valley-polarized ANE under an antiferromagnetic exchange field. Leveraging the robust spin-orbit coupling inherent in monolayer jacutingaite, our study highlights the potential to attain perfectly spin-valley-polarized Nernst currents across a wide range of Fermi energy levels by combining these fields in pairs with a suitable strength. The findings can be used for the development of spin-valley-based optoelectronic devices.&#xD.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids. 对由截头球和球体组成的微粒复合材料进行布鲁格曼均质化。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-07 DOI: 10.1088/1361-648X/ad899c
Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia

Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.

为浸没在单轴介电环境介质中的截顶球体和截顶球体的去极化二项建立了闭式表达式。 这些去极化对偶性被用来开发布鲁格曼均质化形式主义,以预测由随机分布的截顶球体和球体定向粒子混合物产生的均质复合材料(HCM)的相对介电常数对偶性。与其他均质化形式主义(最著名的是麦克斯韦-加内特形式主义)不同,布鲁格曼形式主义并不局限于含有稀释组成颗粒体积分数的复合材料。具体来说,组成颗粒的形状偏离球形的程度越大,HCM 的各向异性就越大,特别是在中等体积分数的情况下。
{"title":"Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids.","authors":"Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia","doi":"10.1088/1361-648X/ad899c","DOIUrl":"10.1088/1361-648X/ad899c","url":null,"abstract":"<p><p>Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intergrain scattering in polycrystals. 多晶体中的晶间散射。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-04 DOI: 10.1088/1361-648X/ad7dc6
George Edwin Cragg

Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effectiveT-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT. Temperature dependence of the conductivity is also considered for thermal energies much larger than the applied bias, as may be realized in tightly-compressed grains.

利用量子散射理论从第一原理描述了多晶体中晶粒边界的传输,其中明确包括费什巴赫共振,以解释间歇捕获的电子表面态。推导出有效的 $T$ 矩阵,然后用于计算电导率,电导率在临界晶间偏置时会出现击穿和急剧上升。在电子热能 $k_BT$ 远远小于晶间势垒高度 $varphi_b$ 的典型条件下,电导率的形式为 $sigma sim T^{-1/2} e^{-varphi_b/k_BT}$ 。在压缩晶粒中可能会出现的相反情况下,我们也考虑了单晶晶粒电导率与温度和偏置的函数关系。
{"title":"Intergrain scattering in polycrystals.","authors":"George Edwin Cragg","doi":"10.1088/1361-648X/ad7dc6","DOIUrl":"10.1088/1361-648X/ad7dc6","url":null,"abstract":"<p><p>Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effective<i>T</i>-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT. Temperature dependence of the conductivity is also considered for thermal energies much larger than the applied bias, as may be realized in tightly-compressed grains.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field. 圆极化电磁场辐照下石墨烯中受排斥势约束的电子态。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad88c5
O V Kibis, M V Boev, I V Iorsh, V M Kovalev

In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.

在周期性驱动量子系统的弗洛凯理论框架下,研究证明圆极化电磁场对石墨烯的辐照会在斥力势的核心诱导出一个吸引力区域。因此,出现了被斥力势束缚的准静态电子态。本文讨论了石墨烯中的这种场诱导态与通常的电子抛物线色散系统的区别,并探讨了这些态在石墨烯的电子传输和光学光谱中可能的表现形式。
{"title":"Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field.","authors":"O V Kibis, M V Boev, I V Iorsh, V M Kovalev","doi":"10.1088/1361-648X/ad88c5","DOIUrl":"10.1088/1361-648X/ad88c5","url":null,"abstract":"<p><p>In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in understanding and manipulating magnetic and electronic properties of EuM2X2(M= Zn, Cd;X= P, As). 了解和操纵 EuM2X2(M= Zn、Cd;X= P、As)磁性和电子特性的最新进展。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad882b
Xiyu Chen, Shuai Dong, Zhi-Cheng Wang

Over the past five years, significant progress has been made in understanding the magnetism and electronic properties of CaAl2Si2-type EuM2X2(M= Zn, Cd;X= P, As) compounds. Prior theoretical work and experimental studies suggested that EuCd2As2had the potential to host rich topological phases, particularly an ideal magnetic Weyl semimetal state when the spins are polarized along thecaxis. However, this perspective is challenged by recent experiments utilizing samples featuring ultra-low carrier densities, as well as meticulous calculations employing various approaches. Nonetheless, the EuM2X2family still exhibit numerous novel properties that remain to be satisfactorily explained, such as the giant nonlinear anomalous Hall effect and the colossal magnetoresistance effect. Moreover, EuM2X2compounds can be transformed from semiconducting antiferromagnets to metallic ferromagnets by introducing a small number of carriers or applying external pressure, and a further increase in the ferromagnetic transition temperature can be achieved by reducing the unit cell volume. These features make the EuM2X2family a fertile platform for studying the interplay between magnetism and charge transport, and an excellent candidate for applications in spintronics. This paper presents a comprehensive review of the magnetic and transport behaviors of EuM2X2compounds with varying carrier densities, as well as the current insights into these characteristics. An outlook for future research opportunities is also provided.

过去五年来,在了解 CaAl2Si2 型 EuM2X2(M= Zn、Cd;X= P、As)化合物的磁性和电子特性方面取得了重大进展。之前的理论工作和实验研究表明,EuCd2As2 有潜力容纳丰富的拓扑相,特别是当自旋沿轴向极化时的理想磁性韦尔半金属态。然而,最近利用具有超低载流子密度的样品进行的实验以及采用各种方法进行的细致计算都对这一观点提出了挑战。尽管如此,EuM2X2 家族仍然表现出许多新颖的特性,如巨大的非线性反常霍尔效应和巨大的磁阻效应,这些特性仍有待令人满意的解释。此外,通过引入少量载流子或施加外部压力,EuM2X2 化合物可以从半导体反铁磁体转变为金属铁磁体,而通过减小单位晶胞体积可以进一步提高铁磁转变温度。这些特点使 EuM2X2 家族成为研究磁性和电荷传输之间相互作用的肥沃平台,也是自旋电子学应用的绝佳候选材料。本文全面综述了具有不同载流子密度的 EuM2X2 化合物的磁性和传输行为,以及目前对这些特性的见解。本文还对未来的研究机会进行了展望。
{"title":"Recent advances in understanding and manipulating magnetic and electronic properties of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As).","authors":"Xiyu Chen, Shuai Dong, Zhi-Cheng Wang","doi":"10.1088/1361-648X/ad882b","DOIUrl":"10.1088/1361-648X/ad882b","url":null,"abstract":"<p><p>Over the past five years, significant progress has been made in understanding the magnetism and electronic properties of CaAl<sub>2</sub>Si<sub>2</sub>-type Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As) compounds. Prior theoretical work and experimental studies suggested that EuCd<sub>2</sub>As<sub>2</sub>had the potential to host rich topological phases, particularly an ideal magnetic Weyl semimetal state when the spins are polarized along the<i>c</i>axis. However, this perspective is challenged by recent experiments utilizing samples featuring ultra-low carrier densities, as well as meticulous calculations employing various approaches. Nonetheless, the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family still exhibit numerous novel properties that remain to be satisfactorily explained, such as the giant nonlinear anomalous Hall effect and the colossal magnetoresistance effect. Moreover, Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds can be transformed from semiconducting antiferromagnets to metallic ferromagnets by introducing a small number of carriers or applying external pressure, and a further increase in the ferromagnetic transition temperature can be achieved by reducing the unit cell volume. These features make the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family a fertile platform for studying the interplay between magnetism and charge transport, and an excellent candidate for applications in spintronics. This paper presents a comprehensive review of the magnetic and transport behaviors of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds with varying carrier densities, as well as the current insights into these characteristics. An outlook for future research opportunities is also provided.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical insights into off-stoichiometric Zr(x)Ti(1-x)IrSb half-Heusler alloys: a first principle calculations. 非全计量 Zr(x)Ti(1-x)IrSb 半休斯勒合金的理论见解:第一原理计算。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad899b
Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho

This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(x= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the ViennaAb initioSimulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.

本研究从理论上探讨了非计量 Zr_{x}Ti_{1-x}IrSb(x = 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1)化合物的相稳定性、电子和光学特性。通过第一原理计算,我们探索了不同的 Zr 和 Ti 浓度如何调整这些半赫斯勒合金的电子和光学特性。我们使用维也纳 Ab initio 仿真软件包 (VASP) 中的 GGA-PBE 和 Meta-GGA-SCAN 近似方法对结构、光学和电子特性进行了细致的分析。我们还使用 Phonopy 软件包评估了这些化合物的动态稳定性。我们的研究结果表明,这些合金表现出具有可调带隙的半导体行为,而且它们的光学特性在不同成分中表现出显著的差异,尤其是在可见光范围内。这些化合物还表现出强大的动态稳定性,表明它们具有在电子和光电设备中实际应用的潜力。这些结果突出了 Zr_{x}Ti_{1-x}IrSb 合金的多功能性,并彰显了它们在下一代技术中的应用前景。
{"title":"Theoretical insights into off-stoichiometric Zr<sub>(x)</sub>Ti<sub>(1-x)</sub>IrSb half-Heusler alloys: a first principle calculations.","authors":"Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho","doi":"10.1088/1361-648X/ad899b","DOIUrl":"10.1088/1361-648X/ad899b","url":null,"abstract":"<p><p>This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(<i>x</i>= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the Vienna<i>Ab initio</i>Simulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic, optical and thermoelectric behavior of KCuX (X = S, Se, Te) monolayers. KCuX(X = S、Se、Te)单层的电子、光学和热电行为。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad84a8
Neelam Gupta, Shubham Kumar, Shivani Rani, Puja Kumari, Subhasmita Kar, Rajeev Ahuja, Soumya Jyoti Ray

In the past few decades, two-dimensional materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric (TE) properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltzmann transport equation. The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the MLs of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in the visible and ultraviolet regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated at different temperatures of 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Grüneisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15Wm-1K-1and 0.06Wm-1K-1respectively, which is lower than those of recently reported KAgSe (0.26Wm-1K-1at 300 K) and TlCuSe (0.44Wm-1K-1at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.

在过去几十年里,二维(2-D)材料因其出色的电子和热传输特性而受到广泛关注。这些材料在光电探测器、电池电极、热电等许多领域都有有效的应用。在这项工作中,我们借助基于第一原理的计算和半经典的波尔兹-曼输运方程(BTE),计算了 KCuX(X = S、Se、Te)单层材料(MLs)的结构、电子、光学和热电特性。声子色散计算证明了 KCuX(X = S、Se、Te)单层膜的动态稳定性。结果表明,KCuX(X = S、Se、Te)单层是带隙分别为 0.193 eV、0.26 eV 和 1.001 eV 的半导体,因此适合光伏应用。光学分析表明,KCuX(X = S、Se、Te)MLs 的最大吸收峰位于可见光和紫外线(UV)区域,可作为设计先进光电器件的候选材料。此外,我们还计算了 KCuS 和 KCuSe ML 在 300 K、600 K 和 800 K 不同温度下的热电性能,包括 See- beck 系数、电导率、电子热导率、功率因数和优点系数。我们的研究结果表明,KCuS 和 KCuSe 的超低晶格热导率值分别为 0.15 Wm-1K-1 和 0.06 Wm-1K-1,低于最近报道的 KAgSe(300 K 时为 0.26 Wm-1K-1)和 TlCuSe(300 K 时为 0.44 Wm-1K-1),这表明它们的 ZT 值很大。这些材料具有理想的热电和光学特性,因此适合应用于高效热电和光电设备。
{"title":"Electronic, optical and thermoelectric behavior of KCuX (X = S, Se, Te) monolayers.","authors":"Neelam Gupta, Shubham Kumar, Shivani Rani, Puja Kumari, Subhasmita Kar, Rajeev Ahuja, Soumya Jyoti Ray","doi":"10.1088/1361-648X/ad84a8","DOIUrl":"10.1088/1361-648X/ad84a8","url":null,"abstract":"<p><p>In the past few decades, two-dimensional materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric (TE) properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltzmann transport equation. The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the MLs of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in the visible and ultraviolet regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated at different temperatures of 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Grüneisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15Wm-1K-1and 0.06Wm-1K-1respectively, which is lower than those of recently reported KAgSe (0.26Wm-1K-1at 300 K) and TlCuSe (0.44Wm-1K-1at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplet XPS analysis of the Mn 2pfor Mn3O4thin films. Mn3O4 薄膜 Mn 2p 的多重 XPS 分析。
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad8b91
Jade Barreto, Paul S Bagus, Fernando Stavale

In this work, we performed a detailed analysis of the x-ray photoemission spectroscopy (XPS) of the Mn 2ppeak for Mn3O4(001) thin films. This is a challenging task since Mn3O4is composed of two different cations, Mn2+at tetrahedral and Mn3+at octahedral sites, which both contribute to the XPS spectra. The oxide spectra consist of many multiplets arising from the angular momentum coupling of the open Mn 2pand 3dshells, thus increasing the spectrums' complexity. Moreover, the energy spacing and intensities of the different multiplets also reflect the covalent mixing between Mn 3dand O 2pshells. However, we show that a detailed analysis, which provides relevant information about the cations in the oxide structure, is possible. We prepared experimentally different Mn3O4films on Au(111), and their structure was monitored with the diffraction pattern obtained with low-energy electron diffraction. The Mn 2pspectra were fit, guided by cluster model theoretical predictions, and checked for films prepared at different oxygen partial pressures. Therefore, we could observe the Mn2+and Mn3+cations' relative concentration in the Mn 2pmains peaks.

在这项工作中,我们对 Mn3O4(001)薄膜的 Mn 2p 峰的 X 射线光发射光谱(XPS)进行了详细分析。这是一项具有挑战性的任务,因为 Mn3O4 由两种不同的阳离子组成,即位于四面体位点的 Mn2+和位于八面体位点的 Mn3+,它们都会对 XPS 光谱产生影响。氧化物光谱由开放的 Mn 2p 和 3d 壳的角动量耦合产生的许多多重子串组成,从而增加了光谱的复杂性。此外,不同多重子的能量间隔和强度也反映了锰 3d 和氧 2p 壳之间的共价混合。不过,我们的研究表明,进行详细分析并提供氧化物结构中阳离子的相关信息是可能的。我们通过实验在 Au(111) 上制备了不同的 Mn3O4 薄膜,并利用低能电子衍射 (LEED) 获得的衍射图样对其结构进行了监测。在簇模型理论预测的指导下,我们拟合了 Mn 2p 光谱,并检查了在不同氧分压下制备的薄膜。因此,我们可以观察到 Mn 2p 主峰中 Mn2+ 和 Mn3+ 阳离子的相对浓度。
{"title":"Multiplet XPS analysis of the Mn 2<i>p</i>for Mn<sub>3</sub>O<sub>4</sub>thin films.","authors":"Jade Barreto, Paul S Bagus, Fernando Stavale","doi":"10.1088/1361-648X/ad8b91","DOIUrl":"10.1088/1361-648X/ad8b91","url":null,"abstract":"<p><p>In this work, we performed a detailed analysis of the x-ray photoemission spectroscopy (XPS) of the Mn 2<i>p</i>peak for Mn<sub>3</sub>O<sub>4</sub>(001) thin films. This is a challenging task since Mn<sub>3</sub>O<sub>4</sub>is composed of two different cations, Mn<sup>2+</sup>at tetrahedral and Mn<sup>3+</sup>at octahedral sites, which both contribute to the XPS spectra. The oxide spectra consist of many multiplets arising from the angular momentum coupling of the open Mn 2<i>p</i>and 3<i>d</i>shells, thus increasing the spectrums' complexity. Moreover, the energy spacing and intensities of the different multiplets also reflect the covalent mixing between Mn 3<i>d</i>and O 2<i>p</i>shells. However, we show that a detailed analysis, which provides relevant information about the cations in the oxide structure, is possible. We prepared experimentally different Mn<sub>3</sub>O<sub>4</sub>films on Au(111), and their structure was monitored with the diffraction pattern obtained with low-energy electron diffraction. The Mn 2<i>p</i>spectra were fit, guided by cluster model theoretical predictions, and checked for films prepared at different oxygen partial pressures. Therefore, we could observe the Mn<sup>2+</sup>and Mn<sup>3+</sup>cations' relative concentration in the Mn 2<i>p</i>mains peaks.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultralow magnetic susceptibility in pure and Fe(Bi)-doped Au-Pt alloys improved by structural strain regulation. 通过结构应变调节改善纯金和掺铁(铋)金铂合金的超低磁感应强度
IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-11-01 DOI: 10.1088/1361-648X/ad8ab8
Jun-Tao Ma, Ye-Lei Xiao, Butian Zhang, Shun Wang, Ze-Bing Zhou, Hua-Hua Fu

Designing and manufacturing multi-component alloy samples with ultralow magnetic susceptibilityχ(<10-6cm3mol-1) is crucial for producing high-quality test masses to successfully detect gravitational wave in the LISA and TianQin projects. Previous research has idenfified AuPt alloys as a potential candidate for test masses, capable of achieving ultralow magnetic susceptibility that meets the requirements from both theoretical and experimental perspectives. In this study, we discover that the structural strain regulation (i.e. tensile and stress) can effectively optimize and further reduce the ultralow magnetic susceptibility of AuPt allpys, while fully understanding their underlying physical mechanisms. More importantly, even when doped with trace elements such as Fe or Bi impurity, strain regulation can still effectively reduce the magnetic susceptibility of the doped AuPt alloy to the desired range. Our theoretical calculations also reveal that, when the strain ratioηis controlled within in a relatively small range (<2.0%), the regulaton effect on the ultralow magnetic susceptibilities of pure or doped-AuPt alloys remains significant. This property is beneficial for achieving ultralow or even near-zero magnetic susceptibility in real AuPt alloy samples.

设计和制造具有超低磁感应强度 χ (
{"title":"Ultralow magnetic susceptibility in pure and Fe(Bi)-doped Au-Pt alloys improved by structural strain regulation.","authors":"Jun-Tao Ma, Ye-Lei Xiao, Butian Zhang, Shun Wang, Ze-Bing Zhou, Hua-Hua Fu","doi":"10.1088/1361-648X/ad8ab8","DOIUrl":"10.1088/1361-648X/ad8ab8","url":null,"abstract":"<p><p>Designing and manufacturing multi-component alloy samples with ultralow magnetic susceptibility<i>χ</i>(<10<sup>-6</sup>cm<sup>3</sup>mol<sup>-1</sup>) is crucial for producing high-quality test masses to successfully detect gravitational wave in the LISA and TianQin projects. Previous research has idenfified AuPt alloys as a potential candidate for test masses, capable of achieving ultralow magnetic susceptibility that meets the requirements from both theoretical and experimental perspectives. In this study, we discover that the structural strain regulation (i.e. tensile and stress) can effectively optimize and further reduce the ultralow magnetic susceptibility of AuPt allpys, while fully understanding their underlying physical mechanisms. More importantly, even when doped with trace elements such as Fe or Bi impurity, strain regulation can still effectively reduce the magnetic susceptibility of the doped AuPt alloy to the desired range. Our theoretical calculations also reveal that, when the strain ratio<i>η</i>is controlled within in a relatively small range (<2.0%), the regulaton effect on the ultralow magnetic susceptibilities of pure or doped-AuPt alloys remains significant. This property is beneficial for achieving ultralow or even near-zero magnetic susceptibility in real AuPt alloy samples.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics: Condensed Matter
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1