首页 > 最新文献

Journal of Physics D: Applied Physics最新文献

英文 中文
Multi-wavelength optoelectronic synapse based on MoS2/WS2 van der waals heterostructures 基于 MoS2/WS2 范德华异质结构的多波长光电突触
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-15 DOI: 10.1088/1361-6463/ad77df
Yadong Qiao, Fadi Wang, Wei Guo, Yuhang Wang and Fengping Wang
The utilization of two-dimensional van der waals heterostructures in optoelectronic synapses allows for the integration of information processing and memory, thereby providing novel operating platforms for simulating the perceptual visual systems and developing the neuromorphic computing systems due to its contactless, highly efficient and parallel computing. Herein, we have constructed a straightforward MoS2/WS2 heterostructure optoelectronic synapse and examined its capacity to imitate synaptic behaviors under optical stimulus. The MoS2/WS2 device demonstrated several synaptic functions, such as the excitatory postsynaptic current, short-term plasticity, long-term plasticity, pairs-pulse facilitation and ‘learning-experience’ behavior. Moreover, the MoS2/WS2 synaptic device can achieve a wide range of photo response wavelengths, spanning from UV to visible light, as well as the conversion from short-term plasticity to long-term plasticity. Furthermore, light-induced charge transfer due to adsorption and desorption of oxygen molecules in MoS2/WS2 heterostructure can be used to explain its working mechanism. Additionally, the synaptic plasticity of MoS2/WS2 device can be controlled by adjusting the duration, power and number of the optical pulses, which renders the MoS2/WS2-based optoelectronic synaptic device extremely favorable for implementation in the perceptual visual system.
在光电突触中利用二维范德华异质结构可以实现信息处理和记忆的整合,从而为模拟感知视觉系统和开发神经形态计算系统提供新颖的操作平台,因为它具有非接触、高效和并行计算的特点。在此,我们构建了一个简单的 MoS2/WS2 异质结构光电突触,并研究了其在光刺激下模仿突触行为的能力。MoS2/WS2 器件展示了多种突触功能,如兴奋性突触后电流、短期可塑性、长期可塑性、成对脉冲促进和 "学习-体验 "行为。此外,MoS2/WS2 突触装置可实现从紫外线到可见光的多种光响应波长,以及从短期可塑性到长期可塑性的转换。此外,MoS2/WS2 异质结构中氧分子的吸附和解吸导致的光诱导电荷转移可用于解释其工作机制。此外,MoS2/WS2 器件的突触可塑性可以通过调节光脉冲的持续时间、功率和数量来控制,这使得基于 MoS2/WS2 的光电突触器件非常适合在感知视觉系统中应用。
{"title":"Multi-wavelength optoelectronic synapse based on MoS2/WS2 van der waals heterostructures","authors":"Yadong Qiao, Fadi Wang, Wei Guo, Yuhang Wang and Fengping Wang","doi":"10.1088/1361-6463/ad77df","DOIUrl":"https://doi.org/10.1088/1361-6463/ad77df","url":null,"abstract":"The utilization of two-dimensional van der waals heterostructures in optoelectronic synapses allows for the integration of information processing and memory, thereby providing novel operating platforms for simulating the perceptual visual systems and developing the neuromorphic computing systems due to its contactless, highly efficient and parallel computing. Herein, we have constructed a straightforward MoS2/WS2 heterostructure optoelectronic synapse and examined its capacity to imitate synaptic behaviors under optical stimulus. The MoS2/WS2 device demonstrated several synaptic functions, such as the excitatory postsynaptic current, short-term plasticity, long-term plasticity, pairs-pulse facilitation and ‘learning-experience’ behavior. Moreover, the MoS2/WS2 synaptic device can achieve a wide range of photo response wavelengths, spanning from UV to visible light, as well as the conversion from short-term plasticity to long-term plasticity. Furthermore, light-induced charge transfer due to adsorption and desorption of oxygen molecules in MoS2/WS2 heterostructure can be used to explain its working mechanism. Additionally, the synaptic plasticity of MoS2/WS2 device can be controlled by adjusting the duration, power and number of the optical pulses, which renders the MoS2/WS2-based optoelectronic synaptic device extremely favorable for implementation in the perceptual visual system.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"54 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-itinerant-type ferromagnetism and the magnetocaloric response of quinary all-d-metal ribbon: Ni35Mn34.5Co14Fe1Ti15.5 二元全 D 金属带的非铁磁性和磁ocaloric 反应:Ni35Mn34.5Co14Fe1Ti15.5
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-12 DOI: 10.1088/1361-6463/ad7154
Sourav Mandal and Tapan Kumar Nath
Most of the ferromagnetic shape memory (FSM) Heusler alloys, which are primarily studied in bulk form in the literature, exhibit p-d type hybridization. This study conducts a thorough multidirectional investigation of a strongly d-d hybridized quinary melt-spun annealed ribbon having the composition Ni35Mn34.5Co14Fe1Ti15.5 (NMCFT-1). This off-stoichiometric, polycrystalline FSM, fabricated using the melt-spin technique, exhibits a highly textured microstructure, double magnetic transitions and super-mechanical features mitigating brittleness. It crystallizes in a perfectly B2-type disorder austenite (Pm-3m, space group number 221) phase at room temperature. It has been hypothesized that geometric frustration is the causative factor for this disorder. Curie temperature of austenite phase ( ) between paramagnetic → ferromagnetic state is found to be ∼364.57 K, whereas martensite transformation temperature from weak magnetic martensite state to ferromagnetic austenite state is ∼174.74 K. Calculated moments (effective moment, = 5.12 ; low-temperature saturation moment, (or ) = 5.08 ) yield a Rhodes–Wohlfarth ratio of ∼1, indicating the existence of the non-itinerant nature of 3d electrons, whereas the ferromagnetism and the linear or non-linear dependency of ) on T2 around indicates the presence of long-range Rudermann–Kittel–Kasuya–Yosida-type interaction. More importantly, the maximum magnetic entropy change ( ) obtained across the first-order magneto-structural transition and second-order magnetic transition are +18.2 J·kg−1K−1 at 6 T and −8.8 J·kg−1K−1 at 2 T, respectively, while a very high working temperature span (ΔTFWHM) of 28.561 K and 6.922 K are found for the same condition. The sample exhibits a significant relative cooling power of 402.98 J·kg−1 at a magnetic field of 6 T across the FOMT and 60.19 J·kg−1 at a 2 T field across the SOMT, respectively, along with excellent mechanical features such as a Vickers hardness (HV) of 411.80 HV (∼4.04 GPa). Meanwhile, Chen’s super hard model fails to predict the ribbon’s HV value, but Miao’s hard model does, indicating that the ribbon is hard but not super hard. It also paves the way for additional investigation into innovative FSMs like this.
大多数铁磁形状记忆 (FSM) Heusler 合金(文献中主要研究的是块状合金)都表现出 p-d 型杂化。本研究对成分为 Ni35Mn34.5Co14Fe1Ti15.5(NMCFT-1)的强 d-d 型杂化二元熔纺退火带进行了深入的多向研究。这种采用熔融纺丝技术制造的非均质多晶 FSM 具有高度纹理化的微观结构、双磁转变和可减轻脆性的超机械特性。它在室温下完全以 B2 型无序奥氏体(Pm-3m,空间群编号 221)相结晶。据推测,几何挫折是造成这种无序的原因。顺磁态→铁磁态之间奥氏体相( )的居里温度为 ∼364.57 K,而从弱磁马氏体态到铁磁奥氏体态的马氏体转变温度为 ∼174.74 K。08 )得出的罗兹-沃尔法特比为 ∼1,表明 3d 电子存在非巡回性,而铁磁性以及 )对 T2 左右的线性或非线性依赖性表明存在长程鲁德曼-基特尔-卡苏亚-尤西达型相互作用。更重要的是,在一阶磁性结构转变和二阶磁性转变过程中获得的最大磁熵变化( )分别为 6 T 时的 +18.2 J-kg-1K-1 和 2 T 时的 -8.8 J-kg-1K-1,而在相同条件下发现的极高工作温度跨度(ΔTFWHM)分别为 28.561 K 和 6.922 K。该样品在 6 T 磁场穿越 FOMT 时的相对冷却功率分别为 402.98 J-kg-1,在 2 T 磁场穿越 SOMT 时的相对冷却功率分别为 60.19 J-kg-1,同时还具有出色的机械特性,如维氏硬度(HV)为 411.80 HV(∼4.04 GPa)。同时,Chen 的超硬模型无法预测色带的 HV 值,而 Miao 的硬模型却能预测,这表明色带很硬,但不是超硬。这也为进一步研究类似的创新性 FSM 铺平了道路。
{"title":"Non-itinerant-type ferromagnetism and the magnetocaloric response of quinary all-d-metal ribbon: Ni35Mn34.5Co14Fe1Ti15.5","authors":"Sourav Mandal and Tapan Kumar Nath","doi":"10.1088/1361-6463/ad7154","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7154","url":null,"abstract":"Most of the ferromagnetic shape memory (FSM) Heusler alloys, which are primarily studied in bulk form in the literature, exhibit p-d type hybridization. This study conducts a thorough multidirectional investigation of a strongly d-d hybridized quinary melt-spun annealed ribbon having the composition Ni35Mn34.5Co14Fe1Ti15.5 (NMCFT-1). This off-stoichiometric, polycrystalline FSM, fabricated using the melt-spin technique, exhibits a highly textured microstructure, double magnetic transitions and super-mechanical features mitigating brittleness. It crystallizes in a perfectly B2-type disorder austenite (Pm-3m, space group number 221) phase at room temperature. It has been hypothesized that geometric frustration is the causative factor for this disorder. Curie temperature of austenite phase ( ) between paramagnetic → ferromagnetic state is found to be ∼364.57 K, whereas martensite transformation temperature from weak magnetic martensite state to ferromagnetic austenite state is ∼174.74 K. Calculated moments (effective moment, = 5.12 ; low-temperature saturation moment, (or ) = 5.08 ) yield a Rhodes–Wohlfarth ratio of ∼1, indicating the existence of the non-itinerant nature of 3d electrons, whereas the ferromagnetism and the linear or non-linear dependency of ) on T2 around indicates the presence of long-range Rudermann–Kittel–Kasuya–Yosida-type interaction. More importantly, the maximum magnetic entropy change ( ) obtained across the first-order magneto-structural transition and second-order magnetic transition are +18.2 J·kg−1K−1 at 6 T and −8.8 J·kg−1K−1 at 2 T, respectively, while a very high working temperature span (ΔTFWHM) of 28.561 K and 6.922 K are found for the same condition. The sample exhibits a significant relative cooling power of 402.98 J·kg−1 at a magnetic field of 6 T across the FOMT and 60.19 J·kg−1 at a 2 T field across the SOMT, respectively, along with excellent mechanical features such as a Vickers hardness (HV) of 411.80 HV (∼4.04 GPa). Meanwhile, Chen’s super hard model fails to predict the ribbon’s HV value, but Miao’s hard model does, indicating that the ribbon is hard but not super hard. It also paves the way for additional investigation into innovative FSMs like this.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"45 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in optical recording techniques for non-invasive monitoring of electrophysiological signals 用于无创监测电生理信号的光学记录技术的进展
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-12 DOI: 10.1088/1361-6463/ad75a0
Jiaxin Li, He Ding, Yongtian Wang and Jian Yang
The study of electrophysiological signals is crucial for understanding neural functions and physiological processes. Electrophysiological recordings offer direct insights into electrical activity across cellular membranes, aiding in diagnosing and treating neurological disorders. Different from the conventional recording method based on electrical signals and the genetically encoded with fluorescent proteins methods, this review explores label-free mechanisms for optically recording electrophysiological signals: electrochromic materials, surface plasmon resonance (SPR) responses, quantum dots (QDs), and semiconductor-based optoelectronic sensors. The sophistication and limitations of each technology have been discussed, providing insights into potential future directions in this field. Electrochromic materials change optical properties through redox reactions induced by voltages, offering high signal-to-noise ratios and rapid response capabilities. However, these materials have limited biocompatibility and stability. SPR technology modulates signals in response to local changes in electrical potential, achieving high sensitivity. However, challenges such as scattering noise and electro-optic effects still need to be addressed. QDs utilize their photoluminescent properties for high sensitivity and resolution, but concerns about connection efficiency and biocompatibility remain. Semiconductor optoelectronic technologies offer rapid response times, wireless functionality, and integration potential. However, improvements are needed in terms of toxicity, compatibility with biological tissues, and signal amplification and processing. These methods have advantages in neuroscience, medical diagnostics, and biological research, including rapid response, high sensitivity, and label-free monitoring. By combining different optical recording techniques, the performance of voltage imaging can be optimized. In conclusion, interdisciplinary collaboration and innovation are essential for advancing the optical recording of electrophysiological signals and developing diagnostic and therapeutic approaches.
电生理信号研究对于了解神经功能和生理过程至关重要。电生理记录可直接了解细胞膜上的电活动,有助于诊断和治疗神经系统疾病。与基于电信号的传统记录方法和荧光蛋白基因编码方法不同,本综述探讨了光学记录电生理信号的无标记机制:电致变色材料、表面等离子体共振(SPR)反应、量子点(QDs)和基于半导体的光电传感器。我们讨论了每种技术的先进性和局限性,为该领域未来的潜在发展方向提供了启示。电致变色材料通过电压诱导的氧化还原反应改变光学特性,具有高信噪比和快速反应能力。然而,这些材料的生物相容性和稳定性有限。SPR 技术可根据局部电位的变化调节信号,从而实现高灵敏度。然而,散射噪声和电光效应等挑战仍有待解决。QD 利用其光致发光特性实现高灵敏度和高分辨率,但连接效率和生物相容性仍令人担忧。半导体光电技术具有快速响应时间、无线功能和集成潜力。然而,在毒性、与生物组织的兼容性以及信号放大和处理方面还需要改进。这些方法在神经科学、医疗诊断和生物研究方面具有快速反应、高灵敏度和无标记监测等优势。通过结合不同的光学记录技术,可以优化电压成像的性能。总之,跨学科合作与创新对于推进电生理信号的光学记录以及开发诊断和治疗方法至关重要。
{"title":"Advances in optical recording techniques for non-invasive monitoring of electrophysiological signals","authors":"Jiaxin Li, He Ding, Yongtian Wang and Jian Yang","doi":"10.1088/1361-6463/ad75a0","DOIUrl":"https://doi.org/10.1088/1361-6463/ad75a0","url":null,"abstract":"The study of electrophysiological signals is crucial for understanding neural functions and physiological processes. Electrophysiological recordings offer direct insights into electrical activity across cellular membranes, aiding in diagnosing and treating neurological disorders. Different from the conventional recording method based on electrical signals and the genetically encoded with fluorescent proteins methods, this review explores label-free mechanisms for optically recording electrophysiological signals: electrochromic materials, surface plasmon resonance (SPR) responses, quantum dots (QDs), and semiconductor-based optoelectronic sensors. The sophistication and limitations of each technology have been discussed, providing insights into potential future directions in this field. Electrochromic materials change optical properties through redox reactions induced by voltages, offering high signal-to-noise ratios and rapid response capabilities. However, these materials have limited biocompatibility and stability. SPR technology modulates signals in response to local changes in electrical potential, achieving high sensitivity. However, challenges such as scattering noise and electro-optic effects still need to be addressed. QDs utilize their photoluminescent properties for high sensitivity and resolution, but concerns about connection efficiency and biocompatibility remain. Semiconductor optoelectronic technologies offer rapid response times, wireless functionality, and integration potential. However, improvements are needed in terms of toxicity, compatibility with biological tissues, and signal amplification and processing. These methods have advantages in neuroscience, medical diagnostics, and biological research, including rapid response, high sensitivity, and label-free monitoring. By combining different optical recording techniques, the performance of voltage imaging can be optimized. In conclusion, interdisciplinary collaboration and innovation are essential for advancing the optical recording of electrophysiological signals and developing diagnostic and therapeutic approaches.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced thermoelectric performance of AgCuTe-doped polycrystalline SnSe by lattice plainification 通过晶格平原化提高掺银铜碲多晶硒的热电性能
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad76be
Yajing Wang, Chao Wang, Xinxin Wang, Shengqiang Cui, Min Hao, Chunhui Wang, Xudong Huang and Gui Yang
Polycrystalline SnSe, renowned for its environmental sustainability, holds promise as a significant thermoelectric material, attracting considerable research attention. This study focuses on the thermoelectric properties of p-type polycrystalline SnSe doped with silver copper telluride (AgCuTe). Our experimental results conclusively show that the decomposition products of AgCuTe not only fill Sn vacancies but also act as acceptors, thereby introducing additional hole carriers. This leads to a notable improvement in both carrier mobility and concentration. Importantly, the thermal conductivity of the doped samples remains largely unchanged, as the lattice flattening strategy significantly boosts electrical performance without affecting lattice thermal conductivity. Ultimately, the doped sample Sn0.97Se-0.5%AgCuTe resulted in a power factor of 6.2 mW mK−1 and a peak ZT value of 1.4 at 798 K, representing a 109% improvement in ZT value. All samples exhibits superior stability and reproducibility, emphasizing its reliability for practical applications.
多晶硒化锡以其环境可持续性而闻名,有望成为一种重要的热电材料,吸引了大量研究人员的关注。本研究的重点是掺杂了碲化银(AgCuTe)的 p 型多晶 SnSe 的热电特性。我们的实验结果确凿地表明,AgCuTe 的分解产物不仅填补了 Sn 的空位,而且还充当了受体,从而引入了额外的空穴载流子。这显著提高了载流子的迁移率和浓度。重要的是,掺杂样品的热导率基本保持不变,因为晶格扁平化策略在不影响晶格热导率的情况下显著提高了电性能。最终,掺杂样品 Sn0.97Se-0.5%AgCuTe 的功率因数达到 6.2 mW mK-1,798 K 时的 ZT 峰值为 1.4,ZT 值提高了 109%。所有样品都表现出卓越的稳定性和可重复性,突出了其在实际应用中的可靠性。
{"title":"Enhanced thermoelectric performance of AgCuTe-doped polycrystalline SnSe by lattice plainification","authors":"Yajing Wang, Chao Wang, Xinxin Wang, Shengqiang Cui, Min Hao, Chunhui Wang, Xudong Huang and Gui Yang","doi":"10.1088/1361-6463/ad76be","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76be","url":null,"abstract":"Polycrystalline SnSe, renowned for its environmental sustainability, holds promise as a significant thermoelectric material, attracting considerable research attention. This study focuses on the thermoelectric properties of p-type polycrystalline SnSe doped with silver copper telluride (AgCuTe). Our experimental results conclusively show that the decomposition products of AgCuTe not only fill Sn vacancies but also act as acceptors, thereby introducing additional hole carriers. This leads to a notable improvement in both carrier mobility and concentration. Importantly, the thermal conductivity of the doped samples remains largely unchanged, as the lattice flattening strategy significantly boosts electrical performance without affecting lattice thermal conductivity. Ultimately, the doped sample Sn0.97Se-0.5%AgCuTe resulted in a power factor of 6.2 mW mK−1 and a peak ZT value of 1.4 at 798 K, representing a 109% improvement in ZT value. All samples exhibits superior stability and reproducibility, emphasizing its reliability for practical applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zr doped C24 fullerene as efficient hydrogen storage material: insights from DFT simulations 作为高效储氢材料的掺锆 C24 富勒烯:DFT 模拟的启示
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad75a1
Ajit Kundu, Ankita Jaiswal, Pranoy Ray, Sridhar Sahu and Brahmananda Chakraborty
In this article, we report the hydrogen storage capacity of zirconium (Zr) decorated C24 fullerene using state-of-the-art density functional theory simulations. Our study shows that zirconium, like most other transition metals, tends to bind strongly on the C–C bridge of C24 fullerene with a maximum binding energy of −3.64 eV. Each Zr atom decorated over C24 fullerene can adsorb a maximum of 7H2 molecules with an average adsorption energy of −0.51 eV/H2, leading to a gravimetric density of 7.9 wt%, which is higher than the prescribed target of 6.5 wt% set by United States-Department of Energy. There is a charge transfer from Zr to C atoms in C24 fullerene, which is the primary cause of the binding of Zr with C24 fullerene. H2 molecules are adsorbed over Zr sorption sites via Kubas-type interactions, which include charge donation from the filled s orbitals of hydrogen to the vacant 4d orbital of Zr and subsequent back charge donation to unfilled s* orbital of hydrogen from the filled 4d orbital of Zr. The structural stability of the Zr + C24 system at a high temperature of 500 K is verified using ab-initio molecular dynamics calculations. The high diffusion energy barrier of Zr (2.33 eV) inhibits clustering between the Zr atoms decorated on the C24 fullerene and ensures the system’s practical feasibility as a high-capacity H2 adsorbing system. Therefore, our computational studies confirm that Zr decorated C24 fullerene is stable and can be regarded as a potential candidate for H2 storage systems with optimum adsorption energy range.
在这篇文章中,我们利用最先进的密度泛函理论模拟,报告了锆 (Zr) 装饰 C24 富勒烯的储氢能力。我们的研究表明,锆和其他大多数过渡金属一样,倾向于与 C24 富勒烯的 C-C 桥紧密结合,其最大结合能为 -3.64 eV。装饰在 C24 富勒烯上的每个锆原子最多可吸附 7 个 H2 分子,平均吸附能为 -0.51 eV/H2,从而使重量密度达到 7.9 wt%,高于美国能源部规定的 6.5 wt% 的目标。Zr 与 C24 富勒烯中的 C 原子之间存在电荷转移,这是 Zr 与 C24 富勒烯结合的主要原因。H2 分子通过库巴斯(Kubas)型相互作用吸附在 Zr 吸附位点上,其中包括从氢的填充 s 轨道到 Zr 的空闲 4d 轨道的电荷转移,以及随后从 Zr 的填充 4d 轨道到氢的未填充 s* 轨道的反向电荷转移。通过非原位分子动力学计算,验证了 Zr + C24 体系在 500 K 高温下的结构稳定性。Zr 的高扩散能垒(2.33 eV)抑制了装饰在 C24 富勒烯上的 Zr 原子间的团聚,确保了该体系作为高容量 H2 吸附体系的实际可行性。因此,我们的计算研究证实了 Zr 修饰的 C24 富勒烯是稳定的,可被视为具有最佳吸附能量范围的 H2 储存系统的潜在候选材料。
{"title":"Zr doped C24 fullerene as efficient hydrogen storage material: insights from DFT simulations","authors":"Ajit Kundu, Ankita Jaiswal, Pranoy Ray, Sridhar Sahu and Brahmananda Chakraborty","doi":"10.1088/1361-6463/ad75a1","DOIUrl":"https://doi.org/10.1088/1361-6463/ad75a1","url":null,"abstract":"In this article, we report the hydrogen storage capacity of zirconium (Zr) decorated C24 fullerene using state-of-the-art density functional theory simulations. Our study shows that zirconium, like most other transition metals, tends to bind strongly on the C–C bridge of C24 fullerene with a maximum binding energy of −3.64 eV. Each Zr atom decorated over C24 fullerene can adsorb a maximum of 7H2 molecules with an average adsorption energy of −0.51 eV/H2, leading to a gravimetric density of 7.9 wt%, which is higher than the prescribed target of 6.5 wt% set by United States-Department of Energy. There is a charge transfer from Zr to C atoms in C24 fullerene, which is the primary cause of the binding of Zr with C24 fullerene. H2 molecules are adsorbed over Zr sorption sites via Kubas-type interactions, which include charge donation from the filled s orbitals of hydrogen to the vacant 4d orbital of Zr and subsequent back charge donation to unfilled s* orbital of hydrogen from the filled 4d orbital of Zr. The structural stability of the Zr + C24 system at a high temperature of 500 K is verified using ab-initio molecular dynamics calculations. The high diffusion energy barrier of Zr (2.33 eV) inhibits clustering between the Zr atoms decorated on the C24 fullerene and ensures the system’s practical feasibility as a high-capacity H2 adsorbing system. Therefore, our computational studies confirm that Zr decorated C24 fullerene is stable and can be regarded as a potential candidate for H2 storage systems with optimum adsorption energy range.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"4 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interdigitated resonator based frequency selective rasorber with high selectivity 基于交织谐振器的高选择性频率选择器
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad76b8
Xiaojun Huang, Ke Li, Wei Hou, Yanpei Wang and Yutao Ma
This paper investigates a highly selective frequency selective rasorber (FSR) utilizing interdigitated resonators, characterized by a passband exhibiting low insertion loss (IL) and the introduction of a second-order passband response in the lossless layer enhances selectivity on both sides of the passband. The lossy unit is implemented by inserting interdigitated resonators on an octagonal ring loaded with lumped resistors, while the lossless layer is constructed with a five-layer structure. Simulation results demonstrate a low IL value of 0.78 dB at 3.5 GHz. At vertical incidence, the S21>−3 dB bandwidth ranges from 3.41 to 3.67 GHz, and the S11<−10 dB range spans from 2.2 to 8.2 GHz, obtaining two absorption bands on either side of the passband, with absorption rates exceeding 80%. The operating frequency bands are 1.95–3.27 GHz and 3.8–8.4 GHz. The designed FSR exhibits polarization insensitive. To validate simulation results, a prototype FSR was fabricated and tested, with experimental data aligning with simulation results.
本文研究了一种利用插接谐振器的高选择性频率选择器(FSR),其特点是通带具有低插入损耗(IL),在无损耗层中引入二阶通带响应可增强通带两侧的选择性。有损单元是通过在装有块状电阻器的八角环上插入相互咬合的谐振器来实现的,而无损耗层则采用五层结构。仿真结果表明,在 3.5 GHz 频率下,IL 值低至 0.78 dB。垂直入射时,S21>-3 dB 带宽范围为 3.41 至 3.67 GHz,S11<-10 dB 范围为 2.2 至 8.2 GHz,在通带两侧获得两个吸收带,吸收率超过 80%。工作频带为 1.95-3.27 GHz 和 3.8-8.4 GHz。所设计的 FSR 对极化不敏感。为了验证仿真结果,制作并测试了一个 FSR 原型,实验数据与仿真结果一致。
{"title":"Interdigitated resonator based frequency selective rasorber with high selectivity","authors":"Xiaojun Huang, Ke Li, Wei Hou, Yanpei Wang and Yutao Ma","doi":"10.1088/1361-6463/ad76b8","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76b8","url":null,"abstract":"This paper investigates a highly selective frequency selective rasorber (FSR) utilizing interdigitated resonators, characterized by a passband exhibiting low insertion loss (IL) and the introduction of a second-order passband response in the lossless layer enhances selectivity on both sides of the passband. The lossy unit is implemented by inserting interdigitated resonators on an octagonal ring loaded with lumped resistors, while the lossless layer is constructed with a five-layer structure. Simulation results demonstrate a low IL value of 0.78 dB at 3.5 GHz. At vertical incidence, the S21>−3 dB bandwidth ranges from 3.41 to 3.67 GHz, and the S11<−10 dB range spans from 2.2 to 8.2 GHz, obtaining two absorption bands on either side of the passband, with absorption rates exceeding 80%. The operating frequency bands are 1.95–3.27 GHz and 3.8–8.4 GHz. The designed FSR exhibits polarization insensitive. To validate simulation results, a prototype FSR was fabricated and tested, with experimental data aligning with simulation results.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"59 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the thermal conductivity of graphene nanoplatelet composites with interlayers using a Monte Carlo model 利用蒙特卡洛模型揭示带有夹层的石墨烯纳米平板复合材料的导热性能
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad7473
Chao Fang, Xiaogang Zheng, Jue Liu, Han Du and George J Weng
This paper uses a Monte Carlo method to study the thermal conductivity of graphene nanoplatelet (GNP) composites. Firstly, a large number of GNPs are randomly set in a representative volume element. Then, based on a temperature satisfying the Laplace equation in a matrix, a coated surface (CS) is set up on each GNP surface, and the temperature of the CS and GNP can be obtained by the walk-on-spheres (WoS) method. Finally, the WoS method continues to be applied to calculate the heat flux density of the composite materials, further obtaining the thermal conductivity of the composites. We add the influence of interlayers in random walks. We incorporate the influence of interlayers in the WoS process, and the points that walk onto the interlayer surface have a very low probability of reaching the GNP due to the extremely low thermal conductivity of the interlayer. The calculated results are consistent with the experimental data. The model also studies the effects of the size, orientation, and aggregation of GNPs on the thermal conductivity of composite materials.
本文采用蒙特卡罗方法研究石墨烯纳米片(GNP)复合材料的导热性。首先,在代表性体积元素中随机设置大量 GNP。然后,根据矩阵中满足拉普拉斯方程的温度,在每个 GNP 表面设置一个涂层表面(CS),并通过球上行走(WoS)方法获得 CS 和 GNP 的温度。最后,继续使用 WoS 方法计算复合材料的热通量密度,进一步得到复合材料的热导率。我们在随机漫步中加入了夹层的影响。我们在 WoS 过程中加入了夹层的影响,由于夹层的导热系数极低,因此走到夹层表面的点到达 GNP 的概率非常低。计算结果与实验数据一致。该模型还研究了 GNP 的尺寸、取向和聚集对复合材料热导率的影响。
{"title":"Uncovering the thermal conductivity of graphene nanoplatelet composites with interlayers using a Monte Carlo model","authors":"Chao Fang, Xiaogang Zheng, Jue Liu, Han Du and George J Weng","doi":"10.1088/1361-6463/ad7473","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7473","url":null,"abstract":"This paper uses a Monte Carlo method to study the thermal conductivity of graphene nanoplatelet (GNP) composites. Firstly, a large number of GNPs are randomly set in a representative volume element. Then, based on a temperature satisfying the Laplace equation in a matrix, a coated surface (CS) is set up on each GNP surface, and the temperature of the CS and GNP can be obtained by the walk-on-spheres (WoS) method. Finally, the WoS method continues to be applied to calculate the heat flux density of the composite materials, further obtaining the thermal conductivity of the composites. We add the influence of interlayers in random walks. We incorporate the influence of interlayers in the WoS process, and the points that walk onto the interlayer surface have a very low probability of reaching the GNP due to the extremely low thermal conductivity of the interlayer. The calculated results are consistent with the experimental data. The model also studies the effects of the size, orientation, and aggregation of GNPs on the thermal conductivity of composite materials.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On adhesive contact between spheres with rolling adhesion 关于具有滚动粘附力的球体之间的粘附接触
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad7038
Zhao-Yang Ma, Jin-Shan He, Gan-Yun Huang and Liao-Liang Ke
The tendency of relative motion via rolling between contacting objects exists in various aspects of industry and nature because, in many practical situations, forces and moments may be simultaneously induced at the contacting interfaces. Due to the presence of adhesion, which may be prominent on small scales, research on contacts with the tendency to roll, termed herein as rolling adhesion, is very limited. In the present work, a novel double-Hertz model is developed for adhesive contact between spherical objects subjected to the combined action of normal forces and moments. The results from the new model agree well with available numerical simulations and experimental results. It has been demonstrated that the contact behavior with the effect of rolling adhesion seemingly resembles that of conventional adhesive contact, but the applied moment may impact the pull-off force and may even induce novel contact instability if large enough. The resistance moment at the interface has also been obtained analytically, which is proportional to adhesion hysteresis and contact area. Given the applicability to the full range of the Tabor parameter and nonsingular stresses involved, these results might shed light on adhesive contacts with rolling adhesion and help to characterize them better than existent models.
接触物体之间通过滚动产生相对运动的趋势存在于工业和自然界的各个方面,因为在许多实际情况下,接触界面可能会同时产生力和力矩。由于粘附力的存在,它在小尺度上可能很突出,因此对具有滚动趋势的接触(在此称为滚动粘附力)的研究非常有限。本研究针对受到法向力和力矩共同作用的球形物体之间的粘附接触,建立了一个新颖的双赫兹模型。新模型的结果与现有的数值模拟和实验结果非常吻合。研究表明,滚动粘附效应的接触行为似乎与传统的粘附接触行为相似,但施加的力矩可能会影响拉拔力,如果力矩足够大,甚至会诱发新的接触不稳定性。界面上的阻力矩也是通过分析得到的,它与粘滞和接触面积成正比。鉴于这些结果适用于全部范围的 Tabor 参数和所涉及的非正弦应力,因此可能会对具有滚动粘附力的粘合接触有所启发,并有助于比现有模型更好地描述其特征。
{"title":"On adhesive contact between spheres with rolling adhesion","authors":"Zhao-Yang Ma, Jin-Shan He, Gan-Yun Huang and Liao-Liang Ke","doi":"10.1088/1361-6463/ad7038","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7038","url":null,"abstract":"The tendency of relative motion via rolling between contacting objects exists in various aspects of industry and nature because, in many practical situations, forces and moments may be simultaneously induced at the contacting interfaces. Due to the presence of adhesion, which may be prominent on small scales, research on contacts with the tendency to roll, termed herein as rolling adhesion, is very limited. In the present work, a novel double-Hertz model is developed for adhesive contact between spherical objects subjected to the combined action of normal forces and moments. The results from the new model agree well with available numerical simulations and experimental results. It has been demonstrated that the contact behavior with the effect of rolling adhesion seemingly resembles that of conventional adhesive contact, but the applied moment may impact the pull-off force and may even induce novel contact instability if large enough. The resistance moment at the interface has also been obtained analytically, which is proportional to adhesion hysteresis and contact area. Given the applicability to the full range of the Tabor parameter and nonsingular stresses involved, these results might shed light on adhesive contacts with rolling adhesion and help to characterize them better than existent models.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Etching of Ga2O3: an important process for device manufacturing Ga2O3 的蚀刻:设备制造的重要工艺
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad773d
Zhaoying Xi, Zeng Liu, Junpeng Fang, Ang Bian, Shaohui Zhang, Jia-Han Zhang, Lei Li, Yufeng Guo and Weihua Tang
Etching plays a key role in processing and manufacturing electronic and optoelectronic devices. For ultra-wide bandgap semiconductor gallium oxide (Ga2O3), its etching investigations and evolution mechanism are still at the earlier stage, and some more research gumption should be invested. In this review, we make a summary on the etching of Ga2O3, including dry (plasma) etching, wet chemical etching, and photoelectrochemical etching, and discuss the etching results, existing problems, and feasible solutions, in order to provide guidance and advises for furtherly developing the Ga2O3 etching and Ga2O3-based electronic and optoelectronic devices.
蚀刻在电子和光电器件的加工制造中起着关键作用。对于超宽带隙半导体氧化镓(Ga2O3)而言,其蚀刻研究和演化机制仍处于早期阶段,需要投入更多的研究精力。在这篇综述中,我们对 Ga2O3 的刻蚀进行了总结,包括干法(等离子体)刻蚀、湿法化学刻蚀和光电化学刻蚀,并讨论了刻蚀结果、存在的问题和可行的解决方案,以期为进一步发展 Ga2O3 刻蚀和基于 Ga2O3 的电子和光电器件提供指导和建议。
{"title":"Etching of Ga2O3: an important process for device manufacturing","authors":"Zhaoying Xi, Zeng Liu, Junpeng Fang, Ang Bian, Shaohui Zhang, Jia-Han Zhang, Lei Li, Yufeng Guo and Weihua Tang","doi":"10.1088/1361-6463/ad773d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad773d","url":null,"abstract":"Etching plays a key role in processing and manufacturing electronic and optoelectronic devices. For ultra-wide bandgap semiconductor gallium oxide (Ga2O3), its etching investigations and evolution mechanism are still at the earlier stage, and some more research gumption should be invested. In this review, we make a summary on the etching of Ga2O3, including dry (plasma) etching, wet chemical etching, and photoelectrochemical etching, and discuss the etching results, existing problems, and feasible solutions, in order to provide guidance and advises for furtherly developing the Ga2O3 etching and Ga2O3-based electronic and optoelectronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"30 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence factors and improvement scheme on the breakdown behavior of pseudospark switch 伪火花开关击穿行为的影响因素和改进方案
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1088/1361-6463/ad76b7
Qi Yuan, Guoxiang Sun, Haorui Xue, Weidong Ding, Shaohao Nie and Kunhao Yu
High-power pulse generators are widely used in civil and military fields. The main switch directly determines the output characteristics of the high-power pulse generators, such as the voltage front time (tf). Pseudospark switches (PSS) show a promising future for middle voltage, high repetitive frequency pulse power applications. However, how to further improve the breakdown behavior without reducing its advantages is a challenging task. In this paper, the influence of operating parameters (anode voltage UA and gas pressure p) and structural parameter (number of cathode holes) on the breakdown behavior are investigated, the related mechanism are explained, and specific improvement schemes are proposed. It is found that the tf of the single channel PSS (SCPSS) decreased significantly with increasing p, but hardly varied with UA under moderate p. However, it is not a sound solution to increase the p excessively to reduce tf. Besides, increasing the number of cathode holes can obtain a shorter tf at low pressures (which implies superior repetition frequency performance). However, at 25 Pa, the jitter (which is defined as the standard deviation of tf in multiple tests) of the 2-channel PSS is larger than that of the SCPSS. And the jitter of the 4-channel and 8-channel PSS is also greater than 6 ns and 2 ns, respectively. Through experimental and simulation analyses, it can be explained as the stepwise penetration of the virtual anode and the non-simultaneous ignition of the channels. A scheme to increase the trigger energy (ϵ) has been adopted to improve the simultaneous ignition probability, while shortening tf and reducing jitter. After optimization, the good ignition probability of the 4-channel PSS has been improved to 82% and the jitter has been reduced to less than 1 ns at 25 Pa and 14.7 mJ.
大功率脉冲发生器广泛应用于民用和军用领域。主开关直接决定了大功率脉冲发生器的输出特性,如电压前沿时间(tf)。伪火花开关(PSS)在中压、高重复频率脉冲功率应用方面前景广阔。然而,如何在不降低其优势的情况下进一步改善击穿行为是一项具有挑战性的任务。本文研究了工作参数(阳极电压 UA 和气体压力 p)和结构参数(阴极孔数)对击穿行为的影响,解释了相关机理,并提出了具体的改进方案。研究发现,单通道 PSS(SCPSS)的 tf 随 p 的增大而显著减小,但在中等 p 条件下几乎不随 UA 的变化而变化。此外,增加阴极孔的数量可以在低压下获得更短的 tf(这意味着更优越的重复频率性能)。然而,在 25 Pa 时,双通道 PSS 的抖动(定义为多次测试中 tf 的标准偏差)大于 SCPSS。而 4 通道和 8 通道 PSS 的抖动也分别大于 6 ns 和 2 ns。通过实验和模拟分析,这可以解释为虚拟阳极的逐步穿透和通道的非同时点火。为了提高同时点火概率,同时缩短 tf 和减少抖动,我们采用了增加触发能量(ϵ)的方案。经过优化,4 通道 PSS 的良好点火概率提高到了 82%,在 25 Pa 和 14.7 mJ 条件下,抖动降低到了 1 ns 以下。
{"title":"Influence factors and improvement scheme on the breakdown behavior of pseudospark switch","authors":"Qi Yuan, Guoxiang Sun, Haorui Xue, Weidong Ding, Shaohao Nie and Kunhao Yu","doi":"10.1088/1361-6463/ad76b7","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76b7","url":null,"abstract":"High-power pulse generators are widely used in civil and military fields. The main switch directly determines the output characteristics of the high-power pulse generators, such as the voltage front time (tf). Pseudospark switches (PSS) show a promising future for middle voltage, high repetitive frequency pulse power applications. However, how to further improve the breakdown behavior without reducing its advantages is a challenging task. In this paper, the influence of operating parameters (anode voltage UA and gas pressure p) and structural parameter (number of cathode holes) on the breakdown behavior are investigated, the related mechanism are explained, and specific improvement schemes are proposed. It is found that the tf of the single channel PSS (SCPSS) decreased significantly with increasing p, but hardly varied with UA under moderate p. However, it is not a sound solution to increase the p excessively to reduce tf. Besides, increasing the number of cathode holes can obtain a shorter tf at low pressures (which implies superior repetition frequency performance). However, at 25 Pa, the jitter (which is defined as the standard deviation of tf in multiple tests) of the 2-channel PSS is larger than that of the SCPSS. And the jitter of the 4-channel and 8-channel PSS is also greater than 6 ns and 2 ns, respectively. Through experimental and simulation analyses, it can be explained as the stepwise penetration of the virtual anode and the non-simultaneous ignition of the channels. A scheme to increase the trigger energy (ϵ) has been adopted to improve the simultaneous ignition probability, while shortening tf and reducing jitter. After optimization, the good ignition probability of the 4-channel PSS has been improved to 82% and the jitter has been reduced to less than 1 ns at 25 Pa and 14.7 mJ.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics D: Applied Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1