Pub Date : 2024-09-09DOI: 10.1088/1361-6463/ad759d
Xuan Yang, Bin Xie, Xiaobing Luo
Quantum dots (QDs) are promising semiconducting luminous nanocrystals with superior optoelectronic characteristics. Unfortunately, these nanocrystals are fragile when exposed to humid environment. Oxygen and moisture molecules could erode QDs’ structure and degrade their luminous ability, which severely hinders the wide application of QDs in optoelectronic devices. Therefore, it is significantly important to resist oxygen/moisture permeation in the packaging of these QDs converted devices. In this review, we briefly introduce the oxygen/moisture-induced degradation mechanism of QDs and then the permeation theories. Subsequently, we review some strategies for resisting oxygen/moisture permeation from a packaging perspective, and analyze them with the permeation theories. Finally, we outline some future directions for developing efficient oxygen/moisture resistance solutions of QDs converted optoelectronic devices.
{"title":"Resisting oxygen/moisture permeation in quantum dots converted optoelectronic devices","authors":"Xuan Yang, Bin Xie, Xiaobing Luo","doi":"10.1088/1361-6463/ad759d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad759d","url":null,"abstract":"Quantum dots (QDs) are promising semiconducting luminous nanocrystals with superior optoelectronic characteristics. Unfortunately, these nanocrystals are fragile when exposed to humid environment. Oxygen and moisture molecules could erode QDs’ structure and degrade their luminous ability, which severely hinders the wide application of QDs in optoelectronic devices. Therefore, it is significantly important to resist oxygen/moisture permeation in the packaging of these QDs converted devices. In this review, we briefly introduce the oxygen/moisture-induced degradation mechanism of QDs and then the permeation theories. Subsequently, we review some strategies for resisting oxygen/moisture permeation from a packaging perspective, and analyze them with the permeation theories. Finally, we outline some future directions for developing efficient oxygen/moisture resistance solutions of QDs converted optoelectronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/1361-6463/ad6ba0
Yan Zhou, Zizheng Cao and Shaohua Yu
As one of the most important optical properties of a material, refractive index (RI) and its spatial distribution play important roles in managing the performances of photonic structures and devices. The capability to accurately and reliably characterize RI can be crucial for precise control of specifications of photonic devices, and is required in diverse scenarios, ranging from material inspections, processing controls and device stage characterizations. In this review, we discuss a variety of optical characterization techniques for RI profiling and measurements, leveraging optical interference contrast effects, phase-shifting effects, as well as spectroscopic responses in reflectometric and ellipsometric manners. In addition, we give a quick account of recent progress on these techniques empowered by advanced data treatments.
作为材料最重要的光学特性之一,折射率(RI)及其空间分布在管理光子结构和器件的性能方面发挥着重要作用。准确可靠地表征 RI 的能力对于精确控制光子器件的规格至关重要,在材料检测、加工控制和器件阶段表征等各种情况下都需要这种能力。在本综述中,我们讨论了用于 RI 剖析和测量的各种光学表征技术,这些技术利用了光学干涉对比效应、相移效应以及反射和椭偏方式的光谱响应。此外,我们还简要介绍了这些技术在先进数据处理技术的支持下所取得的最新进展。
{"title":"A review on optical characterization of refractive index in photonic related devices and applications","authors":"Yan Zhou, Zizheng Cao and Shaohua Yu","doi":"10.1088/1361-6463/ad6ba0","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6ba0","url":null,"abstract":"As one of the most important optical properties of a material, refractive index (RI) and its spatial distribution play important roles in managing the performances of photonic structures and devices. The capability to accurately and reliably characterize RI can be crucial for precise control of specifications of photonic devices, and is required in diverse scenarios, ranging from material inspections, processing controls and device stage characterizations. In this review, we discuss a variety of optical characterization techniques for RI profiling and measurements, leveraging optical interference contrast effects, phase-shifting effects, as well as spectroscopic responses in reflectometric and ellipsometric manners. In addition, we give a quick account of recent progress on these techniques empowered by advanced data treatments.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/1361-6463/ad7470
Yifan Liao, Xinglin Wang, Huajun Gu, Huihui Zhang, Jiayi Meng and Wei-Lin Dai
The energy crisis has already seriously affected the daily lives of people around the world. As a result, designing efficient catalysts for photocatalytic hydrogen evolution (PHE) is a promising strategy for energy supply. Co-catalyst modification can significantly enhance the photocatalytic activity of single semiconductors, overcoming limitations posed by their narrow visible light absorption range and high electron–hole recombination rate. MXene-based composites demonstrate immense potential as co-catalysts for photocatalytic hydrogen production owing to their distinctive two-dimensional layered structure and outstanding photoelectrochemical properties, and further research and development efforts surrounding MXene-based composites will contribute significantly to the progress of sustainable energy technologies. In this review, we offer a comprehensive overview of synthesis methods for MXene and MXene-based composites, highlight illustrative instances of binary and ternary MXene-based composites in PHE, and explore potential avenues for future research and expansion of MXene-based composites.
{"title":"Synthesis and recent developments of MXene-based composites for photocatalytic hydrogen production","authors":"Yifan Liao, Xinglin Wang, Huajun Gu, Huihui Zhang, Jiayi Meng and Wei-Lin Dai","doi":"10.1088/1361-6463/ad7470","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7470","url":null,"abstract":"The energy crisis has already seriously affected the daily lives of people around the world. As a result, designing efficient catalysts for photocatalytic hydrogen evolution (PHE) is a promising strategy for energy supply. Co-catalyst modification can significantly enhance the photocatalytic activity of single semiconductors, overcoming limitations posed by their narrow visible light absorption range and high electron–hole recombination rate. MXene-based composites demonstrate immense potential as co-catalysts for photocatalytic hydrogen production owing to their distinctive two-dimensional layered structure and outstanding photoelectrochemical properties, and further research and development efforts surrounding MXene-based composites will contribute significantly to the progress of sustainable energy technologies. In this review, we offer a comprehensive overview of synthesis methods for MXene and MXene-based composites, highlight illustrative instances of binary and ternary MXene-based composites in PHE, and explore potential avenues for future research and expansion of MXene-based composites.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"70 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/1361-6463/ad759e
Tongtong Wang, Si-Cong Zhu, Fangqi Liu
Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (106 orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.
{"title":"Strategy to enhance the performance of spin field effect transistors-insert effective intermediate layer graphene","authors":"Tongtong Wang, Si-Cong Zhu, Fangqi Liu","doi":"10.1088/1361-6463/ad759e","DOIUrl":"https://doi.org/10.1088/1361-6463/ad759e","url":null,"abstract":"Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (10<sup>6</sup> orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"60 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1088/1361-6463/ad70c3
Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati
We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.
我们从理论上研究了在非共振圆偏振光和栅极电压的影响下,基于过渡金属二钙化物(TMDs)的正常/反铁磁/正常(N/AF/N)结内的自旋和谷极化传输。反铁磁性可以调节自旋态和有效间隙,减少一种态的自旋间隙,同时增加另一种态的自旋间隙,从而产生广泛的自旋极化和可控间隙。非共振圆偏振光可调节谷自由度和有效间隙,从而提供广泛的谷偏振。利用 TMD 中的强自旋轨道耦合,通过 AF 和/或非共振光操纵,可在广泛的费米能范围内实现拟议结中的完美自旋-山谷极化。在较低的光能下,AF 操纵可有效缩小 TMD 的带隙,从而增强了拟议结在自旋谷过滤方面的潜在应用。
{"title":"Photo- and exchange-field controlled spin and valley polarized transport in a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides","authors":"Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati","doi":"10.1088/1361-6463/ad70c3","DOIUrl":"https://doi.org/10.1088/1361-6463/ad70c3","url":null,"abstract":"We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"123 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1088/1361-6463/ad7150
Zesheng Liu, Yan Liu, Xiang Chen, Ying Xie, Yuanhang Qu, Xiyu Gu, Xin Tong, Haiyang Li, Wenjuan Liu, Yao Cai, Shishang Guo, Chengliang Sun
Narrow-band filters are widely applied in the narrow-band Internet of Things (NB-IoT). To meet the diverse bandwidth requirements of NB-IoT applications, this work presents the first antisymmetric (A1) mode Lamb wave resonators (LWRs) based on aluminum nitride (AlN) and AlN/ScAlN composite films. The impact of structural parameters, including pitch (P) and duty factor (DF), on main mode excitation and suppression of spurious modes is investigated. The optimal P and DF are found to be 10 μm and 0.05, respectively. Based on spurious-free A1 LWRs, an AlN/Sc0.096Al0.904N composite film is utilized to adjust the effective electromechanical coupling coefficient