Sonia Sadiq, Rasheed Ahmad Khera, Ahmed M. Tawfeek, Mahmoud A. A. Ibrahim, Faheem Abbas, Sajjad Ali, Ahmed Mahal, Duan Meitao, Muhammad Waqas
The field of organic solar cells has witnessed notable advancements in the past few years, mostly due to the development of novel materials for the active layer. The current investigations reveal the potential of nine previously unexplored molecules (TP1–TP9) designed by end group modification of TPT4F molecule. These molecules were investigated at MPW1PW91/6-31G (d, p) with DFT and TD-DFT approach to study the various photovoltaic and geometrical parameters. The results obtained through computations indicated improvement in the investigated parameters. The terminal group modification shifted the absorption maximum towards longer wavelength in the UV-visible region. Highly conjugated modified acceptors reduced the band gap. The lower excitation energies increased the rate of charge transfer. The designed molecules showed improved excited state lifetime in comparison to the reference. The open circuit voltage was determined using the PTB7 polymer, which exhibited a noticeable improvement, especially in TP1 (1.70 eV), TP3 (1.75 eV), TP4 (1.68 eV), TP6 (1.85 eV), and TP7 (1.75 eV) when compared with reference (1.59 eV). Moreover, charge transfer investigations of designed molecules with PTB7 complex were performed by analyzing the concentration of charge transfer over molecular orbitals, that is, HOMO to LUMO. All of the preceding investigations targeted to achieve high-efficiency organic cells reveal that the altered molecules can be considered effective candidates to tackle future energy problems.
{"title":"Theoretical investigation of substituted end groups in thiophene-phenyl-thiophene (TPT) derivatives for high efficiency organic solar cells","authors":"Sonia Sadiq, Rasheed Ahmad Khera, Ahmed M. Tawfeek, Mahmoud A. A. Ibrahim, Faheem Abbas, Sajjad Ali, Ahmed Mahal, Duan Meitao, Muhammad Waqas","doi":"10.1002/poc.4607","DOIUrl":"10.1002/poc.4607","url":null,"abstract":"<p>The field of organic solar cells has witnessed notable advancements in the past few years, mostly due to the development of novel materials for the active layer. The current investigations reveal the potential of nine previously unexplored molecules (<b>TP1–TP9</b>) designed by end group modification of TPT4F molecule. These molecules were investigated at MPW1PW91/6-31G (d, p) with DFT and TD-DFT approach to study the various photovoltaic and geometrical parameters. The results obtained through computations indicated improvement in the investigated parameters. The terminal group modification shifted the absorption maximum towards longer wavelength in the UV-visible region. Highly conjugated modified acceptors reduced the band gap. The lower excitation energies increased the rate of charge transfer. The designed molecules showed improved excited state lifetime in comparison to the reference. The open circuit voltage was determined using the PTB7 polymer, which exhibited a noticeable improvement, especially in TP1 (1.70 eV), TP3 (1.75 eV), TP4 (1.68 eV), TP6 (1.85 eV), and TP7 (1.75 eV) when compared with reference (1.59 eV). Moreover, charge transfer investigations of designed molecules with PTB7 complex were performed by analyzing the concentration of charge transfer over molecular orbitals, that is, HOMO to LUMO. All of the preceding investigations targeted to achieve high-efficiency organic cells reveal that the altered molecules can be considered effective candidates to tackle future energy problems.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wendy A. Loughlin, Ian D. Jenkins, Peter C. Healy, N. David Karis, Gregory K. Pierens
During a previous investigation of pyridone derivatives as inhibitors of glycogen phosphorylase, we observed that some N-substituted 2-oxo-1,2-dihydropyridinyl-3-yl amines and amides exhibited different colors, ranging from red to green to blue to teal. Remarkably, one compound (compound 8) could be crystallized in both a red form and a green form. To try to understand these observations, we have carried out further spectroscopic studies in the solid state and in solution employing UV-visible spectroscopy, NMR spectroscopy, and X-ray crystallography, along with molecular mechanics and DFT calculations on selected compounds. Evidence was obtained in the solid state for the self-association of pyridones into dimeric complexes or near-planar dimers induced by intermolecular hydrogen bonding and possible π-stacking, whereas monomeric structures for two compounds were proposed in chloroform, in agreement with the DFT calculated chemical shifts. In this study, it was determined that the colors observed could not be attributed to hydrogen bonding or possible π-bond stacking in the novel relatively unconjugated pyridone derivatives. A possible explanation for the colors is suggested: a contaminant formed by aerial oxidation of trace amounts of the 3-aminopyridone starting material. This result contrasts with existing literature reports of UV and fluorescence spectra, which indicated distinct coloration for conjugated 2-pyridone compounds. The spectroscopic results, including X-ray structural data for five pyridones, contribute to a deeper understanding of structural interactions in pyridone derivatives.
在之前研究吡啶酮衍生物作为糖原磷酸化酶抑制剂的过程中,我们观察到一些 N-取代的 2-氧代-1,2-二氢吡啶-3-基胺和酰胺呈现出不同的颜色,从红色到绿色到蓝色再到茶色。值得注意的是,有一种化合物(化合物 8)既能以红色形式结晶,也能以绿色形式结晶。为了理解这些观察结果,我们利用紫外可见光谱、核磁共振光谱和 X 射线晶体学,对固态和溶液进行了进一步的光谱研究,并对选定的化合物进行了分子力学和 DFT 计算。在固态下,有证据表明吡啶酮在分子间氢键和可能的 π 堆积作用的诱导下自结合成二聚体复合物或近平面二聚体,而在氯仿中,有两种化合物的单体结构与 DFT 计算的化学位移一致。本研究确定,在新型相对非共轭吡啶酮衍生物中观察到的颜色不能归因于氢键或可能的 π 键堆叠。对这些颜色的可能解释是:微量的 3-氨基吡啶酮起始材料在空气中氧化形成的污染物。这一结果与现有文献报道的紫外光谱和荧光光谱形成鲜明对比,后者显示共轭 2-吡啶酮化合物具有明显的颜色。光谱结果,包括五种吡啶酮的 X 射线结构数据,有助于加深对吡啶酮衍生物结构相互作用的理解。
{"title":"The curious case of the colored crystals of N-substituted 2-oxo-1,2-dihydropyridinyl-3-yl amines and amides: Self-association in the solid state","authors":"Wendy A. Loughlin, Ian D. Jenkins, Peter C. Healy, N. David Karis, Gregory K. Pierens","doi":"10.1002/poc.4603","DOIUrl":"10.1002/poc.4603","url":null,"abstract":"<p>During a previous investigation of pyridone derivatives as inhibitors of glycogen phosphorylase, we observed that some <i>N-</i>substituted 2-oxo-1,2-dihydropyridinyl-3-yl amines and amides exhibited different colors, ranging from red to green to blue to teal. Remarkably, one compound (compound <b>8</b>) could be crystallized in both a red form and a green form. To try to understand these observations, we have carried out further spectroscopic studies in the solid state and in solution employing UV-visible spectroscopy, NMR spectroscopy, and X-ray crystallography, along with molecular mechanics and DFT calculations on selected compounds. Evidence was obtained in the solid state for the self-association of pyridones into dimeric complexes or near-planar dimers induced by intermolecular hydrogen bonding and possible π-stacking, whereas monomeric structures for two compounds were proposed in chloroform, in agreement with the DFT calculated chemical shifts. In this study, it was determined that the colors observed could not be attributed to hydrogen bonding or possible π-bond stacking in the novel relatively unconjugated pyridone derivatives. A possible explanation for the colors is suggested: a contaminant formed by aerial oxidation of trace amounts of the 3-aminopyridone starting material. This result contrasts with existing literature reports of UV and fluorescence spectra, which indicated distinct coloration for conjugated 2-pyridone compounds. The spectroscopic results, including X-ray structural data for five pyridones, contribute to a deeper understanding of structural interactions in pyridone derivatives.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel E. Medina, Hugo A. Jiménez-Vazquez, Luis G. Zepeda-Vallejo, Ángel Trigos
Although it is well known that coenzyme NAD(P)H is involved in anabolic and catabolic reactions in the living organism, there is still significant controversy over the reaction mechanism involved in this biochemical transformation. Thus, 1-benzyl-1,4-dihydronicotinamide was used as a NAD(P)H model in the reduction reaction of 1,4-benzoquinone (Q), 2,3,5,6-tetrachloro-1,4-benzoquinone, and 2,3-dicyano-1,4-benzoquinone in acetonitrile medium. The kinetic calculations support that formal hydride transfer is the main mechanism promoting Q reduction, while the two-step process dominates 2,3-dicyano-1,4-benzoquinone reduction. Interestingly, only the single-electron transfer mechanism takes place when 2,3,5,6-tetrachloro-1,4-benzoquinone is used, affording the corresponding semiquinone derivative as the main product. This mechanistic behavior is related to the presence or absence of electron-withdrawing groups in the quinones used. Furthermore, the kinetic study results showed that calculated reaction rate constants are in close agreement with experimental results. The results support that formal hydride transfer on the reduction reaction of Q by 1-benzyl-1,4-dihydronicotinamide in acetonitrile proceeds through a hydrogen coupled electron transfer mechanism. This theoretical analysis provides valuable knowledge that can be extrapolated to study the reduction of quinones performed by NADH and NADPH in physiological media.
{"title":"Theoretical study on the kinetics and reaction mechanism involved in the reduction of quinone by 1-benzyl-1,4-dihydronicotinamide","authors":"Manuel E. Medina, Hugo A. Jiménez-Vazquez, Luis G. Zepeda-Vallejo, Ángel Trigos","doi":"10.1002/poc.4605","DOIUrl":"10.1002/poc.4605","url":null,"abstract":"<p>Although it is well known that coenzyme NAD(P)H is involved in anabolic and catabolic reactions in the living organism, there is still significant controversy over the reaction mechanism involved in this biochemical transformation. Thus, 1-benzyl-1,4-dihydronicotinamide was used as a NAD(P)H model in the reduction reaction of 1,4-benzoquinone (Q), 2,3,5,6-tetrachloro-1,4-benzoquinone, and 2,3-dicyano-1,4-benzoquinone in acetonitrile medium. The kinetic calculations support that formal hydride transfer is the main mechanism promoting Q reduction, while the two-step process dominates 2,3-dicyano-1,4-benzoquinone reduction. Interestingly, only the single-electron transfer mechanism takes place when 2,3,5,6-tetrachloro-1,4-benzoquinone is used, affording the corresponding semiquinone derivative as the main product. This mechanistic behavior is related to the presence or absence of electron-withdrawing groups in the quinones used. Furthermore, the kinetic study results showed that calculated reaction rate constants are in close agreement with experimental results. The results support that formal hydride transfer on the reduction reaction of Q by 1-benzyl-1,4-dihydronicotinamide in acetonitrile proceeds through a hydrogen coupled electron transfer mechanism. This theoretical analysis provides valuable knowledge that can be extrapolated to study the reduction of quinones performed by NADH and NADPH in physiological media.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catiunaiara R. Bittencourt, Julia C. Gomes, Heitor A. G. Bazani, Adriana P. Gerola
The reuse of waste and the use of renewable materials are of great environmental and economic interest. With that in mind, the synthesis of mesoporous silica can be performed using rice husk ash, which is an industrial waste generated in large quantities. This mesoporous material can be functionalized with photoactive molecules, enabling application in photocatalysis. In this work, we used mesoporous silica nanoparticles functionalized with rose bengal dye (RB) for photooxidation reactions of organic molecules, such as the antibiotic cefuroxime 1-acetoxyethyl ester (cefuroxime axetil). The characterization results showed the formation of one-dimensional channels with uniform size and two-dimensional hexagonal arrangement, with surface area and pore diameter of 230 m2 g−1 and 5 nm, respectively. The infrared and UV-Vis spectroscopy indicated the functionalization of silica with photoactive molecules. Finally, SBA-15/RB was applied for the photooxidation of ascorbic acid and antibiotic cefuroxime axetil under irradiation with green light, proving to be efficient for the degradation of cefuroxime axetil. Investigation of the reactive oxygen species involved in photodegradation showed that the photooxidation mechanism mainly involves singlet oxygen.
{"title":"Photooxidation of organic compounds by mesoporous silica functionalized with rose bengal","authors":"Catiunaiara R. Bittencourt, Julia C. Gomes, Heitor A. G. Bazani, Adriana P. Gerola","doi":"10.1002/poc.4601","DOIUrl":"10.1002/poc.4601","url":null,"abstract":"<p>The reuse of waste and the use of renewable materials are of great environmental and economic interest. With that in mind, the synthesis of mesoporous silica can be performed using rice husk ash, which is an industrial waste generated in large quantities. This mesoporous material can be functionalized with photoactive molecules, enabling application in photocatalysis. In this work, we used mesoporous silica nanoparticles functionalized with rose bengal dye (RB) for photooxidation reactions of organic molecules, such as the antibiotic cefuroxime 1-acetoxyethyl ester (cefuroxime axetil). The characterization results showed the formation of one-dimensional channels with uniform size and two-dimensional hexagonal arrangement, with surface area and pore diameter of 230 m<sup>2</sup> g<sup>−1</sup> and 5 nm, respectively. The infrared and UV-Vis spectroscopy indicated the functionalization of silica with photoactive molecules. Finally, SBA-15/RB was applied for the photooxidation of ascorbic acid and antibiotic cefuroxime axetil under irradiation with green light, proving to be efficient for the degradation of cefuroxime axetil. Investigation of the reactive oxygen species involved in photodegradation showed that the photooxidation mechanism mainly involves singlet oxygen.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 7","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rate and product data are reported for the solvolysis reactions of 27 mono, di [3,4] and tri [3,4,5] ring-substituted benzyl chlorides. The first order rate constant for solvolysis in 20% acetonitrile in water decrease from ksolv = 2.2 s−1 for 4-methoxybenzyl chloride to 1.1 × 10−8 s−1 for 3,4-dinitrobenzyl chloride. The product rate constant ratios kMeOH/kTFE for solvolysis in 70/27/3 (v/v/v) HOH/TFE/MeOH range from a minimum of kMeOH/kTFE = 8 to a maximum of 110. The rate data were fit to a four-parameter Hammett equation that separates the resonance (