首页 > 最新文献

Journal of Physics B: Atomic, Molecular and Optical Physics最新文献

英文 中文
Quantum optics in MATLAB MATLAB 中的量子光学
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-18 DOI: 10.1088/1361-6455/ad2e2f
Nilakantha Meher
We provide a MATLAB numerical guide at the beginner level to support students starting their research careers in theoretical quantum optics and related areas. These resources are also valuable for undergraduate and graduate students working on semester projects in similar fields.
我们提供了初级水平的 MATLAB 数值指南,以支持学生开始理论量子光学及相关领域的研究生涯。这些资源对于从事类似领域学期项目的本科生和研究生也很有价值。
{"title":"Quantum optics in MATLAB","authors":"Nilakantha Meher","doi":"10.1088/1361-6455/ad2e2f","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e2f","url":null,"abstract":"We provide a MATLAB numerical guide at the beginner level to support students starting their research careers in theoretical quantum optics and related areas. These resources are also valuable for undergraduate and graduate students working on semester projects in similar fields.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge exchange of slow highly charged ions from an electron beam ion trap with surfaces and 2D materials 来自电子束离子阱的慢速高电荷离子与表面和二维材料的电荷交换
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-18 DOI: 10.1088/1361-6455/ad2e2a
A Niggas, M Werl, F Aumayr, R A Wilhelm
Electron beam ion traps allow studies of slow highly charged ion transmission through freestanding 2D materials as an universal testbed for surface science under extreme conditions. Here we review recent studies on charge exchange of highly charged ions in 2D materials. Since the interaction time with these atomically thin materials is limited to only a few femtoseconds, an indirect timing information will be gained. We will therefore discuss the interaction separated in three participating time regimes: energy deposition (charge exchange), energy release (secondary particle emission), and energy retention (material modification).
电子束离子阱可以研究独立二维材料中缓慢的高电荷离子传输,是极端条件下表面科学的通用试验平台。在此,我们回顾了最近关于二维材料中高电荷离子电荷交换的研究。由于与这些原子级薄材料的相互作用时间仅限于几飞秒,因此我们将获得间接的时间信息。因此,我们将讨论在三个参与时间段内分离的相互作用:能量沉积(电荷交换)、能量释放(二次粒子发射)和能量保持(材料改性)。
{"title":"Charge exchange of slow highly charged ions from an electron beam ion trap with surfaces and 2D materials","authors":"A Niggas, M Werl, F Aumayr, R A Wilhelm","doi":"10.1088/1361-6455/ad2e2a","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e2a","url":null,"abstract":"Electron beam ion traps allow studies of slow highly charged ion transmission through freestanding 2D materials as an universal testbed for surface science under extreme conditions. Here we review recent studies on charge exchange of highly charged ions in 2D materials. Since the interaction time with these atomically thin materials is limited to only a few femtoseconds, an indirect timing information will be gained. We will therefore discuss the interaction separated in three participating time regimes: energy deposition (charge exchange), energy release (secondary particle emission), and energy retention (material modification).","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"34 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using ‘designer’ coherences to control electron transfer in a model bis(hydrazine) radical cation: can we still distinguish between direct and superexchange mechanisms? 利用 "设计者 "相干性控制双(肼)自由基阳离子模型中的电子转移:我们还能区分直接交换机制和超交换机制吗?
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-14 DOI: 10.1088/1361-6455/ad2e31
Mercè Deumal, Jordi Ribas-Ariño, Michael A Robb
We have simulated two mechanisms, direct and superexchange, for the electron transfer in a model Bis(hydrazine) Radical Cation, which consists of two hydrazine moieties coupled by a benzene ring. The computations, that are inspired by the attochemistry approach, focus on the electron dynamics arising from a coherent superposition of four cationic states. The electron dynamics, originating from a solution of the time dependent Schrödinger equation within the Ehrenfest method, is coupled to the relaxation of the nuclei. Both direct (ca. 15 fs dynamics) and superexchange (ca. 2 fs dynamics) mechanisms are observed and turn out to lie on a continuum depending on the strength of the coupling of the benzene bridge electron dynamics with the hydrazine chromophore dynamics. This contrasts with the chemical pathway approach where the direct mechanism is completely non-adiabatic via a conical intersection, while the superexchange mechanism involves an intermediate radical with the unpaired electron localized on the benzene ring. Thus, with the attochemistry-inspired electron dynamics approach, one can distinguish direct from superexchange mechanisms depending on the strength of the coupling of two types of electron dynamics: the slow hydrazine dynamics (ca. 15 fs) and the fast benzene linker dynamics (ca. 2 fs). In this model bis(hydrazine) radical cation, only when the intermediate coupler is in an anti-quinoid state, does one see the coupling of the bridge and hydrazine chromophore dynamics.
我们模拟了双肼自由基阳离子模型中电子转移的两种机制:直接交换和超交换。计算受原子化学方法的启发,重点关注四个阳离子状态的相干叠加所产生的电子动力学。电子动力学源于艾伦费斯特方法中与时间相关的薛定谔方程的求解,与原子核的弛豫耦合。根据苯桥电子动力学与肼发色团动力学的耦合强度,可以观察到直接(约 15 fs 动力学)和超交换(约 2 fs 动力学)机制,并发现它们处于一个连续统一体中。这与化学途径方法形成了鲜明对比,在化学途径方法中,直接机制是通过锥形交点实现完全非绝热的,而超交换机制则涉及到一个中间自由基,其非配对电子定位在苯环上。因此,通过受化学启发的电子动力学方法,我们可以根据两种电子动力学耦合的强度来区分直接机制和超交换机制:慢速肼动力学(约 15 fs)和快速苯连接体动力学(约 2 fs)。在这个双(肼)自由基阳离子模型中,只有当中间耦合剂处于反醌态时,才能看到桥和肼发色团动力学的耦合。
{"title":"Using ‘designer’ coherences to control electron transfer in a model bis(hydrazine) radical cation: can we still distinguish between direct and superexchange mechanisms?","authors":"Mercè Deumal, Jordi Ribas-Ariño, Michael A Robb","doi":"10.1088/1361-6455/ad2e31","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e31","url":null,"abstract":"We have simulated two mechanisms, direct and superexchange, for the electron transfer in a <italic toggle=\"yes\">model Bis(hydrazine) Radical Cation</italic>, which consists of two hydrazine moieties coupled by a benzene ring. The computations, that are inspired by the attochemistry approach, focus on the electron dynamics arising from a coherent superposition of four cationic states. The electron dynamics, originating from a solution of the time dependent Schrödinger equation within the Ehrenfest method, is coupled to the relaxation of the nuclei. Both direct (<italic toggle=\"yes\">ca</italic>. 15 fs dynamics) and superexchange (<italic toggle=\"yes\">ca.</italic> 2 fs dynamics) mechanisms are observed and turn out to lie on a continuum depending on the strength of the coupling of the benzene bridge electron dynamics with the hydrazine chromophore dynamics. This contrasts with the chemical pathway approach where the direct mechanism is completely non-adiabatic via a conical intersection, while the superexchange mechanism involves an intermediate radical with the unpaired electron localized on the benzene ring. Thus, with the attochemistry-inspired electron dynamics approach, one can distinguish direct from superexchange mechanisms depending on the strength of the coupling of two types of electron dynamics: the slow hydrazine dynamics (<italic toggle=\"yes\">ca</italic>. 15 fs) and the fast benzene linker dynamics (<italic toggle=\"yes\">ca.</italic> 2 fs). In this model bis(hydrazine) radical cation, only when the intermediate coupler is in an anti-quinoid state, does one see the coupling of the bridge and hydrazine chromophore dynamics.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"37 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Both experimental and molecular dynamics approaches highlight the central role of interfacial water for radical production by irradiated gold nanoparticles 实验和分子动力学方法都强调了界面水在辐照金纳米粒子产生自由基过程中的核心作用
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-13 DOI: 10.1088/1361-6455/ad2e28
Emilie Brun, Rika Tandiana, Manon Gilles, Yannis Cheref, Nguyen-Thi Van-Oanh, Carine Clavaguera, Cécile Sicard-Roselli
Nanoparticles devoted to improve radiotherapy treatments are an efficient tool if they can induce the formation of deleterious species in the tumor. Their interaction with radiation is responsible for radical production but in spite of the numerous studies mostly with cells, no consensus has been reached about radical formation mechanism. In order to gain knowledge in the physico-chemical step of this phenomenon, we applied a very sensitive test to quantify hydroxyl radicals and electrons produced when gold atoms, organized as nanoparticles or as a salt in solution, are irradiated by keV and MeV photons (x- and γ- rays). The crucial role of interfacial water is suggested to explain the high quantity of radicals measured for nanoparticles. These experimental data were supplemented by classical molecular dynamics simulations, revealing a specific organization of the water hydrogen bonding network at the nanoparticle surface which could be a key component in the mechanism of radical production by irradiated colloidal suspensions.
如果纳米粒子能够诱导肿瘤中有害物质的形成,那么它就是一种有效的工具,可以改善放射治疗的效果。纳米粒子与辐射的相互作用会产生自由基,但尽管进行了大量研究,主要是针对细胞的研究,但对自由基的形成机制尚未达成共识。为了了解这一现象的物理化学步骤,我们采用了一种非常灵敏的测试方法,对以纳米颗粒或盐溶液形式存在的金原子在接受 keV 和 MeV 光子(x 射线和 γ 射线)照射时产生的羟基自由基和电子进行量化。界面水的关键作用被认为可以解释在纳米粒子中测得的大量自由基。经典分子动力学模拟对这些实验数据进行了补充,揭示了纳米粒子表面水氢键网络的特殊组织结构,这可能是辐照胶体悬浮液产生自由基机理的关键组成部分。
{"title":"Both experimental and molecular dynamics approaches highlight the central role of interfacial water for radical production by irradiated gold nanoparticles","authors":"Emilie Brun, Rika Tandiana, Manon Gilles, Yannis Cheref, Nguyen-Thi Van-Oanh, Carine Clavaguera, Cécile Sicard-Roselli","doi":"10.1088/1361-6455/ad2e28","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e28","url":null,"abstract":"Nanoparticles devoted to improve radiotherapy treatments are an efficient tool if they can induce the formation of deleterious species in the tumor. Their interaction with radiation is responsible for radical production but in spite of the numerous studies mostly with cells, no consensus has been reached about radical formation mechanism. In order to gain knowledge in the physico-chemical step of this phenomenon, we applied a very sensitive test to quantify hydroxyl radicals and electrons produced when gold atoms, organized as nanoparticles or as a salt in solution, are irradiated by keV and MeV photons (x- and <italic toggle=\"yes\">γ</italic>- rays). The crucial role of interfacial water is suggested to explain the high quantity of radicals measured for nanoparticles. These experimental data were supplemented by classical molecular dynamics simulations, revealing a specific organization of the water hydrogen bonding network at the nanoparticle surface which could be a key component in the mechanism of radical production by irradiated colloidal suspensions.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"37 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production and protection of entanglement via vacuum induced coherences 通过真空诱导相干产生和保护纠缠
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-13 DOI: 10.1088/1361-6455/ad2d5d
Anjali N Nair, R Arun
The entanglement dynamics of a pair of three-level V-type atoms decaying spontaneously in a common vacuum reservoir is investigated. Under the condition that the decaying transitions in the atoms have parallel dipole moments, the effect of coherences induced by spontaneous emission is considered in the atomic dynamics. We show that vacuum-induced coherence (VIC) and collective effects in atomic decay play a significant role in the creation of entanglement. By using negativity as a measure of entanglement, we study the time evolution of entanglement for initial separable and generalized Dicke states as well as maximally entangled qutrit states. We show that the effects of VIC enhance the production of entanglement from initial separable states of the atoms. We also show that the entanglement can be protected in steady-state for atoms evolving from initial entangled states. The amount of entanglement that can be preserved is more in the presence of VIC than in its absence.
研究了一对三电平 V 型原子在共同真空储层中自发衰变的纠缠动力学。在原子衰变跃迁具有平行偶极矩的条件下,原子动力学考虑了自发发射诱导的相干效应。我们表明,原子衰变中的真空诱导相干性(VIC)和集体效应在纠缠的产生中起着重要作用。通过使用负性作为纠缠度量,我们研究了初始可分离态和广义迪克态以及最大纠缠qutrit态的纠缠时间演化。我们发现,VIC 的效应增强了原子初始可分离态的纠缠生成。我们还证明,对于从初始纠缠态演化而来的原子,纠缠可以在稳态中得到保护。在有 VIC 的情况下,能保存的纠缠量比没有 VIC 的情况下更多。
{"title":"Production and protection of entanglement via vacuum induced coherences","authors":"Anjali N Nair, R Arun","doi":"10.1088/1361-6455/ad2d5d","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2d5d","url":null,"abstract":"The entanglement dynamics of a pair of three-level V-type atoms decaying spontaneously in a common vacuum reservoir is investigated. Under the condition that the decaying transitions in the atoms have parallel dipole moments, the effect of coherences induced by spontaneous emission is considered in the atomic dynamics. We show that vacuum-induced coherence (VIC) and collective effects in atomic decay play a significant role in the creation of entanglement. By using negativity as a measure of entanglement, we study the time evolution of entanglement for initial separable and generalized Dicke states as well as maximally entangled qutrit states. We show that the effects of VIC enhance the production of entanglement from initial separable states of the atoms. We also show that the entanglement can be protected in steady-state for atoms evolving from initial entangled states. The amount of entanglement that can be preserved is more in the presence of VIC than in its absence.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"63 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High harmonic generation in monolayer indium nitride 单层氮化铟中的高次谐波生成
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-12 DOI: 10.1088/1361-6455/ad2e2e
Xiaoyu Liu, Zhiqiang Ji, Chenglong Wu, Shasha Li, Hong Wu, Feng Li, Yong Pu
In our work, we theoretically investigate high harmonic generation (HHG) in monolayer hexagonal indium nitride (h-InN) based on the semiconductor Bloch equation under strong laser fields. Compared with h-BN, there is no multiplateau in h-InN. This is because the intraband mechanism dominates the total HHG, and the harmonic generated by the intraband current is about three orders of magnitude higher than that generated by the interband polarization. We find that the higher order part of the HHG is mainly supplied by the interband current, which can be analyzed on the basis of the transition dipole moments between the energy bands. In addition, we found that the HHG of h-InN is sensitive to the external strains due to the modified band dispersion in the electronic structures. This study provides a useful reference for understanding the microscopic mechanism of laser-solid interaction.
在我们的工作中,我们基于半导体布洛赫方程,从理论上研究了单层六方氮化铟(h-InN)在强激光场下的高次谐波发生(HHG)。与 h-BN 相比,h-InN 中不存在多峰。这是因为带内机制主导了整个 HHG,而带内电流产生的谐波比带间极化产生的谐波高出约三个数量级。我们发现 HHG 的高阶部分主要由带间电流提供,这可以根据能带间的过渡偶极矩来分析。此外,我们还发现 h-InN 的 HHG 对外部应变很敏感,这是由于电子结构中的带色散发生了改变。这项研究为理解激光与固体相互作用的微观机制提供了有益的参考。
{"title":"High harmonic generation in monolayer indium nitride","authors":"Xiaoyu Liu, Zhiqiang Ji, Chenglong Wu, Shasha Li, Hong Wu, Feng Li, Yong Pu","doi":"10.1088/1361-6455/ad2e2e","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e2e","url":null,"abstract":"In our work, we theoretically investigate high harmonic generation (HHG) in monolayer hexagonal indium nitride (<italic toggle=\"yes\">h</italic>-InN) based on the semiconductor Bloch equation under strong laser fields. Compared with <italic toggle=\"yes\">h</italic>-BN, there is no multiplateau in <italic toggle=\"yes\">h-</italic>InN. This is because the intraband mechanism dominates the total HHG, and the harmonic generated by the intraband current is about three orders of magnitude higher than that generated by the interband polarization. We find that the higher order part of the HHG is mainly supplied by the interband current, which can be analyzed on the basis of the transition dipole moments between the energy bands. In addition, we found that the HHG of <italic toggle=\"yes\">h</italic>-InN is sensitive to the external strains due to the modified band dispersion in the electronic structures. This study provides a useful reference for understanding the microscopic mechanism of laser-solid interaction.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"21 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable single-photon transport mediated by a time-modulated Jaynes–Cummings model 由时间调制杰尼斯-康明斯模型介导的可控单光子传输
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-12 DOI: 10.1088/1361-6455/ad2e2b
Haozhen Li, Yang Lan, Ran Zeng, Miao Hu, Mengmeng Xu, Xiuwen Xia, Jingping Xu, Yaping Yang
Controllable single-photon scattering in a one-dimensional waveguide coupled to a Jaynes–Cummings structure containing a time-modulated two-level atom interacting with a single-mode cavity is investigated. The photon transmission and reflection amplitudes are calculated by using an effective Floquet Hamiltonian in real space. The results show that the coupling between the atom and the cavity mode can dynamically be tuned via periodically modulating the atomic transition frequency. As a consequence, the scattering behaviors of the waveguide photons can be actively manipulated, and a controllable single-photon switch with high on-off ratio could be realized. More interestingly, the switch works well within a wide frequency region, i.e., the transmission of both resonant and off-resonant waveguide photons can be effectively switched on or off with appropriate system parameters. Furthermore, the proposed dynamically tunable switching scheme is robust against atomic dissipation associated with the help of atom-cavity coupling mismatch. Such single-photon device can be used as an elementary unit for various quantum information processing.
研究了与杰尼斯-康明斯结构耦合的一维波导中的可控单光子散射,杰尼斯-康明斯结构包含一个与单模腔相互作用的时间调制双水平原子。光子的传输和反射振幅是通过实空间的有效 Floquet Hamiltonian 计算得出的。结果表明,原子与空腔模式之间的耦合可以通过周期性调制原子转变频率来动态调整。因此,可以主动操纵波导光子的散射行为,实现高开关比的可控单光子开关。更有趣的是,这种开关在很宽的频率区域内都能很好地工作,也就是说,在适当的系统参数下,共振和非共振波导光子的传输都能被有效地打开或关闭。此外,所提出的动态可调开关方案还能抵御原子-空腔耦合失配带来的原子耗散。这种单光子器件可用作各种量子信息处理的基本单元。
{"title":"Controllable single-photon transport mediated by a time-modulated Jaynes–Cummings model","authors":"Haozhen Li, Yang Lan, Ran Zeng, Miao Hu, Mengmeng Xu, Xiuwen Xia, Jingping Xu, Yaping Yang","doi":"10.1088/1361-6455/ad2e2b","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e2b","url":null,"abstract":"Controllable single-photon scattering in a one-dimensional waveguide coupled to a Jaynes–Cummings structure containing a time-modulated two-level atom interacting with a single-mode cavity is investigated. The photon transmission and reflection amplitudes are calculated by using an effective Floquet Hamiltonian in real space. The results show that the coupling between the atom and the cavity mode can dynamically be tuned via periodically modulating the atomic transition frequency. As a consequence, the scattering behaviors of the waveguide photons can be actively manipulated, and a controllable single-photon switch with high on-off ratio could be realized. More interestingly, the switch works well within a wide frequency region, i.e., the transmission of both resonant and off-resonant waveguide photons can be effectively switched on or off with appropriate system parameters. Furthermore, the proposed dynamically tunable switching scheme is robust against atomic dissipation associated with the help of atom-cavity coupling mismatch. Such single-photon device can be used as an elementary unit for various quantum information processing.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector gap solitons of spin-orbit-coupled Bose-Einstein condensate in square optical lattice 方形光晶格中自旋轨道耦合玻色-爱因斯坦凝聚态的矢量间隙孤子
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-12 DOI: 10.1088/1361-6455/ad2e2c
Qingqing Wang, Pu Tu, Jinping Ma, Kaihua Shao, Xi Zhao, Baolong Xi, Yan Song, Yuren Shi
Vector gap solitons in quasi-two-dimensional Bose–Einstein condensate loaded in a square optical lattice with spin-orbit and Rabi coupling are investigated theoretically. The solitons are obtained by the Newton-Conjugate-Gradient method for various physical parameters. The stability properties of gap solitons are theoretically analyzed by direct nonlinear dynamical evolution. It is found that the existence of gap solitons is sensitive to the spin-orbit and Rabi coupling strength. Smaller Rabi coupling strength is beneficial for the excitation of solitons in the semi-infinite gap. Conversely, larger Rabi coupling strength is beneficial for the soliton excitation in the first gap. The dynamical stability of these gap solitons depends on the spin-orbit and Rabi coupling strength, and the location of the soliton in the bandgap. These findings may contribute to understanding the topological excitations in condensed matter systems.
本文从理论上研究了装载在具有自旋轨道和拉比耦合的方形光学晶格中的准二维玻色-爱因斯坦凝聚态的矢量间隙孤子。通过牛顿-共轭-梯度法获得了不同物理参数下的孤子。通过直接非线性动力学演化,从理论上分析了间隙孤子的稳定性。研究发现,间隙孤子的存在对自旋轨道和拉比耦合强度很敏感。较小的拉比耦合强度有利于在半无限间隙中激发孤子。相反,较大的拉比耦合强度有利于在第一间隙中激发孤子。这些间隙孤子的动力学稳定性取决于自旋轨道和拉比耦合强度,以及孤子在带隙中的位置。这些发现可能有助于理解凝聚态系统中的拓扑激发。
{"title":"Vector gap solitons of spin-orbit-coupled Bose-Einstein condensate in square optical lattice","authors":"Qingqing Wang, Pu Tu, Jinping Ma, Kaihua Shao, Xi Zhao, Baolong Xi, Yan Song, Yuren Shi","doi":"10.1088/1361-6455/ad2e2c","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e2c","url":null,"abstract":"Vector gap solitons in quasi-two-dimensional Bose–Einstein condensate loaded in a square optical lattice with spin-orbit and Rabi coupling are investigated theoretically. The solitons are obtained by the Newton-Conjugate-Gradient method for various physical parameters. The stability properties of gap solitons are theoretically analyzed by direct nonlinear dynamical evolution. It is found that the existence of gap solitons is sensitive to the spin-orbit and Rabi coupling strength. Smaller Rabi coupling strength is beneficial for the excitation of solitons in the semi-infinite gap. Conversely, larger Rabi coupling strength is beneficial for the soliton excitation in the first gap. The dynamical stability of these gap solitons depends on the spin-orbit and Rabi coupling strength, and the location of the soliton in the bandgap. These findings may contribute to understanding the topological excitations in condensed matter systems.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions 从光电子动量分布检索分子中随时间变化的键长的卷积神经网络
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-06 DOI: 10.1088/1361-6455/ad2e30
N I Shvetsov-Shilovski, M Lein
We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H2+ molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.
我们应用深度学习,利用光电子动量分布检索解离二维 H2+ 分子中随时间变化的键长。我们考虑了泵探针方案,并通过经典、半经典或量子力学处理原子核运动来计算强场电离产生的电子动量分布。在固定核间距下获得的动量分布上训练的卷积神经网络可以检索出随时间变化的键长,绝对误差为 0.2-0.3 a.u。
{"title":"Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions","authors":"N I Shvetsov-Shilovski, M Lein","doi":"10.1088/1361-6455/ad2e30","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2e30","url":null,"abstract":"We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H<inline-formula>\u0000<tex-math><?CDATA $_2^{+}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msubsup><mml:mi></mml:mi><mml:mn>2</mml:mn><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\u0000<inline-graphic xlink:href=\"bad2e30ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"44 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted optimization in small-scale atomic structure calculations: application to Au I 小尺度原子结构计算中的目标优化:金 I 的应用
IF 1.6 4区 物理与天体物理 Q3 OPTICS Pub Date : 2024-03-04 DOI: 10.1088/1361-6455/ad2b71
Sema Caliskan, Jon Grumer, Anish M Amarsi
The lack of reliable atomic data can be a severe limitation in astrophysical modelling, in particular of events such as kilonovae that require information on all neutron-capture elements across a wide range of ionization stages. Notably, the presence of non-orthonormalities between electron orbitals representing configurations that are close in energy can introduce significant inaccuracies in computed energies and transition probabilities. Here, we propose an explicit targeted optimization (TO) method that can effectively circumvent this concern while retaining an orthonormal orbital basis set. We illustrate this method within the framework of small-scale atomic structure models of Au I, using the Grasp2018 multiconfigurational Dirac–Hartree–Fock atomic structure code. By comparing to conventional optimization schemes we show how a TO approach improves the energy level positioning and ordering. TO also leads to better agreement with experimental data for the strongest E1 transitions. This illustrates how small-scale models can be significantly improved with minor computational costs if orbital non-orthonormalities are considered carefully. These results should prove useful to multi-element atomic structure calculations in, for example, astrophysical opacity applications involving neutron-capture elements.
缺乏可靠的原子数据会严重限制天体物理建模,尤其是千新星之类的事件,因为这些事件需要在广泛的电离阶段获得所有中子捕获元素的信息。值得注意的是,代表能量接近的构型的电子轨道之间存在非正交性,会给计算能量和转变概率带来很大误差。在此,我们提出了一种明确的目标优化(TO)方法,可以有效地规避这一问题,同时保留正交轨道基集。我们利用 Grasp2018 多构型 Dirac-Hartree-Fock 原子结构代码,在 Au I 的小尺度原子结构模型框架内说明了这种方法。通过与传统优化方案的比较,我们展示了 TO 方法如何改善能级定位和排序。对于最强的 E1 转变,TO 还能更好地与实验数据保持一致。这说明了如果仔细考虑轨道的非正交性,小尺度模型是如何以较小的计算成本得到显著改进的。这些结果将被证明对涉及中子捕获元素的天体物理不透明应用等方面的多元素原子结构计算有用。
{"title":"Targeted optimization in small-scale atomic structure calculations: application to Au I","authors":"Sema Caliskan, Jon Grumer, Anish M Amarsi","doi":"10.1088/1361-6455/ad2b71","DOIUrl":"https://doi.org/10.1088/1361-6455/ad2b71","url":null,"abstract":"The lack of reliable atomic data can be a severe limitation in astrophysical modelling, in particular of events such as kilonovae that require information on all neutron-capture elements across a wide range of ionization stages. Notably, the presence of non-orthonormalities between electron orbitals representing configurations that are close in energy can introduce significant inaccuracies in computed energies and transition probabilities. Here, we propose an explicit targeted optimization (TO) method that can effectively circumvent this concern while retaining an orthonormal orbital basis set. We illustrate this method within the framework of small-scale atomic structure models of Au I, using the <sc>Grasp2018</sc> multiconfigurational Dirac–Hartree–Fock atomic structure code. By comparing to conventional optimization schemes we show how a TO approach improves the energy level positioning and ordering. TO also leads to better agreement with experimental data for the strongest E1 transitions. This illustrates how small-scale models can be significantly improved with minor computational costs if orbital non-orthonormalities are considered carefully. These results should prove useful to multi-element atomic structure calculations in, for example, astrophysical opacity applications involving neutron-capture elements.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"216 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics B: Atomic, Molecular and Optical Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1