Pub Date : 2024-05-01Epub Date: 2024-02-19DOI: 10.1007/s10265-024-01523-6
Vinicius Delgado da Rocha, Thaís Carolina da Silva Dal'Sasso, Christina Cleo Vinson Williams, Marcelo Fragomeni Simon, Marcelo Leandro Bueno, Luiz Orlando de Oliveira
The tree genus Dimorphandra (Fabaceae), which contains 26 species divided into three subgenera, was studied using DNA sequence data from six chloroplast genome regions (cpDNA) and the nuclear internal transcribed spacer (ITS). The analyses, which included Bayesian phylogenies and haplotype networks, ancestral area reconstructions, and ecological niche modeling, allowed for exploring the evolutionary history of Dimorphandra. Within the subgenus Phaneropsia, the cpDNA sequence data were more closely-related to species from the genus Mora, while the ITS sequence data displayed a closer phylogenetic relationship with the subgenus Pocillum. This incongruence may be due to incomplete lineage sorting associated with ancient polymorphisms. The Amazonian Dimophandra lineages were highly polymorphic and divergent, while those from the Cerrado and the Atlantic Forest had low levels of polymorphisms. The Amazon likely gave rise to the Dimophandra lineage that produced the Cerrado species, while a Cerrado lineage likely gave rise to the Atlantic Forest species. Habitat shifts were identified as a key factor in shaping the late evolutionary history of Dimorphandra.
利用叶绿体基因组六个区(cpDNA)和核内转录间隔区(ITS)的 DNA 序列数据,对分为三个亚属的 26 个物种的豆科(Fabaceae)树属(Dimorphandra)进行了研究。分析包括贝叶斯系统发育和单倍型网络、祖先区域重建和生态位建模,从而探索了Dimorphandra的进化史。在 Phaneropsia 亚属中,cpDNA 序列数据与 Mora 属物种的关系更为密切,而 ITS 序列数据与 Pocillum 亚属的系统发育关系更为密切。这种不一致可能是由于与古老的多态性有关的世系分类不完整造成的。亚马逊河流域的迪莫潘德拉(Dimophandra)种系多态性和分化程度很高,而塞拉多(Cerrado)和大西洋森林的迪莫潘德拉(Dimophandra)种系多态性水平较低。亚马逊河流域可能产生了产生Cerrado物种的Dimophandra品系,而Cerrado品系可能产生了大西洋森林物种。栖息地的迁移被认为是影响二齿草晚期进化史的一个关键因素。
{"title":"From forest to savanna and back to forest: Evolutionary history of the genus Dimorphandra (Fabaceae).","authors":"Vinicius Delgado da Rocha, Thaís Carolina da Silva Dal'Sasso, Christina Cleo Vinson Williams, Marcelo Fragomeni Simon, Marcelo Leandro Bueno, Luiz Orlando de Oliveira","doi":"10.1007/s10265-024-01523-6","DOIUrl":"10.1007/s10265-024-01523-6","url":null,"abstract":"<p><p>The tree genus Dimorphandra (Fabaceae), which contains 26 species divided into three subgenera, was studied using DNA sequence data from six chloroplast genome regions (cpDNA) and the nuclear internal transcribed spacer (ITS). The analyses, which included Bayesian phylogenies and haplotype networks, ancestral area reconstructions, and ecological niche modeling, allowed for exploring the evolutionary history of Dimorphandra. Within the subgenus Phaneropsia, the cpDNA sequence data were more closely-related to species from the genus Mora, while the ITS sequence data displayed a closer phylogenetic relationship with the subgenus Pocillum. This incongruence may be due to incomplete lineage sorting associated with ancient polymorphisms. The Amazonian Dimophandra lineages were highly polymorphic and divergent, while those from the Cerrado and the Atlantic Forest had low levels of polymorphisms. The Amazon likely gave rise to the Dimophandra lineage that produced the Cerrado species, while a Cerrado lineage likely gave rise to the Atlantic Forest species. Habitat shifts were identified as a key factor in shaping the late evolutionary history of Dimorphandra.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"377-393"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The family Thismiaceae, known as "fairy lanterns" for their urn- or bell-shaped flowers with basally fused tepals, consists of non-photosynthetic flowering monocots mainly in tropical regions, extending into subtropical and temperate areas. Here, we propose a new mycoheterotrophic genus, Relictithismia Suetsugu & Tagane (Thismiaceae), with its monotypic species Relictithismia kimotsukiensis Suetsugu, Yas.Nakam. & Tagane from Kimotsuki Mountains in the Osumi Peninsula, Kagoshima Prefecture, Kyushu Island, southern Japan. Relictithismia resembles Haplothismia Airy Shaw in having a cluster of tuberous roots, a feature previously observed only in this genus within the family Thismiaceae. However, it differs in having solitary flowers (vs. 2-6-flowered pseudo-raceme in Haplothismia), anther thecae largely separated (vs. connate), and the presence of an annulus (vs. absent). Additionally, Relictithismia differs from the geographically overlapping genus Thismia Griff. in its stamen structure and the position of the annulus. In Relictithismia, the stamens lack connectives, and its free filaments arise from the annulus located inside the perianth mouth, while in Thismia, the stamens typically have connate connectives, forming a staminal tube pendulous from the annulus located at the mouth of the floral tube. Our morphological and phylogenetic data indicated that R. kimotsukiensis holds an early-diverging position within the family, situated outside the Old World Thismia clade. This paper offers an extensive description and color photographs of R. kimotsukiensis, complemented by notes on its phylogenetic relationship and evolutionary history.
{"title":"Relictithismia kimotsukiensis, a new genus and species of Thismiaceae from southern Japan with discussions on its phylogenetic relationship.","authors":"Kenji Suetsugu, Yasunori Nakamura, Takafumi Nakano, Shuichiro Tagane","doi":"10.1007/s10265-024-01532-5","DOIUrl":"10.1007/s10265-024-01532-5","url":null,"abstract":"<p><p>The family Thismiaceae, known as \"fairy lanterns\" for their urn- or bell-shaped flowers with basally fused tepals, consists of non-photosynthetic flowering monocots mainly in tropical regions, extending into subtropical and temperate areas. Here, we propose a new mycoheterotrophic genus, Relictithismia Suetsugu & Tagane (Thismiaceae), with its monotypic species Relictithismia kimotsukiensis Suetsugu, Yas.Nakam. & Tagane from Kimotsuki Mountains in the Osumi Peninsula, Kagoshima Prefecture, Kyushu Island, southern Japan. Relictithismia resembles Haplothismia Airy Shaw in having a cluster of tuberous roots, a feature previously observed only in this genus within the family Thismiaceae. However, it differs in having solitary flowers (vs. 2-6-flowered pseudo-raceme in Haplothismia), anther thecae largely separated (vs. connate), and the presence of an annulus (vs. absent). Additionally, Relictithismia differs from the geographically overlapping genus Thismia Griff. in its stamen structure and the position of the annulus. In Relictithismia, the stamens lack connectives, and its free filaments arise from the annulus located inside the perianth mouth, while in Thismia, the stamens typically have connate connectives, forming a staminal tube pendulous from the annulus located at the mouth of the floral tube. Our morphological and phylogenetic data indicated that R. kimotsukiensis holds an early-diverging position within the family, situated outside the Old World Thismia clade. This paper offers an extensive description and color photographs of R. kimotsukiensis, complemented by notes on its phylogenetic relationship and evolutionary history.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"411-422"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-18DOI: 10.1007/s10265-024-01525-4
Kyohei Takano, Hajime Ikeda, Kojiro Takanashi
Pyrrolizidine alkaloids (PAs) are specialized metabolites that are produced by various plant families that act as defense compounds against herbivores. On the other hand, certain lepidopteran insects uptake and utilize these PAs as defense compounds against their predators and as precursors of their sex pheromones. Adult males of Parantica sita, a danaine butterfly, convert PAs into their sex pheromones. In early summer, P. sita swarms over the flowers of Myosotis scorpioides, which belongs to the family Boraginaceae. M. scorpioides produces PAs, but the organs in which PAs are produced and whether P. sita utilizes PAs in M. scorpioides are largely unknown. In the present study, we clarified that M. scorpioides accumulates retronecine-core PAs in N-oxide form in all organs, including flowers. We also identified two M. scorpioides genes encoding homospermidine synthase (HSS), a key enzyme in the PA biosynthetic pathway, and clarified that these genes are expressed in all organs where PAs accumulate. Phylogenetic analysis suggested that these two HSS genes were originated from gene duplication of deoxyhypusine synthase gene like other HSS genes in PA-producing plants. These results suggest that PAs are synthesized and accumulated in the flower of M. scorpioides and provide a possibility for a PA-mediated interaction between P. sita and M. scorpioides.
吡咯里西啶生物碱(PAs)是多种植物产生的特殊代谢物,可作为抵御食草动物的防御化合物。另一方面,某些鳞翅目昆虫吸收并利用这些吡咯烷酮作为抵御天敌的防御化合物以及性信息素的前体。蝶形目蝴蝶 Parantica sita 的雄性成虫会将 PAs 转化为性信息素。初夏时节,P. sita 蜂拥到紫草科植物 Myosotis scorpioides 的花朵上。M.scorpioides会产生PAs,但产生PAs的器官以及P. sita是否会利用M.scorpioides中的PAs目前尚不清楚。在本研究中,我们明确了蝎尾草在包括花在内的所有器官中都积累了 N-氧化物形式的 retronecine-core PAs。我们还鉴定了两个 M. scorpioides 基因,它们编码 PA 生物合成途径中的一个关键酶--高橙皮苷合成酶(HSS),并明确了这些基因在所有积累 PA 的器官中均有表达。系统进化分析表明,这两个 HSS 基因与 PA 生产植物中的其他 HSS 基因一样,起源于脱氧羽扇豆苷合成酶基因的复制。这些结果表明,PAs 在蝎尾草花中合成和积累,并为 P. sita 和蝎尾草之间由 PA 介导的相互作用提供了可能性。
{"title":"Pyrrolizidine alkaloids are synthesized and accumulated in flower of Myosotis scorpioides.","authors":"Kyohei Takano, Hajime Ikeda, Kojiro Takanashi","doi":"10.1007/s10265-024-01525-4","DOIUrl":"10.1007/s10265-024-01525-4","url":null,"abstract":"<p><p>Pyrrolizidine alkaloids (PAs) are specialized metabolites that are produced by various plant families that act as defense compounds against herbivores. On the other hand, certain lepidopteran insects uptake and utilize these PAs as defense compounds against their predators and as precursors of their sex pheromones. Adult males of Parantica sita, a danaine butterfly, convert PAs into their sex pheromones. In early summer, P. sita swarms over the flowers of Myosotis scorpioides, which belongs to the family Boraginaceae. M. scorpioides produces PAs, but the organs in which PAs are produced and whether P. sita utilizes PAs in M. scorpioides are largely unknown. In the present study, we clarified that M. scorpioides accumulates retronecine-core PAs in N-oxide form in all organs, including flowers. We also identified two M. scorpioides genes encoding homospermidine synthase (HSS), a key enzyme in the PA biosynthetic pathway, and clarified that these genes are expressed in all organs where PAs accumulate. Phylogenetic analysis suggested that these two HSS genes were originated from gene duplication of deoxyhypusine synthase gene like other HSS genes in PA-producing plants. These results suggest that PAs are synthesized and accumulated in the flower of M. scorpioides and provide a possibility for a PA-mediated interaction between P. sita and M. scorpioides.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"455-462"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-14DOI: 10.1007/s10265-024-01522-7
Suk Ling Wee, Shwu Bing Tan, Sue Han Tan, Bernard Kok Bang Lee
Despite being the world's largest single-flower, Rafflesia's biology and life history are still poorly understood due to its cryptic growth strategy on Tetrastigma vines. Previous studies have been mostly short-term, contrary to Rafflesia's long development period before blooming. Bud development and flower phenology of R. cantleyi was studied in a dipterocarp forest in Lata Jarum, Peninsular Malaysia. Seven populations, consisting of 247 buds, were monitored fortnightly for 65 months in two discrete studies between 2009 and 2018. The bud size distribution of R. cantleyi is dynamic, progressively changing from small flower buds to larger buds before flowering. Buds < 5.0 cm across had the slowest growth and highest mortality rates, while those > 15.0 cm across demonstrated accelerated growth. The bud growth profiles of the same site clustered distinctively regardless of sex with successful blooming rate that varied greatly between sites, prompting speculation about their relatedness to the sites' physical attributes. We reported the first female-dominated population in Rafflesia's life history. Rafflesia cantleyi's blooming rate at Lata Jarum is moderate to high, with non-seasonal flowering phenology as evident by the lack of synchronisation and consistency between flowering and local rainfall patterns. Based on the field data of the present study and the published information of other Rafflesia species, R. cantleyi's life cycle was estimated between 4.0 and 5.3 years. Our findings further explain Rafflesia's biology and life history and highlight the gap in knowledge of the natural habitats on the endoparasite's growth and fate potentially for future conservation and study.
{"title":"Bud development, flower phenology and life history of holoparasitic Rafflesia cantleyi.","authors":"Suk Ling Wee, Shwu Bing Tan, Sue Han Tan, Bernard Kok Bang Lee","doi":"10.1007/s10265-024-01522-7","DOIUrl":"10.1007/s10265-024-01522-7","url":null,"abstract":"<p><p>Despite being the world's largest single-flower, Rafflesia's biology and life history are still poorly understood due to its cryptic growth strategy on Tetrastigma vines. Previous studies have been mostly short-term, contrary to Rafflesia's long development period before blooming. Bud development and flower phenology of R. cantleyi was studied in a dipterocarp forest in Lata Jarum, Peninsular Malaysia. Seven populations, consisting of 247 buds, were monitored fortnightly for 65 months in two discrete studies between 2009 and 2018. The bud size distribution of R. cantleyi is dynamic, progressively changing from small flower buds to larger buds before flowering. Buds < 5.0 cm across had the slowest growth and highest mortality rates, while those > 15.0 cm across demonstrated accelerated growth. The bud growth profiles of the same site clustered distinctively regardless of sex with successful blooming rate that varied greatly between sites, prompting speculation about their relatedness to the sites' physical attributes. We reported the first female-dominated population in Rafflesia's life history. Rafflesia cantleyi's blooming rate at Lata Jarum is moderate to high, with non-seasonal flowering phenology as evident by the lack of synchronisation and consistency between flowering and local rainfall patterns. Based on the field data of the present study and the published information of other Rafflesia species, R. cantleyi's life cycle was estimated between 4.0 and 5.3 years. Our findings further explain Rafflesia's biology and life history and highlight the gap in knowledge of the natural habitats on the endoparasite's growth and fate potentially for future conservation and study.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"423-443"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-22DOI: 10.1007/s10265-024-01533-4
Laurent Nussaume, Satomi Kanno
Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.
{"title":"Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants.","authors":"Laurent Nussaume, Satomi Kanno","doi":"10.1007/s10265-024-01533-4","DOIUrl":"10.1007/s10265-024-01533-4","url":null,"abstract":"<p><p>Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"297-306"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K+ transporter/high-affinity K+ transporter/K+ uptake protein/K+ transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K+ uptake under high-Na conditions. These results suggested that SNG has an effective K+ acquisition system supported by OsHAK17 functioning in saline-alkaline environments.
{"title":"Potassium transporter OsHAK17 may contribute to saline-alkaline tolerant mechanisms in rice (Oryza sativa).","authors":"Mami Nampei, Hiromu Ogi, Tanee Sreewongchai, Sho Nishida, Akihiro Ueda","doi":"10.1007/s10265-024-01529-0","DOIUrl":"10.1007/s10265-024-01529-0","url":null,"abstract":"<p><p>Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K<sup>+</sup> transporter/high-affinity K<sup>+</sup> transporter/K<sup>+</sup> uptake protein/K<sup>+</sup> transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K<sup>+</sup> uptake under high-Na conditions. These results suggested that SNG has an effective K<sup>+</sup> acquisition system supported by OsHAK17 functioning in saline-alkaline environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"505-520"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Chilean Puya species, Puya coerulea var. violacea and P. chilensis bear blue and pale-yellow flowers, respectively, while P. alpestris considered to be their hybrid-derived species has unique turquoise flowers. In this study, the chemical basis underlying the different coloration of the three Puya species was explored. We first isolated and identified three anthocyanins: delphinidin 3,3',5'-tri-O-glucoside, delphinidin 3,3'-di-O-glucoside and delphinidin 3-O-glucoside; seven flavonols: quercetin 3-O-rutinoside-3'-O-glucoside, quercetin 3,3'-di-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-rutinoside, myricetin 3,3',5'-tri-O-glucoside, myricetin 3,3'-di-O-glucoside and laricitrin 3,5'-di-O-glucoside; and six flavones: luteolin 4'-O-glucoside, apigenin 4'-O-glucoside, tricetin 4'-O-glucoside, tricetin 3',5'-di-O-glucoside, tricetin 3'-O-glucoside and selagin 5'-O-glucoside, which is a previously undescribed flavone, from their petals. We also compared compositions of floral flavonoid and their aglycone among these species, which suggested that the turquoise species P. alpestris has an essentially intermediate composition between the blue and pale-yellow species. The vacuolar pH was relatively higher in the turquoise (pH 6.2) and pale-yellow (pH 6.2) flower species, while that of blue flower species was usual (pH 5.2). The flower color was reconstructed in vitro using isolated anthocyanin, flavonol and flavone at neutral and acidic pH, and its color was analyzed by reflectance spectra and the visual modeling of their avian pollinators. The modeling demonstrated that the higher pH of the turquoise and pale-yellow species enhances the chromatic contrast and spectral purity. The precise regulation of flower color by flavonoid composition and vacuolar pH may be adapted to the visual perception of their avian pollinator vision.
{"title":"Floral pigments and their perception by avian pollinators in three Chilean Puya species.","authors":"Takayuki Mizuno, Shinnosuke Mori, Kohtaro Sugahara, Tomohisa Yukawa, Satoshi Koi, Tsukasa Iwashina","doi":"10.1007/s10265-024-01531-6","DOIUrl":"10.1007/s10265-024-01531-6","url":null,"abstract":"<p><p>The Chilean Puya species, Puya coerulea var. violacea and P. chilensis bear blue and pale-yellow flowers, respectively, while P. alpestris considered to be their hybrid-derived species has unique turquoise flowers. In this study, the chemical basis underlying the different coloration of the three Puya species was explored. We first isolated and identified three anthocyanins: delphinidin 3,3',5'-tri-O-glucoside, delphinidin 3,3'-di-O-glucoside and delphinidin 3-O-glucoside; seven flavonols: quercetin 3-O-rutinoside-3'-O-glucoside, quercetin 3,3'-di-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-rutinoside, myricetin 3,3',5'-tri-O-glucoside, myricetin 3,3'-di-O-glucoside and laricitrin 3,5'-di-O-glucoside; and six flavones: luteolin 4'-O-glucoside, apigenin 4'-O-glucoside, tricetin 4'-O-glucoside, tricetin 3',5'-di-O-glucoside, tricetin 3'-O-glucoside and selagin 5'-O-glucoside, which is a previously undescribed flavone, from their petals. We also compared compositions of floral flavonoid and their aglycone among these species, which suggested that the turquoise species P. alpestris has an essentially intermediate composition between the blue and pale-yellow species. The vacuolar pH was relatively higher in the turquoise (pH 6.2) and pale-yellow (pH 6.2) flower species, while that of blue flower species was usual (pH 5.2). The flower color was reconstructed in vitro using isolated anthocyanin, flavonol and flavone at neutral and acidic pH, and its color was analyzed by reflectance spectra and the visual modeling of their avian pollinators. The modeling demonstrated that the higher pH of the turquoise and pale-yellow species enhances the chromatic contrast and spectral purity. The precise regulation of flower color by flavonoid composition and vacuolar pH may be adapted to the visual perception of their avian pollinator vision.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"395-409"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-01-08DOI: 10.1007/s10265-023-01513-0
Naohiko Ohama, Shuichi Yanagisawa
The GARP (Golden2, ARR-B, Psr1) family proteins with a conserved DNA-binding domain, called the B-motif, are plant-specific transcription factors involved in the regulation of various physiological processes. The GARP family proteins are divided into members that function as monomeric transcription factors, and members that function as transcription factors in the dimeric form, owing to the presence of a coiled-coil dimerization domain. Recent studies revealed that the dimer-forming GARP family members, which are further divided into the PHR1 and NIGT1 subfamilies, play critical roles in the regulation of phosphorus (P) and nitrogen (N) acquisition. In this review, we present a general overview of the GARP family proteins and discuss how several members of the PHR1 and NIGT1 subfamilies are involved in the coordinated acquisition of P and N in response to changes in environmental nutrient conditions, while mainly focusing on the recent findings that enhance our knowledge of the roles of PHR1 and NIGT1 in phosphate starvation signaling and nitrate signaling.
{"title":"Role of GARP family transcription factors in the regulatory network for nitrogen and phosphorus acquisition.","authors":"Naohiko Ohama, Shuichi Yanagisawa","doi":"10.1007/s10265-023-01513-0","DOIUrl":"10.1007/s10265-023-01513-0","url":null,"abstract":"<p><p>The GARP (Golden2, ARR-B, Psr1) family proteins with a conserved DNA-binding domain, called the B-motif, are plant-specific transcription factors involved in the regulation of various physiological processes. The GARP family proteins are divided into members that function as monomeric transcription factors, and members that function as transcription factors in the dimeric form, owing to the presence of a coiled-coil dimerization domain. Recent studies revealed that the dimer-forming GARP family members, which are further divided into the PHR1 and NIGT1 subfamilies, play critical roles in the regulation of phosphorus (P) and nitrogen (N) acquisition. In this review, we present a general overview of the GARP family proteins and discuss how several members of the PHR1 and NIGT1 subfamilies are involved in the coordinated acquisition of P and N in response to changes in environmental nutrient conditions, while mainly focusing on the recent findings that enhance our knowledge of the roles of PHR1 and NIGT1 in phosphate starvation signaling and nitrate signaling.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"331-341"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-13DOI: 10.1007/s10265-023-01509-w
Yuri Lee, Syou Kato, Jae Young Kim, Yoshiko Shimono, Takashi Shiga
Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.
Lemna aequinoctialis Welw.是一种广泛分布的物种,具有多种生理和分子特性。花的特征是推断分类地位的重要因素;然而,由于很少观察到 Lemna 的花,对其进行研究一直是一个长期的挑战。本研究通过诱导开花进行了生理和形态分析,并根据在日本、韩国、泰国和美国 70 个地方发现的 70 株 L. aequinoctialis sensu Landolt(1986 年)的两个叶绿体 DNA 位点(matK、atpF-atpH 属间间隔)进行了分子分析。根据轴生条件,共观察到 13 个品系的 752 个开花叶片。在这些品系中发现了花器官发育的两种不同趋势--雌花和雄花。它们的生理特征被分为两组,根据叶片厚度、根帽和花药大小显示出不同的形态特征。分子分析表明,有两个品系与两个生理组相对应。根据对 L. aoukikusa 命名法的描述,这两个品系被确定为 L. aequinoctialis sensu Beppu 等人(1985 年)和 L. aoukikusa Beppu 等人 Murata。这两个类群被认为是独立的类群,可以作为不同的种处理。此外,L. aoukikusa 的分布范围不仅限于日本。
{"title":"Two lineages of Lemna aequinoctialis (Araceae, Lemnoideae) based on physiology, morphology, and phylogeny.","authors":"Yuri Lee, Syou Kato, Jae Young Kim, Yoshiko Shimono, Takashi Shiga","doi":"10.1007/s10265-023-01509-w","DOIUrl":"10.1007/s10265-023-01509-w","url":null,"abstract":"<p><p>Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"359-376"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-22DOI: 10.1007/s10265-024-01520-9
Tetsuro Mimura, Robert Reid
The present review explains briefly the importance of phosphorus in the biological activities and states that the most phosphorus of living organisms is absorbed by plants from the soil. Next, previous studies on the mechanisms of phosphate uptake by plants are reviewed as H+-dependent or Na+-dependent co-transport systems and the phosphate environment in which plants grow is discussed. The evolution of transporter genes and their regulation mechanisms of expression is discussed in relation to the phosphorus environment.
{"title":"Phosphate environment and phosphate uptake studies: past and future.","authors":"Tetsuro Mimura, Robert Reid","doi":"10.1007/s10265-024-01520-9","DOIUrl":"10.1007/s10265-024-01520-9","url":null,"abstract":"<p><p>The present review explains briefly the importance of phosphorus in the biological activities and states that the most phosphorus of living organisms is absorbed by plants from the soil. Next, previous studies on the mechanisms of phosphate uptake by plants are reviewed as H<sup>+</sup>-dependent or Na<sup>+</sup>-dependent co-transport systems and the phosphate environment in which plants grow is discussed. The evolution of transporter genes and their regulation mechanisms of expression is discussed in relation to the phosphorus environment.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"307-314"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}