Purpose: Competing radiosurgery plans are compared based on their conformity and gradient of dose distribution to the target volume (TV). Most widely used quality metrics such as new conformity index (NCI) and gradient index (GI) are known to have strong volume dependency on the TV of interest. A simple quality measure without the volume dependency is presented for evaluating stereotactic radiosurgery plans, expressed in distance dimension compared to the unit-less volume ratio used in NCI and GI.
Methods and materials: The conformity distance measure (CDM) is defined as the effective radius of the union volume subtracted by that of the intersection volume, where volume operations are on TV and prescription isodose volume (PIV). Gradient distance measure (GDM) is defined as the effective radius of 50% PIV (low dose volume of the plan) subtracted by that of corresponding ideal low dose volume (iLDV). Volume independency and consistent sensitivity of CDM and GDM on PIV displacement and dose spillage are analyzed using a simple two-sphere model. 2429 cases of Gamma Knife and 76 cases of Linac based radiosurgery plans for brain metastasis were retrospectively studied to demonstrate volume independency of the new measures and their implication on target coverage.
Results: The sensitivity of NCI on PIV displacement and dose spillage was inversely proportional to the effective radius of the target volume, while the sensitivity of CDM on target motion and dose spillage was constant regardless the target volume. The iLDV for 50% PIV was approximately 2.4 times of PIV based on previous Linac based radiosurgery/IMRT/VMAT plans and single shot analysis from Gamma Knife (GK), ICON. Although NCI ranged from 1 to 14.7 for GK plans and from 1.2 to 20.8 for VMAT plans showing strong volume dependency, CDM showed negligible volume dependency of less than 2.1 mm for more than 90% cases and peak frequency was at 0.8 mm. CDM was correlated well with target coverage as a function of PIV displacement regardless of target volume. Target coverage, V100, was larger than 95% when PIV displacement is less than CDM.
Conclusions: The new conformity and gradient measure, CDM and GDM are proposed in this paper. The new measures are volume independent which is preferred for reliable evaluation of the radiosurgery plan quality over wide range of radiosurgery targets. As represented by distance dimension similar to PTV margin, the new measures may be more adequate for image guided radiosurgery applications.