首页 > 最新文献

Journal of Physics D: Applied Physics最新文献

英文 中文
Resisting oxygen/moisture permeation in quantum dots converted optoelectronic devices 抗量子点转换光电设备中的氧气/湿气渗透
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-09 DOI: 10.1088/1361-6463/ad759d
Xuan Yang, Bin Xie, Xiaobing Luo
Quantum dots (QDs) are promising semiconducting luminous nanocrystals with superior optoelectronic characteristics. Unfortunately, these nanocrystals are fragile when exposed to humid environment. Oxygen and moisture molecules could erode QDs’ structure and degrade their luminous ability, which severely hinders the wide application of QDs in optoelectronic devices. Therefore, it is significantly important to resist oxygen/moisture permeation in the packaging of these QDs converted devices. In this review, we briefly introduce the oxygen/moisture-induced degradation mechanism of QDs and then the permeation theories. Subsequently, we review some strategies for resisting oxygen/moisture permeation from a packaging perspective, and analyze them with the permeation theories. Finally, we outline some future directions for developing efficient oxygen/moisture resistance solutions of QDs converted optoelectronic devices.
量子点(QDs)是一种前景广阔的半导体发光纳米晶体,具有卓越的光电特性。遗憾的是,这些纳米晶体暴露在潮湿环境中时非常脆弱。氧气和水分分子会侵蚀 QDs 的结构并降低其发光能力,这严重阻碍了 QDs 在光电设备中的广泛应用。因此,在这些 QD 转换器件的封装过程中防止氧气/湿气渗透就显得尤为重要。在本综述中,我们将简要介绍氧/湿气诱导的 QDs 降解机制,然后介绍渗透理论。随后,我们从封装的角度回顾了一些抗氧/湿气渗透的策略,并结合渗透理论对其进行了分析。最后,我们概述了开发转换为光电器件的 QDs 高效抗氧/湿解决方案的未来方向。
{"title":"Resisting oxygen/moisture permeation in quantum dots converted optoelectronic devices","authors":"Xuan Yang, Bin Xie, Xiaobing Luo","doi":"10.1088/1361-6463/ad759d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad759d","url":null,"abstract":"Quantum dots (QDs) are promising semiconducting luminous nanocrystals with superior optoelectronic characteristics. Unfortunately, these nanocrystals are fragile when exposed to humid environment. Oxygen and moisture molecules could erode QDs’ structure and degrade their luminous ability, which severely hinders the wide application of QDs in optoelectronic devices. Therefore, it is significantly important to resist oxygen/moisture permeation in the packaging of these QDs converted devices. In this review, we briefly introduce the oxygen/moisture-induced degradation mechanism of QDs and then the permeation theories. Subsequently, we review some strategies for resisting oxygen/moisture permeation from a packaging perspective, and analyze them with the permeation theories. Finally, we outline some future directions for developing efficient oxygen/moisture resistance solutions of QDs converted optoelectronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on optical characterization of refractive index in photonic related devices and applications 光子相关设备和应用中折射率光学表征综述
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-09 DOI: 10.1088/1361-6463/ad6ba0
Yan Zhou, Zizheng Cao and Shaohua Yu
As one of the most important optical properties of a material, refractive index (RI) and its spatial distribution play important roles in managing the performances of photonic structures and devices. The capability to accurately and reliably characterize RI can be crucial for precise control of specifications of photonic devices, and is required in diverse scenarios, ranging from material inspections, processing controls and device stage characterizations. In this review, we discuss a variety of optical characterization techniques for RI profiling and measurements, leveraging optical interference contrast effects, phase-shifting effects, as well as spectroscopic responses in reflectometric and ellipsometric manners. In addition, we give a quick account of recent progress on these techniques empowered by advanced data treatments.
作为材料最重要的光学特性之一,折射率(RI)及其空间分布在管理光子结构和器件的性能方面发挥着重要作用。准确可靠地表征 RI 的能力对于精确控制光子器件的规格至关重要,在材料检测、加工控制和器件阶段表征等各种情况下都需要这种能力。在本综述中,我们讨论了用于 RI 剖析和测量的各种光学表征技术,这些技术利用了光学干涉对比效应、相移效应以及反射和椭偏方式的光谱响应。此外,我们还简要介绍了这些技术在先进数据处理技术的支持下所取得的最新进展。
{"title":"A review on optical characterization of refractive index in photonic related devices and applications","authors":"Yan Zhou, Zizheng Cao and Shaohua Yu","doi":"10.1088/1361-6463/ad6ba0","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6ba0","url":null,"abstract":"As one of the most important optical properties of a material, refractive index (RI) and its spatial distribution play important roles in managing the performances of photonic structures and devices. The capability to accurately and reliably characterize RI can be crucial for precise control of specifications of photonic devices, and is required in diverse scenarios, ranging from material inspections, processing controls and device stage characterizations. In this review, we discuss a variety of optical characterization techniques for RI profiling and measurements, leveraging optical interference contrast effects, phase-shifting effects, as well as spectroscopic responses in reflectometric and ellipsometric manners. In addition, we give a quick account of recent progress on these techniques empowered by advanced data treatments.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and recent developments of MXene-based composites for photocatalytic hydrogen production 用于光催化制氢的 MXene 基复合材料的合成与最新进展
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-09 DOI: 10.1088/1361-6463/ad7470
Yifan Liao, Xinglin Wang, Huajun Gu, Huihui Zhang, Jiayi Meng and Wei-Lin Dai
The energy crisis has already seriously affected the daily lives of people around the world. As a result, designing efficient catalysts for photocatalytic hydrogen evolution (PHE) is a promising strategy for energy supply. Co-catalyst modification can significantly enhance the photocatalytic activity of single semiconductors, overcoming limitations posed by their narrow visible light absorption range and high electron–hole recombination rate. MXene-based composites demonstrate immense potential as co-catalysts for photocatalytic hydrogen production owing to their distinctive two-dimensional layered structure and outstanding photoelectrochemical properties, and further research and development efforts surrounding MXene-based composites will contribute significantly to the progress of sustainable energy technologies. In this review, we offer a comprehensive overview of synthesis methods for MXene and MXene-based composites, highlight illustrative instances of binary and ternary MXene-based composites in PHE, and explore potential avenues for future research and expansion of MXene-based composites.
能源危机已经严重影响到世界各地人们的日常生活。因此,设计高效的光催化氢进化(PHE)催化剂是一项前景广阔的能源供应战略。共催化剂改性可显著提高单一半导体的光催化活性,克服其狭窄的可见光吸收范围和高电子-空穴重组率所带来的限制。由于其独特的二维层状结构和出色的光电化学性质,MXene 基复合材料作为光催化制氢的辅助催化剂具有巨大的潜力,围绕 MXene 基复合材料的进一步研究和开发工作将极大地推动可持续能源技术的进步。在本综述中,我们全面概述了二氧化二烯和二氧化二烯基复合材料的合成方法,重点介绍了二元和三元二氧化二烯基复合材料在 PHE 中的应用实例,并探讨了未来研究和拓展二氧化二烯基复合材料的潜在途径。
{"title":"Synthesis and recent developments of MXene-based composites for photocatalytic hydrogen production","authors":"Yifan Liao, Xinglin Wang, Huajun Gu, Huihui Zhang, Jiayi Meng and Wei-Lin Dai","doi":"10.1088/1361-6463/ad7470","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7470","url":null,"abstract":"The energy crisis has already seriously affected the daily lives of people around the world. As a result, designing efficient catalysts for photocatalytic hydrogen evolution (PHE) is a promising strategy for energy supply. Co-catalyst modification can significantly enhance the photocatalytic activity of single semiconductors, overcoming limitations posed by their narrow visible light absorption range and high electron–hole recombination rate. MXene-based composites demonstrate immense potential as co-catalysts for photocatalytic hydrogen production owing to their distinctive two-dimensional layered structure and outstanding photoelectrochemical properties, and further research and development efforts surrounding MXene-based composites will contribute significantly to the progress of sustainable energy technologies. In this review, we offer a comprehensive overview of synthesis methods for MXene and MXene-based composites, highlight illustrative instances of binary and ternary MXene-based composites in PHE, and explore potential avenues for future research and expansion of MXene-based composites.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"70 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy to enhance the performance of spin field effect transistors-insert effective intermediate layer graphene 提高自旋场效应晶体管性能的策略--插入有效的中间层石墨烯
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-09 DOI: 10.1088/1361-6463/ad759e
Tongtong Wang, Si-Cong Zhu, Fangqi Liu
Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (106 orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.
设计带有金属触点的新型自旋场效应晶体管(FET)是为了降低费米钉销导致的高肖特基势垒高度(SBH),从而降低能耗并提高性能。在这里,我们通过在半导体蓝磷与金属的接触界面中引入层间石墨烯,从而降低层间电阻,有效地提高了场效应晶体管的电导率(106 个数量级)和电流阈值。电子结构分析表明,与其他金属系统相比,蓝磷-石墨烯-铜可调节最低的 SBH,从而产生更大的场效应晶体管电导。自旋注入进一步提高了场效应晶体管作为整流器的效率(提高了 13%)。这项理论研究为实现下一代高性能晶体管技术的创新提供了合理的指导,展示了调节机制的内在潜力。
{"title":"Strategy to enhance the performance of spin field effect transistors-insert effective intermediate layer graphene","authors":"Tongtong Wang, Si-Cong Zhu, Fangqi Liu","doi":"10.1088/1361-6463/ad759e","DOIUrl":"https://doi.org/10.1088/1361-6463/ad759e","url":null,"abstract":"Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (10<sup>6</sup> orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"60 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photo- and exchange-field controlled spin and valley polarized transport in a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides 基于过渡金属二钙化物的正常/反铁磁性/正常(N/AF/N)结中受光场和交换场控制的自旋和谷极化传输
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1088/1361-6463/ad70c3
Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati
We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.
我们从理论上研究了在非共振圆偏振光和栅极电压的影响下,基于过渡金属二钙化物(TMDs)的正常/反铁磁/正常(N/AF/N)结内的自旋和谷极化传输。反铁磁性可以调节自旋态和有效间隙,减少一种态的自旋间隙,同时增加另一种态的自旋间隙,从而产生广泛的自旋极化和可控间隙。非共振圆偏振光可调节谷自由度和有效间隙,从而提供广泛的谷偏振。利用 TMD 中的强自旋轨道耦合,通过 AF 和/或非共振光操纵,可在广泛的费米能范围内实现拟议结中的完美自旋-山谷极化。在较低的光能下,AF 操纵可有效缩小 TMD 的带隙,从而增强了拟议结在自旋谷过滤方面的潜在应用。
{"title":"Photo- and exchange-field controlled spin and valley polarized transport in a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides","authors":"Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati","doi":"10.1088/1361-6463/ad70c3","DOIUrl":"https://doi.org/10.1088/1361-6463/ad70c3","url":null,"abstract":"We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"123 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AlN/ScAlN composite films-based spurious free A1 mode lamb wave resonator with adjustable effective electromechanical coupling coefficient 基于 AlN/ScAlN 复合薄膜的无杂散 A1 模式羔羊波谐振器,具有可调节的有效机电耦合系数
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1088/1361-6463/ad7150
Zesheng Liu, Yan Liu, Xiang Chen, Ying Xie, Yuanhang Qu, Xiyu Gu, Xin Tong, Haiyang Li, Wenjuan Liu, Yao Cai, Shishang Guo, Chengliang Sun
Narrow-band filters are widely applied in the narrow-band Internet of Things (NB-IoT). To meet the diverse bandwidth requirements of NB-IoT applications, this work presents the first antisymmetric (A1) mode Lamb wave resonators (LWRs) based on aluminum nitride (AlN) and AlN/ScAlN composite films. The impact of structural parameters, including pitch (P) and duty factor (DF), on main mode excitation and suppression of spurious modes is investigated. The optimal P and DF are found to be 10 μm and 0.05, respectively. Based on spurious-free A1 LWRs, an AlN/Sc0.096Al0.904N composite film is utilized to adjust the effective electromechanical coupling coefficient keff2. The experiment results demonstrate a tunable keff2 from 0.40% (5 MHz) to 0.25% (3 MHz), realizing a 37.5% adjustment range of keff2, which establishes a foundation for narrow-band tunable filters.
窄带滤波器广泛应用于窄带物联网(NB-IoT)。为满足 NB-IoT 应用对带宽的不同要求,本研究首次提出了基于氮化铝(AlN)和 AlN/ScAlN 复合薄膜的反不对称(A1)模式兰姆波谐振器(LWR)。研究了包括间距(P)和占空比(DF)在内的结构参数对主模激发和杂散模抑制的影响。发现最佳的 P 值和 DF 值分别为 10 μm 和 0.05。在无杂散 A1 LWR 的基础上,利用 AlN/Sc0.096Al0.904N 复合薄膜来调节有效机电耦合系数 keff2。实验结果表明,keff2 的可调范围从 0.40% (5 MHz) 到 0.25% (3 MHz),keff2 的调节范围达到 37.5%,为窄带可调滤波器奠定了基础。
{"title":"AlN/ScAlN composite films-based spurious free A1 mode lamb wave resonator with adjustable effective electromechanical coupling coefficient","authors":"Zesheng Liu, Yan Liu, Xiang Chen, Ying Xie, Yuanhang Qu, Xiyu Gu, Xin Tong, Haiyang Li, Wenjuan Liu, Yao Cai, Shishang Guo, Chengliang Sun","doi":"10.1088/1361-6463/ad7150","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7150","url":null,"abstract":"Narrow-band filters are widely applied in the narrow-band Internet of Things (NB-IoT). To meet the diverse bandwidth requirements of NB-IoT applications, this work presents the first antisymmetric (A1) mode Lamb wave resonators (LWRs) based on aluminum nitride (AlN) and AlN/ScAlN composite films. The impact of structural parameters, including pitch (<italic toggle=\"yes\">P</italic>) and duty factor (DF), on main mode excitation and suppression of spurious modes is investigated. The optimal <italic toggle=\"yes\">P</italic> and DF are found to be 10 <italic toggle=\"yes\">μ</italic>m and 0.05, respectively. Based on spurious-free A1 LWRs, an AlN/Sc<sub>0.096</sub>Al<sub>0.904</sub>N composite film is utilized to adjust the effective electromechanical coupling coefficient <inline-formula>\u0000<tex-math><?CDATA $k_{{text{eff}}}^{text{2}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>k</mml:mi><mml:mrow><mml:mrow><mml:mtext>eff</mml:mtext></mml:mrow></mml:mrow><mml:mrow><mml:mtext>2</mml:mtext></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"dad7150ieqn1.gif\"></inline-graphic></inline-formula>. The experiment results demonstrate a tunable <inline-formula>\u0000<tex-math><?CDATA $k_{{text{eff}}}^{text{2}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>k</mml:mi><mml:mrow><mml:mrow><mml:mtext>eff</mml:mtext></mml:mrow></mml:mrow><mml:mrow><mml:mtext>2</mml:mtext></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"dad7150ieqn2.gif\"></inline-graphic></inline-formula> from 0.40% (5 MHz) to 0.25% (3 MHz), realizing a 37.5% adjustment range of <inline-formula>\u0000<tex-math><?CDATA $k_{{text{eff}}}^{text{2}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>k</mml:mi><mml:mrow><mml:mrow><mml:mtext>eff</mml:mtext></mml:mrow></mml:mrow><mml:mrow><mml:mtext>2</mml:mtext></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"dad7150ieqn3.gif\"></inline-graphic></inline-formula>, which establishes a foundation for narrow-band tunable filters.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"45 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creation of tungsten and platinum nanoparticles from nanosecond plasmas in water 从水中的纳秒等离子体中生成钨和铂纳米粒子
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1088/1361-6463/ad7301
O Krettek, P Pottkämper, P Cignoni, K Tschulik, A von Keudell
Nanosecond plasmas ignited inside water at tungsten and platinum/iridium electrode tips are used to create very small nanoparticles with radii around 1 nm. Due to the very high power density of 1016 W m–2 at an electrode hot spot with a diameter of 10 µm, the surface is ablated during the short plasma pulse, and the metal vapour expands in the cavitation bubble after the plasma. This creates a very large cooling rate and the formation of nanoparticles by condensation from the created metal vapour. Finally, the nanoparticles disperse in the liquid. This sequence is quantified by measuring the net tip erosion by shadowgraphy and the created nanoparticles by transmission electron microscopy and x-ray photoelectron spectroscopy. The condensation process is modelled in conjunction with cavitation theory for the expanding cavitation bubble, which shows very good agreement with experimental data.
在钨和铂/铱电极尖端的水中点燃的纳秒等离子体用于制造半径约为 1 纳米的超小型纳米粒子。由于在直径为 10 µm 的电极热点上具有 1016 W m-2 的极高功率密度,表面在短等离子体脉冲期间被烧蚀,金属蒸气在等离子体后的空化泡中膨胀。这就产生了非常大的冷却率,并通过所产生的金属蒸汽冷凝形成纳米颗粒。最后,纳米颗粒分散在液体中。通过阴影测量法测量尖端的净侵蚀,通过透射电子显微镜和 X 射线光电子能谱测量生成的纳米粒子,对这一过程进行量化。结合空化理论对不断扩大的空化泡的凝结过程进行了模拟,结果与实验数据非常吻合。
{"title":"Creation of tungsten and platinum nanoparticles from nanosecond plasmas in water","authors":"O Krettek, P Pottkämper, P Cignoni, K Tschulik, A von Keudell","doi":"10.1088/1361-6463/ad7301","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7301","url":null,"abstract":"Nanosecond plasmas ignited inside water at tungsten and platinum/iridium electrode tips are used to create very small nanoparticles with radii around 1 nm. Due to the very high power density of 10<sup>16</sup> W m<sup>–2</sup> at an electrode hot spot with a diameter of 10 <italic toggle=\"yes\">µ</italic>m, the surface is ablated during the short plasma pulse, and the metal vapour expands in the cavitation bubble after the plasma. This creates a very large cooling rate and the formation of nanoparticles by condensation from the created metal vapour. Finally, the nanoparticles disperse in the liquid. This sequence is quantified by measuring the net tip erosion by shadowgraphy and the created nanoparticles by transmission electron microscopy and x-ray photoelectron spectroscopy. The condensation process is modelled in conjunction with cavitation theory for the expanding cavitation bubble, which shows very good agreement with experimental data.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarkably improved photo-charging and dark-discharging current in a faradaic junction solar rechargeable device by regulating the morphology of a semiconductor 通过调节半导体的形态显著改善法拉第结太阳能充电设备的光充电和暗放电电流
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1088/1361-6463/ad714f
Ziyi Wan, Dongjian Jiang, Yuzhan Zheng, Ye Fu, Xiao Sun, Bo Wang, Cuixia Cui, Changping Yao, Wenjun Luo, Zhigang Zou
Two-electrode solar rechargeable devices can converse and store solar energy without external bias. However, the photo-charging and dark-discharging current of these devices is low and limits their practical applications. Here, the photo-charging and dark-discharging current of Si/poly(N-methylpyrrole) (PNMPy) photoanode increases 21 and 10 times by preparing nanostructured Si semiconductor, up to 5.09 and 2.06 mA cm−2, respectively. Further studies suggest that the improved current comes from higher separation efficiency of photo-generated carriers and new electron transfer paths on the surface of nanostructured Si. Moreover, a solar rechargeable device of Si/PNMPy/H2SO4(aq)/WO3/FTO was prepared, which indicated good cyclic stability. These results deepen our understanding on the current in solar rechargeable devices and offer guidance for the design of other high-performance devices.
双电极太阳能充电装置可以在没有外部偏压的情况下转换和储存太阳能。然而,这些器件的光充电和暗放电电流较低,限制了它们的实际应用。在这里,通过制备纳米结构硅半导体,硅/聚(N-甲基吡咯)(PNMPy)光阳极的光充电和暗放电电流分别提高了 21 倍和 10 倍,达到 5.09 mA cm-2 和 2.06 mA cm-2。进一步的研究表明,电流的提高来自于纳米结构硅表面光生载流子更高的分离效率和新的电子传输路径。此外,还制备了 Si/PNMPy/H2SO4(aq)/WO3/FTO 太阳能充电装置,该装置具有良好的循环稳定性。这些结果加深了我们对太阳能充电设备中电流的理解,并为设计其他高性能设备提供了指导。
{"title":"Remarkably improved photo-charging and dark-discharging current in a faradaic junction solar rechargeable device by regulating the morphology of a semiconductor","authors":"Ziyi Wan, Dongjian Jiang, Yuzhan Zheng, Ye Fu, Xiao Sun, Bo Wang, Cuixia Cui, Changping Yao, Wenjun Luo, Zhigang Zou","doi":"10.1088/1361-6463/ad714f","DOIUrl":"https://doi.org/10.1088/1361-6463/ad714f","url":null,"abstract":"Two-electrode solar rechargeable devices can converse and store solar energy without external bias. However, the photo-charging and dark-discharging current of these devices is low and limits their practical applications. Here, the photo-charging and dark-discharging current of Si/poly(N-methylpyrrole) (PNMPy) photoanode increases 21 and 10 times by preparing nanostructured Si semiconductor, up to 5.09 and 2.06 mA cm<sup>−2</sup>, respectively. Further studies suggest that the improved current comes from higher separation efficiency of photo-generated carriers and new electron transfer paths on the surface of nanostructured Si. Moreover, a solar rechargeable device of Si/PNMPy/H<sub>2</sub>SO<sub>4</sub>(aq)/WO<sub>3</sub>/FTO was prepared, which indicated good cyclic stability. These results deepen our understanding on the current in solar rechargeable devices and offer guidance for the design of other high-performance devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"40 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications 石墨烯负载全介电砷化镓超表面中的法诺和 EIT 可控双共振及其传感和慢光应用
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1088/1361-6463/ad73e4
Zhichao Wang, Huahao Huang, Hui Zhang, Miao He, Weiren Zhao
Active nanophotonic metasurfaces have attracted considerable attention for their promise to develop compact, tunable optical metadevices with advanced functions. In this work, we theoretically demonstrated the dynamically controllable dual resonances of Fano and electromagnetically induced transparency (EIT) using a graphene-loaded all-dielectric metasurface with U-shaped gallium arsenide (GaAs) nanobars operating in the near-infrared region. The destructive interference between a subradiant mode (i.e. a dark mode) supported by two vertical GaAs bars and two radiative modes (i.e. two bright modes) supported by a horizontal GaAs nanobar gives rise to a Fano resonance and an EIT window with high transmission and a large quality factor (Q-factor) in the transmission spectrum. Importantly, the transmission amplitudes can be flexibly modulated by adjusting the graphene Fermi levels without rebuilding the nanostructures. This modulation results from the controllable light absorption by the loaded graphene monolayer due to its interband losses in the near-infrared spectrum. Furthermore, the peak wavelengths of the Fano resonance and EIT window with high Q-factors are highly sensitive to variations in the refractive index (RI) of the surrounding medium, giving the proposed metasurface a relatively good sensitivity of ∼700 nm RIU−1 and a high figure of merit of 280, making it an effective RI sensor. Additionally, the metasurface features an adjustable slow light effect, indicated by the adjusted group delay time ranging from 0.12 ps to 0.38 ps. Therefore, the metasurface system proposed in this work offers a viable platform for advanced multi-band optical sensing, low-loss slow light devices, switches, and potential applications in nonlinear optical fields.
有源纳米光子元表面因其有望开发出具有先进功能的紧凑型可调光学元器件而备受关注。在这项工作中,我们从理论上证明了利用石墨烯负载的全介质元表面与工作在近红外区域的 U 型砷化镓(GaAs)纳米棒,可动态控制法诺和电磁诱导透明(EIT)双共振。由两根垂直砷化镓纳米棒支持的亚辐射模式(即暗模式)和由一根水平砷化镓纳米棒支持的两个辐射模式(即两个亮模式)之间的破坏性干涉产生了法诺共振和具有高透射率的 EIT 窗口,并且在透射光谱中具有较大的品质因数(Q 因子)。重要的是,可以通过调整石墨烯费米级来灵活调制透射幅度,而无需重建纳米结构。这种调制源于负载石墨烯单层在近红外光谱中的带间损耗所产生的可控光吸收。此外,具有高 Q 因子的法诺共振和 EIT 窗口的峰值波长对周围介质的折射率(RI)变化高度敏感,这使得所提出的元表面具有相对较好的灵敏度(RIU-1 ∼ 700 nm)和 280 的高优点,使其成为一种有效的 RI 传感器。此外,元表面还具有可调节的慢光效应,可调节的群延迟时间范围为 0.12 ps 至 0.38 ps。因此,本研究提出的元表面系统为先进的多波段光学传感、低损耗慢光器件、开关以及非线性光学领域的潜在应用提供了一个可行的平台。
{"title":"Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications","authors":"Zhichao Wang, Huahao Huang, Hui Zhang, Miao He, Weiren Zhao","doi":"10.1088/1361-6463/ad73e4","DOIUrl":"https://doi.org/10.1088/1361-6463/ad73e4","url":null,"abstract":"Active nanophotonic metasurfaces have attracted considerable attention for their promise to develop compact, tunable optical metadevices with advanced functions. In this work, we theoretically demonstrated the dynamically controllable dual resonances of Fano and electromagnetically induced transparency (EIT) using a graphene-loaded all-dielectric metasurface with U-shaped gallium arsenide (GaAs) nanobars operating in the near-infrared region. The destructive interference between a subradiant mode (i.e. a dark mode) supported by two vertical GaAs bars and two radiative modes (i.e. two bright modes) supported by a horizontal GaAs nanobar gives rise to a Fano resonance and an EIT window with high transmission and a large quality factor (Q-factor) in the transmission spectrum. Importantly, the transmission amplitudes can be flexibly modulated by adjusting the graphene Fermi levels without rebuilding the nanostructures. This modulation results from the controllable light absorption by the loaded graphene monolayer due to its interband losses in the near-infrared spectrum. Furthermore, the peak wavelengths of the Fano resonance and EIT window with high Q-factors are highly sensitive to variations in the refractive index (RI) of the surrounding medium, giving the proposed metasurface a relatively good sensitivity of ∼700 nm RIU<sup>−1</sup> and a high figure of merit of 280, making it an effective RI sensor. Additionally, the metasurface features an adjustable slow light effect, indicated by the adjusted group delay time ranging from 0.12 ps to 0.38 ps. Therefore, the metasurface system proposed in this work offers a viable platform for advanced multi-band optical sensing, low-loss slow light devices, switches, and potential applications in nonlinear optical fields.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Young’s double-slit phenomenon in anti-PT-symmetric electrical circuits 观测反PT对称电路中的杨氏双缝现象
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1088/1361-6463/ad73e2
Keyu Pan, Xiumei Wang, Xizhou Shen, Haoyi Zhou, Xingping Zhou
In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su–Schrieffer–Heeger circuit model with an anti-PT (APT) symmetry. To demonstrate Young’s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young’s double-slit phenomenon in electrical circuits theoretically and experimentally.
在过去几十年中,量子和经典领域都对干涉进行了广泛研究,它揭示了光的波动性,并被广泛用于高精度测量。我们提出了一种现象,即具有反PT(APT)对称性的 Su-Schrieffer-Heeger 电路模型的时变电压所呈现的离散衍射和干涉现象。为了证明 APT 电路中的杨氏双缝现象,我们初步探索了断相电压的耦合模式理论,观察了单激励下的离散衍射和双激励下的干涉。此外,我们还设计了一个移相电路,以观察相位差和距离对离散干涉的影响。我们的工作将光学效应与凝聚态物理相结合,从理论和实验上展示了电路中的杨氏双缝现象。
{"title":"Observation of Young’s double-slit phenomenon in anti-PT-symmetric electrical circuits","authors":"Keyu Pan, Xiumei Wang, Xizhou Shen, Haoyi Zhou, Xingping Zhou","doi":"10.1088/1361-6463/ad73e2","DOIUrl":"https://doi.org/10.1088/1361-6463/ad73e2","url":null,"abstract":"In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su–Schrieffer–Heeger circuit model with an anti-PT (APT) symmetry. To demonstrate Young’s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young’s double-slit phenomenon in electrical circuits theoretically and experimentally.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"60 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics D: Applied Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1