首页 > 最新文献

Journal of Saudi Chemical Society最新文献

英文 中文
Effect of Ni/Co ratio on Ce-Sc-ZrO2 catalysts for selective H2 production via methane partial oxidation 镍/钴比对通过甲烷部分氧化选择性生产 H2 的 Ce-Sc-ZrO2 催化剂的影响
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-05 DOI: 10.1016/j.jscs.2024.101948
Norah Alwadai , Ahmed S. Al-Fatesh , Kenit Acharya , Abdulaziz A.M. Abahussain , Salma A. Al-Zahrani , Anis H. Fakeeha , Naif Alarifi , Khaled M. Banabdwin , Ahmed A. Ibrahim , Rawesh Kumar
Partial oxidation of methane (POM) is a promising route for hydrogen production, and achieving a high H2 yield with an H2/CO ratio >3 is highly appealing. Optimization of Ni/Co ratios over Ce-Sc-ZrO2 (CSZ) is investigated for POM reaction and characterized by X-ray diffraction, Raman spectroscopy, temperature-programmed reduction/oxidation/desorption, and transmission electron microscopy. The active site derived from the reduction of “strongly interacted NiO” is responsible for the dissociation of C–H (of CH4), resulting high activity towards POM. 5Ni/CSZ has the highest amount of such active sites and attains the highest activity. 5Co/CSZ catalyst has cobalt-based active sites, and there is an inert carbon deposit during the reaction, causing the least activity. 3.75 wt% Ni and 1.25 wt% Co combination over CSZ support surges the highest density of basicity, oxide vacancy, and adequate amount of active sites derived from “strongly interacted NiO”. The active sites with enhanced metal-support interaction are further grown under exposure to oxidizing gas (O2) and reducing gas (H2) during the POM reaction. The highest density of basicity and oxide vacancy involves more CO2 and H2O in the sequential oxidation of CH4 under indirect pathways. The exclusive involvement of indirect pathways of POM and inhibition of hydrogen consuming reaction (like reverse water gas shift reaction) over 3.75Ni1.25Co/CSZ results into 48 % H2 yield and 3.26 H2/CO ratio up to 24 h time on stream at 600 °C. The H2 yield doubles to ∼97 %, and the H2/CO ratio comes close to 2 over 3.75Ni1.25Co/CSZ catalyst at 900 °C.
甲烷部分氧化(POM)是一种前景广阔的制氢途径,以 H2/CO 比率 >3 获得较高的 H2 产率极具吸引力。研究人员通过 X 射线衍射、拉曼光谱、温度编程还原/氧化/解吸和透射电子显微镜,对 Ce-Sc-ZrO2 (CSZ) 上的 Ni/Co 比率进行了优化,以用于 POM 反应。强相互作用氧化镍 "还原产生的活性位点负责解离(CH4 的)C-H,从而对 POM 具有高活性。5Ni/CSZ 催化剂中这种活性位点的数量最多,活性也最高。5Co/CSZ 催化剂具有钴基活性位点,在反应过程中会有惰性碳沉积,因此活性最低。CSZ 载体上 3.75 wt% Ni 和 1.25 wt% Co 的组合具有最高的碱度密度、氧化物空位和充足的 "强相互作用 NiO "活性位点。在 POM 反应过程中,在氧化性气体(O2)和还原性气体(H2)的作用下,金属-支撑相互作用增强的活性位点进一步增长。碱度和氧化物空位密度最高时,在间接途径下的 CH4 顺序氧化过程中会涉及更多的 CO2 和 H2O。在 3.75Ni1.25Co/CSZ 上,POM 间接途径的完全参与和对耗氢反应(如反向水气变换反应)的抑制,使得在 600 °C 下的 24 小时内,H2 产率达到 48%,H2/CO 比率达到 3.26。在 900 °C 时,3.75Ni1.25Co/CSZ 催化剂的 H2 产率翻了一番,达到 97%,H2/CO 比率接近 2。
{"title":"Effect of Ni/Co ratio on Ce-Sc-ZrO2 catalysts for selective H2 production via methane partial oxidation","authors":"Norah Alwadai ,&nbsp;Ahmed S. Al-Fatesh ,&nbsp;Kenit Acharya ,&nbsp;Abdulaziz A.M. Abahussain ,&nbsp;Salma A. Al-Zahrani ,&nbsp;Anis H. Fakeeha ,&nbsp;Naif Alarifi ,&nbsp;Khaled M. Banabdwin ,&nbsp;Ahmed A. Ibrahim ,&nbsp;Rawesh Kumar","doi":"10.1016/j.jscs.2024.101948","DOIUrl":"10.1016/j.jscs.2024.101948","url":null,"abstract":"<div><div>Partial oxidation of methane (POM) is a promising route for hydrogen production, and achieving a high H<sub>2</sub> yield with an H<sub>2</sub>/CO ratio &gt;3 is highly appealing. Optimization of Ni/Co ratios over Ce-Sc-ZrO<sub>2</sub> (CSZ) is investigated for POM reaction and characterized by X-ray diffraction, Raman spectroscopy, temperature-programmed reduction/oxidation/desorption, and transmission electron microscopy. The active site derived from the reduction of “strongly interacted NiO” is responsible for the dissociation of C–H (of CH<sub>4</sub>), resulting high activity towards POM. 5Ni/CSZ has the highest amount of such active sites and attains the highest activity. 5Co/CSZ catalyst has cobalt-based active sites, and there is an inert carbon deposit during the reaction, causing the least activity. 3.75 wt% Ni and 1.25 wt% Co combination over CSZ support surges the highest density of basicity, oxide vacancy, and adequate amount of active sites derived from “strongly interacted NiO”. The active sites with enhanced metal-support interaction are further grown under exposure to oxidizing gas (O<sub>2</sub>) and reducing gas (H<sub>2</sub>) during the POM reaction. The highest density of basicity and oxide vacancy involves more CO<sub>2</sub> and H<sub>2</sub>O in the sequential oxidation of CH<sub>4</sub> under indirect pathways. The exclusive involvement of indirect pathways of POM and inhibition of hydrogen consuming reaction (like reverse water gas shift reaction) over 3.75Ni1.25Co/CSZ results into 48 % H<sub>2</sub> yield and 3.26 H<sub>2</sub>/CO ratio up to 24 h time on stream at 600 °C. The H<sub>2</sub> yield doubles to ∼97 %, and the H<sub>2</sub>/CO ratio comes close to 2 over 3.75Ni1.25Co/CSZ catalyst at 900 °C.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101948"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating adsorption and removal of divalent Ca2+ and Pb2+ ions from aqueous solutions by gamma-irradiation using quartz tuning fork (QTF) sensor technique 利用石英音叉(QTF)传感器技术研究伽马射线照射对水溶液中二价 Ca2+ 和 Pb2+ 离子的吸附和去除作用
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-02 DOI: 10.1016/j.jscs.2024.101947
Reem Alanazi , Shofiur Rahman , Mahmoud Al-Gawati , Khalid E. Alzahrani , Nahed Alarifi , Nadyah Alanazi , Abdullah N. Alodhayb
<div><div>In this study, gold-coated quartz tuning forks (QTFs) sensing devices functionalized with self-assembled monolayers (SAM) of a lower-rim functionalized calix[4]arene methoxy ester were used for the detection of divalent Ca<sup>2+</sup> and Pb<sup>2+</sup> ions in aqueous solutions by utilizing adsorption behavior and the radiative effect. The gold-coated QTF functionalized calix[4]arene methoxy ester sensing device was tested by measuring the respective frequency shifts obtained using small (60 µL) samples of aqueous PbCl<sub>2</sub> at two different concentrations (10<sup>−6</sup> and 10<sup>−4</sup> M). For 10<sup>−4</sup> M solutions of PbCl<sub>2</sub>, results showed that the resonance frequency shift Δf = 317 Hz, from 32,867 Hz (f<sub>Calix</sub>) to 32,550 Hz (f<sub>Calix⊃Pb<sup>2+</sup></sub>) due to the absorption of lead (Pb<sup>2+</sup>) ions (10<sup>-4</sup> M) by calixl[4]arene methoxy ester receptor molecules on the QTF sensing layer from the aqueous solution to forming the ([Calix ⊃ Pb<sup>2+</sup>]) complex. The most significant frequency changes were observed at a concentration of 10<sup>−6</sup> M CaCl<sub>2</sub>, where CaCl<sub>2</sub> exhibited the biggest change of 356 Hz, from 32,893 Hz (f<sub>Calix</sub>) to 32,537 Hz (f<sub>Calix⊃Ca<sup>2+</sup></sub>), compared to 317 Hz for PbCl<sub>2</sub> (10<sup>−4</sup> M). The limit of detection was 100 femtomolar (fM) for CaCl<sub>2</sub> and 245 fM for PbCl<sub>2</sub>. After that, we irradiated the receptor molecules which was holding Pb<sup>2+</sup> ions in the complex ([calix ⊃ Pb<sup>2+</sup>]) on the QTF sensing layer with a radiation dose ranging from 7.5 to 50 µGy of gamma rays from the Cesium-137 source for 30 min. Interestingly, it was observed that the resonance frequency shift (Δf = 54 Hz) back to 32,604 Hz from 32,550 Hz (f<sub>(Calix⊃Pb<sup>2+</sup>)</sub>), which strongly suggests that the Pb<sup>2+</sup> ion removed from ([calix ⊃ Pb<sup>2+</sup>]) complex on the QTF sensing layer due to gamma radiation dose. To follow up on the radiation effect of the ([calix ⊃ Pb<sup>2+</sup>]) on the QTF sensing layer, we stopped the gamma radiation source and kept it for an additional 10 min to see if there was any resonance frequency. It was noticed that an additional resonance frequency shifted (Δf = 33 Hz) back to 32,637 Hz from 32,604 Hz after stopping the gamma radiation source for 10 min. We assume that the complex ([calix ⊃ Pb<sup>2+</sup>]) absorbs the gamma radiation and continues the removal of Pb<sup>2+</sup> ions from the complex on the sensing layer. A similar phenomenon was also observed for the absorption of lead (Pb<sup>2+</sup>) ions (10<sup>-6</sup> M) by calix[4]arene methoxy ester receptor molecules on the QTF sensing layer from the aqueous solution to forming the ([Calix ⊃ Pb<sup>2+</sup>]) complex. The resonance frequency shift Δf = 142 Hz, from 32,706 Hz (f<sub>Calix</sub>) to 32,564 Hz (f<sub>Calix⊃Pb<sup>2+</sup></sub>) due to the absorption o
在这项研究中,利用吸附行为和辐射效应,使用了金涂层石英音叉(QTFs)传感装置,该传感装置具有下缘功能化钙[4]炔甲氧基酯自组装单层(SAM),用于检测水溶液中的二价钙[4]炔和铅[4]炔离子。金涂层 QTF 功能化钙[4]烯甲氧基酯传感装置通过测量两种不同浓度(10-6 M 和 10-4 M)的氯化铅水溶液小样本(60 µL)获得的各自频移进行了测试。对于 10-4 M 的氯化铅溶液,结果显示共振频率偏移 Δf = 317 Hz,从 32,867 Hz (fCalix) 到 32、550 Hz (fCalix⊃Pb2+),这是由于 QTF 传感层上的 Calixl[4]arene 甲氧基酯受体分子吸收了来自水溶液的铅(Pb2+)离子(10-4 M),形成了([Calix ⊃Pb2+])复合物。在浓度为 10-6 M CaCl2 时,频率变化最为明显,CaCl2 的频率变化最大,从 32,893 Hz(fCalix)变为 32,537 Hz(fCalix⊃Ca2+),达到 356 Hz,而 PbCl2(10-4 M)的频率变化为 317 Hz。CaCl2的检测限为100飞摩尔(fM),PbCl2的检测限为245飞摩尔。然后,我们用来自铯-137 源的 7.5 至 50 µGy 伽马射线辐照 QTF 传感层上含有 Pb2+ 离子复合物([calix ⊃Pb2+])的受体分子 30 分钟。有趣的是,共振频率(Δf = 54 Hz)从 32,550 Hz(f(calix⊃Pb2+))回落到 32,604 Hz,这有力地表明由于伽马辐射剂量,Pb2+ 离子从 QTF 传感层上的 ([calix⊃Pb2+])复合物中移除。为了跟踪([calix ⊃Pb2+])对 QTF 传感层的辐射效应,我们停止了伽马辐射源,并继续保持 10 分钟,以观察是否存在共振频率。结果发现,在停止伽马辐射源 10 分钟后,共振频率从 32,604 Hz 变回了 32,637 Hz(Δf = 33 Hz)。我们假定络合物([calix ⊃Pb2+])吸收了伽马射线,并继续从传感层上的络合物中清除 Pb2+ 离子。QTF 传感层上的钙[4]炔甲氧基酯受体分子从水溶液中吸收铅(Pb2+)离子(10-6 M),形成([钙钛矿 ≌ Pb2+])络合物,也观察到类似的现象。由于 QTF 传感层上的钙[4]炔甲氧基酯受体分子从水溶液中吸收了铅(Pb2+)离子(10-6 M),形成了([Calix ⊃Pb2+])复合物,共振频率从 32 706 Hz(fCalix)移动到 32 564 Hz(fCalix⊃Pb2+),共振频率Δf = 142 Hz。随后,铯-137 辐射源将伽马射线照射 30 分钟,剂量从 7.5 到 50 µGy 不等,这促使共振频率从 32,564 Hz(f(Calix⊃Pb2+))回落到 32,606 Hz(Δf = 37 Hz)。这一变化强烈表明,由于伽马辐射剂量的作用,Pb2+ 离子从 QTF 传感层上的 ([calix ⊃Pb2+])复合物中移除。X 射线光电子能谱(XPS)分析证实了 Pb2+ 离子在金涂层 QTF 功能化 calix[4]arene 吸附传感层表面的化学吸附。因此,钙[4]烯功能化传感装置的基础技术有望应用于多种工业领域,并通过所提出的吸附和辐照机理支持水污染减缓方面的潜在进步。
{"title":"Investigating adsorption and removal of divalent Ca2+ and Pb2+ ions from aqueous solutions by gamma-irradiation using quartz tuning fork (QTF) sensor technique","authors":"Reem Alanazi ,&nbsp;Shofiur Rahman ,&nbsp;Mahmoud Al-Gawati ,&nbsp;Khalid E. Alzahrani ,&nbsp;Nahed Alarifi ,&nbsp;Nadyah Alanazi ,&nbsp;Abdullah N. Alodhayb","doi":"10.1016/j.jscs.2024.101947","DOIUrl":"10.1016/j.jscs.2024.101947","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this study, gold-coated quartz tuning forks (QTFs) sensing devices functionalized with self-assembled monolayers (SAM) of a lower-rim functionalized calix[4]arene methoxy ester were used for the detection of divalent Ca&lt;sup&gt;2+&lt;/sup&gt; and Pb&lt;sup&gt;2+&lt;/sup&gt; ions in aqueous solutions by utilizing adsorption behavior and the radiative effect. The gold-coated QTF functionalized calix[4]arene methoxy ester sensing device was tested by measuring the respective frequency shifts obtained using small (60 µL) samples of aqueous PbCl&lt;sub&gt;2&lt;/sub&gt; at two different concentrations (10&lt;sup&gt;−6&lt;/sup&gt; and 10&lt;sup&gt;−4&lt;/sup&gt; M). For 10&lt;sup&gt;−4&lt;/sup&gt; M solutions of PbCl&lt;sub&gt;2&lt;/sub&gt;, results showed that the resonance frequency shift Δf = 317 Hz, from 32,867 Hz (f&lt;sub&gt;Calix&lt;/sub&gt;) to 32,550 Hz (f&lt;sub&gt;Calix⊃Pb&lt;sup&gt;2+&lt;/sup&gt;&lt;/sub&gt;) due to the absorption of lead (Pb&lt;sup&gt;2+&lt;/sup&gt;) ions (10&lt;sup&gt;-4&lt;/sup&gt; M) by calixl[4]arene methoxy ester receptor molecules on the QTF sensing layer from the aqueous solution to forming the ([Calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) complex. The most significant frequency changes were observed at a concentration of 10&lt;sup&gt;−6&lt;/sup&gt; M CaCl&lt;sub&gt;2&lt;/sub&gt;, where CaCl&lt;sub&gt;2&lt;/sub&gt; exhibited the biggest change of 356 Hz, from 32,893 Hz (f&lt;sub&gt;Calix&lt;/sub&gt;) to 32,537 Hz (f&lt;sub&gt;Calix⊃Ca&lt;sup&gt;2+&lt;/sup&gt;&lt;/sub&gt;), compared to 317 Hz for PbCl&lt;sub&gt;2&lt;/sub&gt; (10&lt;sup&gt;−4&lt;/sup&gt; M). The limit of detection was 100 femtomolar (fM) for CaCl&lt;sub&gt;2&lt;/sub&gt; and 245 fM for PbCl&lt;sub&gt;2&lt;/sub&gt;. After that, we irradiated the receptor molecules which was holding Pb&lt;sup&gt;2+&lt;/sup&gt; ions in the complex ([calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) on the QTF sensing layer with a radiation dose ranging from 7.5 to 50 µGy of gamma rays from the Cesium-137 source for 30 min. Interestingly, it was observed that the resonance frequency shift (Δf = 54 Hz) back to 32,604 Hz from 32,550 Hz (f&lt;sub&gt;(Calix⊃Pb&lt;sup&gt;2+&lt;/sup&gt;)&lt;/sub&gt;), which strongly suggests that the Pb&lt;sup&gt;2+&lt;/sup&gt; ion removed from ([calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) complex on the QTF sensing layer due to gamma radiation dose. To follow up on the radiation effect of the ([calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) on the QTF sensing layer, we stopped the gamma radiation source and kept it for an additional 10 min to see if there was any resonance frequency. It was noticed that an additional resonance frequency shifted (Δf = 33 Hz) back to 32,637 Hz from 32,604 Hz after stopping the gamma radiation source for 10 min. We assume that the complex ([calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) absorbs the gamma radiation and continues the removal of Pb&lt;sup&gt;2+&lt;/sup&gt; ions from the complex on the sensing layer. A similar phenomenon was also observed for the absorption of lead (Pb&lt;sup&gt;2+&lt;/sup&gt;) ions (10&lt;sup&gt;-6&lt;/sup&gt; M) by calix[4]arene methoxy ester receptor molecules on the QTF sensing layer from the aqueous solution to forming the ([Calix ⊃ Pb&lt;sup&gt;2+&lt;/sup&gt;]) complex. The resonance frequency shift Δf = 142 Hz, from 32,706 Hz (f&lt;sub&gt;Calix&lt;/sub&gt;) to 32,564 Hz (f&lt;sub&gt;Calix⊃Pb&lt;sup&gt;2+&lt;/sup&gt;&lt;/sub&gt;) due to the absorption o","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101947"},"PeriodicalIF":5.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile and controllable hybrid-nanoengineering of MWCNTs/Au@ZIF-8 and AuPt@CeO2 based sandwich electrochemical aptasensor for AFB1 determination in foods and herbs 基于 MWCNTs/Au@ZIF-8 和 AuPt@CeO2 的夹心电化学诱导传感器的简便可控混合纳米工程,用于食品和药材中 AFB1 的检测
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-26 DOI: 10.1016/j.jscs.2024.101946
Liang Guo , Shijin Zhou , Yanju Liu , Huaixia Yang , Mingsan Miao , Wei Gao
Herein, a sandwich electrochemical sensing strategy for aflatoxin b1 (AFB1) detection based on hybrid-nanoengineering was presented. First, Au nanoparticle was doped into zeolitic imidazolate framework-8 (ZIF-8) to form Au@ZIF-8 by in-situ growth method, followed by multi-walled carbon nanotubes (MWCNTs) addition to synthesize MWCNTs/Au@ZIF-8 via self-assembly. The structural “confinement effect” of ZIF-8 afforded a microenvironment for Au nanoparticles and SMCNTs in a certain spatial region, giving MWCNTs/Au@ZIF-8 excellent electrochemical property as the substrate material. In addition, Au-Pt bimetallic nanoparticle, which exhibited excellent stability and catalytic activity was loaded on the hollow cerium oxide (CeO2) to form AuPt@CeO2 nanoparticle through one-step aqueous phase reduction. Owning to its high surface-to-volume ratio, satisfied electron transfer efficiency and biocompatibility, massive toluidine blue (TB) and AFB1 antibody (Ab) could be modified on the AuPt@CeO2 to form AuPt@CeO2-Ab-TB, which acted as signal tag for the ultrasensitive assay of AFB1. The proposed electrochemical sensing system exhibited wide detection range (2 × 10-5 − 20 ng/mL) and low detection limit (2.13 fg/mL), which has been successfully applied to AFB1 determination in four real samples. The hybrid nanoengineering presented in this work is an active attempt to prepare high-performance substrate material and signal tag, which provides a new insight for the development of highly sensitive and specific electrochemical sensing systems.
本文提出了一种基于混合纳米工程的黄曲霉毒素b1(AFB1)夹层电化学传感策略。首先,通过原位生长法将金纳米粒子掺杂到沸石咪唑酸盐框架-8(ZIF-8)中形成 Au@ZIF-8,然后加入多壁碳纳米管(MWCNTs)通过自组装合成 MWCNTs/Au@ZIF-8。ZIF-8 的结构 "约束效应 "在一定空间区域内为金纳米粒子和 SMCNT 提供了微环境,使 MWCNTs/Au@ZIF-8 作为基底材料具有优异的电化学性能。此外,通过一步水相还原法,将具有优异稳定性和催化活性的金铂双金属纳米粒子负载在中空氧化铈(CeO2)上,形成 AuPt@CeO2 纳米粒子。由于AuPt@CeO2具有较高的表面积比、良好的电子传递效率和生物相容性,可将大量甲苯胺蓝(TB)和AFB1抗体(Ab)修饰在AuPt@CeO2上,形成AuPt@CeO2-Ab-TB,作为超灵敏检测AFB1的信号标签。所提出的电化学传感系统具有检测范围宽(2 × 10-5 - 20 ng/mL)、检测限低(2.13 fg/mL)的特点,已成功应用于四种实际样品中 AFB1 的检测。这项工作提出的混合纳米工程是制备高性能基底材料和信号标签的积极尝试,为开发高灵敏度和特异性电化学传感系统提供了新的思路。
{"title":"Facile and controllable hybrid-nanoengineering of MWCNTs/Au@ZIF-8 and AuPt@CeO2 based sandwich electrochemical aptasensor for AFB1 determination in foods and herbs","authors":"Liang Guo ,&nbsp;Shijin Zhou ,&nbsp;Yanju Liu ,&nbsp;Huaixia Yang ,&nbsp;Mingsan Miao ,&nbsp;Wei Gao","doi":"10.1016/j.jscs.2024.101946","DOIUrl":"10.1016/j.jscs.2024.101946","url":null,"abstract":"<div><div>Herein, a sandwich electrochemical sensing strategy for aflatoxin b<sub>1</sub> (AFB<sub>1</sub>) detection based on hybrid-nanoengineering was presented. First, Au nanoparticle was doped into zeolitic imidazolate framework-8 (ZIF-8) to form Au@ZIF-8 by in-situ growth method, followed by multi-walled carbon nanotubes (MWCNTs) addition to synthesize MWCNTs/Au@ZIF-8 via self-assembly. The structural “confinement effect” of ZIF-8 afforded a microenvironment for Au nanoparticles and SMCNTs in a certain spatial region, giving MWCNTs/Au@ZIF-8 excellent electrochemical property as the substrate material. In addition, Au-Pt bimetallic nanoparticle, which exhibited excellent stability and catalytic activity was loaded on the hollow cerium oxide (CeO<sub>2</sub>) to form AuPt@CeO<sub>2</sub> nanoparticle through one-step aqueous phase reduction. Owning to its high surface-to-volume ratio, satisfied electron transfer efficiency and biocompatibility, massive toluidine blue (TB) and AFB<sub>1</sub> antibody (Ab) could be modified on the AuPt@CeO<sub>2</sub> to form AuPt@CeO<sub>2</sub>-Ab-TB, which acted as signal tag for the ultrasensitive assay of AFB<sub>1</sub>. The proposed electrochemical sensing system exhibited wide detection range (2 × 10<sup>-5</sup> − 20 ng/mL) and low detection limit (2.13 fg/mL), which has been successfully applied to AFB<sub>1</sub> determination in four real samples. The hybrid nanoengineering presented in this work is an active attempt to prepare high-performance substrate material and signal tag, which provides a new insight for the development of highly sensitive and specific electrochemical sensing systems.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101946"},"PeriodicalIF":5.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of tetrazole thioethers: An efficient, environmentally friendly and metal-free S-arylation using diaryliodonium salts 发现四氮唑硫醚:使用二月桂碘鎓盐进行高效、环保和无金属的 S-芳基化反应
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-26 DOI: 10.1016/j.jscs.2024.101943
Xiaogang Li , Xuesong Wang , Yan Wang , Yinfeng Tan , Dong Liu , Xueying Zhang , Youbin Li , Junyu Xu
An efficient, environmentally friendly, and metal-free method for the synthesis of functionalized tetrazole thioethers via the S-arylation of tetrazole-5-thiones using diaryliodonium salts as aryl transfer reagents has been developed. This novel methodology provides rapid access to tetrazole thioether derivatives under facile conditions. Our study underscores the chemoselectivity of unsymmetrical diaryliodonium salts, emphasizing their preference for the transfer of sterically hindered and electron-deficient aryl groups. Notably, the synthesized compound 3h exhibits antitumor activity against A2780 (ovarian cancer) and MDA-MB-231 (breast cancer) tumor cells. In silico studies predict these compounds to possess good drug-likeness and low toxicity risk. These findings highlight the potential of functionalized tetrazole thioethers as antiproliferative agents and pave the way for further development and optimization in future investigations.
本研究开发了一种高效、环保、无金属的方法,利用二月桂碘鎓盐作为芳基转移试剂,通过四氮唑-5-硫醚的 S-芳基化反应合成官能化四氮唑硫醚。这种新方法可在简便的条件下快速获得四氮唑硫醚衍生物。我们的研究强调了不对称二芳基二碘鎓盐的化学选择性,强调了它们对立体受阻和电子缺陷芳基转移的偏好。值得注意的是,合成的化合物 3h 对 A2780(卵巢癌)和 MDA-MB-231(乳腺癌)肿瘤细胞具有抗肿瘤活性。硅学研究预测这些化合物具有良好的药物相似性和较低的毒性风险。这些发现凸显了官能化四氮唑硫醚作为抗增殖剂的潜力,为今后的进一步开发和优化研究铺平了道路。
{"title":"Discovery of tetrazole thioethers: An efficient, environmentally friendly and metal-free S-arylation using diaryliodonium salts","authors":"Xiaogang Li ,&nbsp;Xuesong Wang ,&nbsp;Yan Wang ,&nbsp;Yinfeng Tan ,&nbsp;Dong Liu ,&nbsp;Xueying Zhang ,&nbsp;Youbin Li ,&nbsp;Junyu Xu","doi":"10.1016/j.jscs.2024.101943","DOIUrl":"10.1016/j.jscs.2024.101943","url":null,"abstract":"<div><div>An efficient, environmentally friendly, and metal-free method for the synthesis of functionalized tetrazole thioethers via the S-arylation of tetrazole-5-thiones using diaryliodonium salts as aryl transfer reagents has been developed. This novel methodology provides rapid access to tetrazole thioether derivatives under facile conditions. Our study underscores the chemoselectivity of unsymmetrical diaryliodonium salts, emphasizing their preference for the transfer of sterically hindered and electron-deficient aryl groups. Notably, the synthesized compound <strong>3h</strong> exhibits antitumor activity against A2780 (ovarian cancer) and MDA-MB-231 (breast cancer) tumor cells. In silico studies predict these compounds to possess good drug-likeness and low toxicity risk. These findings highlight the potential of functionalized tetrazole thioethers as antiproliferative agents and pave the way for further development and optimization in future investigations.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101943"},"PeriodicalIF":5.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu(II) complex heterogenized on magnetic mesoporous nanocomposite (SBA-16@Fe3O4) as an efficient catalyst for the reduction of nitro compounds 磁性介孔纳米复合材料(SBA-16@Fe3O4)上异质化的铜(II)络合物作为硝基化合物还原的高效催化剂
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1016/j.jscs.2024.101944
Yuanlin Shi
In the present study, a novel magnetic heterogeneous copper catalyst was developed by the immobilization of a Cu(II) complex on the surface of magnetic mesoporous nanocomposite (SBA-16@Fe3O4) through post-synthetic method. The synthesized catalyst was analyzed by various characterization methods including FT-IR, EDS, XRD, Nitrogen physisorption, TEM, TGA, VSM, and ICP-OES. After complete characterization, its catalytic efficiency was evaluated in the hydrogenation of nitroarenes to amines. Taking the nitrobenzene reduction of as an example of a reaction, the reaction conditions were optimized by changing diverse parameters like solvent, temperature, time, amount of catalyst, as well as the type and amount of hydrogen source. The catalyst revealed highly efficient catalytic activity in the hydrogenation of numerous nitroarenes to the corresponding aminoarenes in pure water as the solvent with sodium borohydride as a H2 source at room temperature. Additionally, the catalyst could be simply recovered from the mixture of reaction via magnetic separation and was able to mediate the reaction for multiple times with undiminished catalytic performance.
本研究通过后合成法将 Cu(II)络合物固定在磁性介孔纳米复合材料(SBA-16@Fe3O4)表面,开发了一种新型磁性异相铜催化剂。对合成的催化剂进行了多种表征分析,包括傅立叶变换红外光谱、电致发光、X 射线衍射、氮气物理吸附、TEM、TGA、VSM 和 ICP-OES。在完成表征后,对其在硝基烯烃加氢为胺过程中的催化效率进行了评估。以硝基苯还原反应为例,通过改变溶剂、温度、时间、催化剂用量以及氢源类型和用量等不同参数,对反应条件进行了优化。在以纯水为溶剂、硼氢化钠为氢源、室温条件下将多种硝基烯烃氢化为相应的氨基烯烃的过程中,该催化剂显示出高效的催化活性。此外,催化剂可通过磁性分离从反应混合物中简单回收,并能多次介导反应,且催化性能不受影响。
{"title":"Cu(II) complex heterogenized on magnetic mesoporous nanocomposite (SBA-16@Fe3O4) as an efficient catalyst for the reduction of nitro compounds","authors":"Yuanlin Shi","doi":"10.1016/j.jscs.2024.101944","DOIUrl":"10.1016/j.jscs.2024.101944","url":null,"abstract":"<div><div>In the present study, a novel magnetic heterogeneous copper catalyst was developed by the immobilization of a Cu(II) complex on the surface of magnetic mesoporous nanocomposite (SBA-16@Fe<sub>3</sub>O<sub>4</sub>) through post-synthetic method. The synthesized catalyst was analyzed by various characterization methods including FT-IR, EDS, XRD, Nitrogen physisorption, TEM, TGA, VSM, and ICP-OES. After complete characterization, its catalytic efficiency was evaluated in the hydrogenation of nitroarenes to amines. Taking the nitrobenzene reduction of as an example of a reaction, the reaction conditions were optimized by changing diverse parameters like solvent, temperature, time, amount of catalyst, as well as the type and amount of hydrogen source. The catalyst revealed highly efficient catalytic activity in the hydrogenation of numerous nitroarenes to the corresponding aminoarenes in pure water as the solvent with sodium borohydride as a H<sub>2</sub> source at room temperature. Additionally, the catalyst could be simply recovered from the mixture of reaction via magnetic separation and was able to mediate the reaction for multiple times with undiminished catalytic performance.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101944"},"PeriodicalIF":5.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Sn-ZnO nanostructures on MgO<0001> by hybrid pulsed laser ablation and RF magnetron sputtering tandem system for CO gas-sensing application 利用混合脉冲激光烧蚀和射频磁控溅射串联系统在氧化镁上合成用于 CO 气体传感的 Sn-ZnO 纳米结构
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1016/j.jscs.2024.101941
Joselito P. Labis , Hamad A. Albrithen , Muhammad Ali Shar , Abdulaziz Alhazaa , Ahmed Algarni , Mohammad A. Alduraibi , Ahamad Imran , Ahmed Mohamed El-Toni

An exceptional method of incorporating Sn ions into Zinc Oxide (ZnO) using a tandem system of Pulsed Laser Deposition (PLD) and Radio-Frequency Magnetron Sputtering (RFMS) to synthesize and functionalize ZnO nanostructures is demonstrated in this study for gas-sensing application. The RFMS power was varied up to 50 W to sputter a pure Sn metal target, while simultaneously or successively growing ZnO nanostructures on a templated MgO < 0001 > substrate and on an Au-plated Al2O3 gas sensor, via PLD process at the substrate temperature of 700 °C in 100–500 millitorr oxygen/argon gas background. The morphologies of the grown Sn-ZnO nanostructures were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD), and while their chemical/oxidation states and optical properties were analyzed by X-ray photospectroscopy (XPS) and photoluminescence (PL), respectively. For simultaneous deposition, the resulting (0002)-dominated 2D grain-like ZnO nanostructures were influenced by the interaction of the dynamic PLD plasma with static RFMS plasma at different powers. For successive growth, at 50 W-RF power, a remarkable increase in the sensor response to 50-ppm carbon monoxide (CO) gas was observed at 250 °C, which could be attributed to the creation of more adsorption sites in the Sn-ZnO depletion region caused by the replacement of some Zn sites with Sn ions in the ZnO matrix. This study, therefore, exhibits the viability of this hybrid system to design, synthesize, and functionalize Sn-ZnO nanomaterials, either by simultaneous/successive deposition, for gas-sensing applications.

本研究采用脉冲激光沉积(PLD)和射频磁控溅射(RFMS)串联系统,在氧化锌(ZnO)中加入锡离子,从而合成和功能化 ZnO 纳米结构,并将其应用于气体传感。射频磁控溅射功率最高为 50 W,用于溅射纯锡金属靶,同时通过 PLD 工艺在基底温度为 700 ℃、100-500 毫摩尔氧气/氩气背景下,在模板化氧化镁基底和镀金 Al2O3 气体传感器上同时或连续生长氧化锌纳米结构。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)和 X 射线衍射(XRD)对生长出的 Sn-ZnO 纳米结构的形貌进行了表征,并分别利用 X 射线光谱(XPS)和光致发光(PL)分析了它们的化学/氧化状态和光学特性。在同步沉积过程中,动态 PLD 等离子体与静态 RFMS 等离子体在不同功率下的相互作用影响了生成的以 (0002) 为主的二维晶粒状氧化锌纳米结构。对于连续生长,在 50 W 射频功率下,在 250 ℃ 下观察到传感器对 50ppm 一氧化碳 (CO) 气体的响应显著增加,这可能是由于在 ZnO 基体中用 Sn 离子取代了一些 Zn 位点,从而在 Sn-ZnO 耗尽区产生了更多的吸附位点。因此,这项研究证明了这种混合系统在设计、合成和功能化氧化锡-氧化锌纳米材料方面的可行性。
{"title":"Synthesis of Sn-ZnO nanostructures on MgO<0001> by hybrid pulsed laser ablation and RF magnetron sputtering tandem system for CO gas-sensing application","authors":"Joselito P. Labis ,&nbsp;Hamad A. Albrithen ,&nbsp;Muhammad Ali Shar ,&nbsp;Abdulaziz Alhazaa ,&nbsp;Ahmed Algarni ,&nbsp;Mohammad A. Alduraibi ,&nbsp;Ahamad Imran ,&nbsp;Ahmed Mohamed El-Toni","doi":"10.1016/j.jscs.2024.101941","DOIUrl":"10.1016/j.jscs.2024.101941","url":null,"abstract":"<div><p>An exceptional method of incorporating Sn ions into Zinc Oxide (ZnO) using a tandem system of Pulsed Laser Deposition (PLD) and Radio-Frequency Magnetron Sputtering (RFMS) to synthesize and functionalize ZnO nanostructures is demonstrated in this study for gas-sensing application. The RFMS power was varied up to 50 W to sputter a pure Sn metal target, while simultaneously or successively growing ZnO nanostructures on a templated MgO &lt; 0001 &gt; substrate and on an Au-plated Al<sub>2</sub>O<sub>3</sub> gas sensor, via PLD process at the substrate temperature of 700 °C in 100–500 millitorr oxygen/argon gas background. The morphologies of the grown Sn-ZnO nanostructures were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD), and while their chemical/oxidation states and optical properties were analyzed by X-ray photospectroscopy (XPS) and photoluminescence (PL), respectively. For simultaneous deposition, the resulting (0002)-dominated 2D grain-like ZnO nanostructures were influenced by the interaction of the dynamic PLD plasma with static RFMS plasma at different powers. For successive growth, at 50 W-RF power, a remarkable increase in the sensor response to 50-ppm carbon monoxide (CO) gas was observed at 250 °C, which could be attributed to the creation of more adsorption sites in the Sn-ZnO depletion region caused by the replacement of some Zn sites with Sn ions in the ZnO matrix. This study, therefore, exhibits the viability of this hybrid system to design, synthesize, and functionalize Sn-ZnO nanomaterials, either by simultaneous/successive deposition, for gas-sensing applications.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101941"},"PeriodicalIF":5.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001364/pdfft?md5=fc3853e1510a40089b4ca396d1eceb54&pid=1-s2.0-S1319610324001364-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pine sawdust immobilized zeolitic imidazolate framework-67 derived magnetic composites: An efficient and recycable adsorbent for norfloxacin removal 松树锯屑固定唑基咪唑啉框架-67衍生磁性复合材料:去除诺氟沙星的高效可回收吸附剂
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1016/j.jscs.2024.101939
Yu Zheng , Qing Shen , Jie Gao , Tian Liang , Xiao-Bing Han , Yuan Zhao , Tao Chen

Antibiotic contamination is a global environmental problem. The emerging contaminant norfloxacin (NOR) may increase the risk of drug resistance and thereby harm human health. The practical application of metal–organic framework crystals is usually limited by their powder form and difficulty in recovery. In this study, a magnetic Co-MPS-800 composite was prepared from carbonization with ZIF-67@pine sawdust, and significantly raised the NOR removing ability from wastewater. The changes in functional group composition, elemental contents, morphology, thermal stability and adsorption mechanism of the magnetic Co-MPS-800 composite were interpreted using FT-IR, XRD, SEM, BET, TGA and XPS. The Co-MPS-800 has an isoelectric point of 9.15 and a large specific surface area (174.58 m2·g−1). The impacts of pH, contact time, temperature and dosage on the performance of Co-MPS-800 were also studied. The adsorption capacity over NOR reached 221.98 mg·g−1 at 303 K, pH=6.0. The NOR adsorption is best suited a pseudo-2nd-order kinetic model and the Freundlich isotherm. Co-MPS-800 also had excellent reusability, and the removal rate reached 82.94 % after four repeated uses. Therefore, the magnetic Co-MPS-800 composite is effective in removing NOR from aqueous solutions. Altogether, this functional MOF-derived porous carbon may serve as a promising pollutant biosorbent, and its preparation strategy may provide insights for future studies.

抗生素污染是一个全球性的环境问题。新出现的污染物诺氟沙星(NOR)可能会增加产生耐药性的风险,从而危害人类健康。金属有机框架晶体的实际应用通常受到其粉末形态和难以回收的限制。本研究利用 ZIF-67@ 松树锯屑碳化制备了磁性 Co-MPS-800 复合材料,显著提高了废水中 NOR 的去除能力。利用傅立叶变换红外光谱、X射线衍射、扫描电镜、BET、TGA和XPS对磁性Co-MPS-800复合材料的官能团组成、元素含量、形貌、热稳定性和吸附机理的变化进行了解释。Co-MPS-800 的等电点为 9.15,比表面积较大(174.58 m2-g-1)。此外,还研究了 pH 值、接触时间、温度和用量对 Co-MPS-800 性能的影响。在 303 K、pH=6.0 条件下,NOR 的吸附容量达到 221.98 mg-g-1。NOR 吸附最适合伪 2 阶动力学模型和 Freundlich 等温线。Co-MPS-800 还具有良好的重复使用性,重复使用四次后,去除率达到 82.94%。因此,磁性 Co-MPS-800 复合材料能有效去除水溶液中的 NOR。总之,这种由功能性 MOF 衍生的多孔碳可作为一种有前途的污染物生物吸附剂,其制备策略可为今后的研究提供启示。
{"title":"Pine sawdust immobilized zeolitic imidazolate framework-67 derived magnetic composites: An efficient and recycable adsorbent for norfloxacin removal","authors":"Yu Zheng ,&nbsp;Qing Shen ,&nbsp;Jie Gao ,&nbsp;Tian Liang ,&nbsp;Xiao-Bing Han ,&nbsp;Yuan Zhao ,&nbsp;Tao Chen","doi":"10.1016/j.jscs.2024.101939","DOIUrl":"10.1016/j.jscs.2024.101939","url":null,"abstract":"<div><p>Antibiotic contamination is a global environmental problem. The emerging contaminant norfloxacin (NOR) may increase the risk of drug resistance and thereby harm human health. The practical application of metal–organic framework crystals is usually limited by their powder form and difficulty in recovery. In this study, a magnetic Co-MPS-800 composite was prepared from carbonization with ZIF-67@pine sawdust, and significantly raised the NOR removing ability from wastewater. The changes in functional group composition, elemental contents, morphology, thermal stability and adsorption mechanism of the magnetic Co-MPS-800 composite were interpreted using FT-IR, XRD, SEM, BET, TGA and XPS. The Co-MPS-800 has an isoelectric point of 9.15 and a large specific surface area (174.58 m<sup>2</sup>·g<sup>−1</sup>). The impacts of pH, contact time, temperature and dosage on the performance of Co-MPS-800 were also studied. The adsorption capacity over NOR reached 221.98 mg·g<sup>−1</sup> at 303 K, pH=6.0. The NOR adsorption is best suited a pseudo-2nd-order kinetic model and the Freundlich isotherm. Co-MPS-800 also had excellent reusability, and the removal rate reached 82.94 % after four repeated uses. Therefore, the magnetic Co-MPS-800 composite is effective in removing NOR from aqueous solutions. Altogether, this functional MOF-derived porous carbon may serve as a promising pollutant biosorbent, and its preparation strategy may provide insights for future studies.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101939"},"PeriodicalIF":5.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001340/pdfft?md5=1707ff61c413333dede1f1e4a46b7817&pid=1-s2.0-S1319610324001340-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight 通过可见光耦合 PMS 激活制造三维分层空心 CoAl-LDHs@CoSx-rGO 球花降解磺胺甲噁唑:性能和机理见解
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-12 DOI: 10.1016/j.jscs.2024.101940
Tao Wu , Wanyue Wang , Jiacheng Huang , Xin Ren , Xuesong Zhao , Tianyu Zhou

Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoSx-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoSx-rGO sample possesses superior specific surface area of 306.0 m2/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e, •OH and SO4•− make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.

磺胺甲噁唑(SMX)是一种应用广泛的抗菌药物,同时也是一种严重威胁人类和生态系统健康的污染物。本研究首次定制了一种三维分层空心球-花结构催化剂(CoAl-LDHs@CoSx-rGO),通过可见光耦合 PMS 激活高效降解 SMX。一系列表征结果表明,目标催化剂制备成功,优化后的 0.1CoAl-LDHs@CoSx-rGO 样品具有 306.0 m2/g 的优异比表面积、更高的光电流响应和更低的电化学阻抗。更重要的是,通过可见光耦合 PMS 激活,0.5 g/L 的样品可在 50 分钟内降解 98.59 % 的 SMX,且经过 7 个降解循环后,降解率仅下降了 8.49 %。对影响降解率的一系列参数进行了详细优化。捕获实验和 ESR 表明,e-、-OH 和 SO4-是降解的主要成分,可见光耦合 PMS 激活产生的信号比单独的可见光或 PMS 系统更强。通过 LC-MS、TEST 毒性评估和理论计算,阐明了降解途径和中间毒性。该研究为设计具有高暴露活性位点的催化剂提供了一种新方法,可有效去除环境水中的 SMX。
{"title":"Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight","authors":"Tao Wu ,&nbsp;Wanyue Wang ,&nbsp;Jiacheng Huang ,&nbsp;Xin Ren ,&nbsp;Xuesong Zhao ,&nbsp;Tianyu Zhou","doi":"10.1016/j.jscs.2024.101940","DOIUrl":"10.1016/j.jscs.2024.101940","url":null,"abstract":"<div><p>Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoS<sub>x</sub>-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoS<sub>x</sub>-rGO sample possesses superior specific surface area of 306.0 m<sup>2</sup>/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e<sup>−</sup>, •OH and SO<sub>4</sub><sup>•−</sup> make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101940"},"PeriodicalIF":5.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001352/pdfft?md5=469ab44a6f756711939d39388f5c6f01&pid=1-s2.0-S1319610324001352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The promotion effects of alkaline earth metals on the properties of Cr/η-Al2O3 catalysts for propane dehydrogenation 碱土金属对用于丙烷脱氢的 Cr/η-Al2O3 催化剂性能的促进作用
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.jscs.2024.101929
Hamid Karami , Saeed Soltanali , Mozhdeh Amanati , Weiyu Song , Jian Liu , Khashayar Sharifi

The Cr/Al2O3 catalyst, a prevalent system in commercial applications, plays a significant role in propane dehydrogenation (PDH). Notable improvements in this catalyst’s efficiency are essential for its continued use. In order to examine the effect of alkaline earth metals on the catalyst performances in the propane dehydrogenation reaction, a series of Cr/η-Al2O3 were synthesized by the impregnation method. The synthesized catalysts were designated as Cr-T/η-Al2O3, where T represents Ca, Mg, Sr, and Ba. The supports and the catalysts were studied using the following techniques: XRD, N2 adsorption–desorption, temperature-programmed desorption and reduction, UV–Vis and Raman spectroscopy, and XPS analyses. The findings reveal that the Cr-Ba/η-Al2O3 catalyst exhibits better catalytic performance, with significantly higher propane conversion and propylene selectivity (with initial values of 66 % and 86.2 %, respectively) compared to other catalysts. The enhanced performance is attributed to the increased dispersion of Cr species, stabilization of Cr6+ species, and reducing the total amount of acid sites and strong acid sites, which are crucial for maintaining active sites and minimizing coke deposition. The Ba-modified catalyst also demonstrated excellent stability, with a lower deactivation rate (Ba(0.201 h−1) < Sr(0.213 h−1) < Ca(0.270 h−1) < Mg(0.310 h−1) < parent(0.338 h−1)) and robust regenerative capacity over multiple cycles.

Cr/Al2O3 催化剂是一种在商业应用中非常普遍的系统,在丙烷脱氢 (PDH) 中发挥着重要作用。要想继续使用这种催化剂,就必须显著提高其效率。为了研究碱土金属对丙烷脱氢反应中催化剂性能的影响,我们采用浸渍法合成了一系列 Cr/η-Al2O3 催化剂。合成的催化剂被命名为 Cr-T/η-Al2O3,其中 T 代表 Ca、Mg、Sr 和 Ba。使用以下技术对支撑物和催化剂进行了研究:XRD、N2 吸附-解吸、温度编程解吸和还原、紫外-可见光谱和拉曼光谱以及 XPS 分析。研究结果表明,Cr-Ba/η-Al2O3 催化剂具有更好的催化性能,与其他催化剂相比,丙烷转化率和丙烯选择性显著提高(初始值分别为 66% 和 86.2%)。催化剂性能的提高归功于 Cr 物种分散度的提高、Cr6+ 物种的稳定以及酸性位点和强酸位点总量的减少,而这对于保持活性位点和减少焦炭沉积至关重要。钡改性催化剂还表现出优异的稳定性,失活率较低(钡(0.201 h-1);锶(0.213 h-1);钙(0.270 h-1);镁(0.310 h-1);母(0.338 h-1)),并且在多次循环中具有强大的再生能力。
{"title":"The promotion effects of alkaline earth metals on the properties of Cr/η-Al2O3 catalysts for propane dehydrogenation","authors":"Hamid Karami ,&nbsp;Saeed Soltanali ,&nbsp;Mozhdeh Amanati ,&nbsp;Weiyu Song ,&nbsp;Jian Liu ,&nbsp;Khashayar Sharifi","doi":"10.1016/j.jscs.2024.101929","DOIUrl":"10.1016/j.jscs.2024.101929","url":null,"abstract":"<div><p>The Cr/Al<sub>2</sub>O<sub>3</sub> catalyst, a prevalent system in commercial applications, plays a significant role in propane dehydrogenation (PDH). Notable improvements in this catalyst’s efficiency are essential for its continued use. In order to examine the effect of alkaline earth metals on the catalyst performances in the propane dehydrogenation reaction, a series of Cr/η-Al<sub>2</sub>O<sub>3</sub> were synthesized by the impregnation method. The synthesized catalysts were designated as Cr-T/η-Al<sub>2</sub>O<sub>3</sub>, where T represents Ca, Mg, Sr, and Ba. The supports and the catalysts were studied using the following techniques: XRD, N<sub>2</sub> adsorption–desorption, temperature-programmed desorption and reduction, UV–Vis and Raman spectroscopy, and XPS analyses. The findings reveal that the Cr-Ba/η-Al<sub>2</sub>O<sub>3</sub> catalyst exhibits better catalytic performance, with significantly higher propane conversion and propylene selectivity (with initial values of 66 % and 86.2 %, respectively) compared to other catalysts. The enhanced performance is attributed to the increased dispersion of Cr species, stabilization of Cr<sup>6+</sup> species, and reducing the total amount of acid sites and strong acid sites, which are crucial for maintaining active sites and minimizing coke deposition. The Ba-modified catalyst also demonstrated excellent stability, with a lower deactivation rate (Ba(0.201 h<sup>−1</sup>) &lt; Sr(0.213 h<sup>−1</sup>) &lt; Ca(0.270 h<sup>−1</sup>) &lt; Mg(0.310 h<sup>−1</sup>) &lt; parent(0.338 h<sup>−1</sup>)) and robust regenerative capacity over multiple cycles.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101929"},"PeriodicalIF":5.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001248/pdfft?md5=b9e04321a7b244f955cc3a5fe82425e8&pid=1-s2.0-S1319610324001248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High durable SPEEK/TiO2 nanopaper composite membrane for vanadium redox flow battery 用于钒氧化还原液流电池的高耐久性 SPEEK/TiO2 纳米纸复合膜
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.jscs.2024.101931
Song Il Han, Song Hyok Jon, Un Hyang Kim, Gang Hyok Kim, Sang Mo Jon

Sulfonated poly (ether ether ketone) (SPEEK) ion exchange membranes for VRFB are promising alternatives to Nafion, but require improved mechanical and chemical stability for long-term operation. Here, we have fabricated composite membranes using SPEEK as proton conductive medium and TiO2 nanopapers as reinforcing framework to improve the mechanical and chemical stabilities of SPEEK membranes. The SPEEK/TiO2 nanopaper composite membranes exhibited almost twice the tensile strength and only one-third the vanadium ion permeability compared to pristine SPEEK (DS=60 %). Due to the excellent cell performance such as high EE, slow capacity degradation and long-term lifetime, these high durable composite membranes could be found their potential use as ion exchange membranes for commercial VRFBs.

用于 VRFB 的磺化聚(醚醚酮)(SPEEK)离子交换膜是很有前途的 Nafion 替代品,但需要提高机械和化学稳定性才能长期使用。在这里,我们使用 SPEEK 作为质子传导介质,TiO2 纳米纸作为增强骨架,制作了复合膜,以提高 SPEEK 膜的机械和化学稳定性。与原始 SPEEK(DS=60%)相比,SPEEK/TiO2 纳米纸复合膜的拉伸强度几乎是原始 SPEEK 的两倍,而钒离子渗透率仅为原始 SPEEK 的三分之一。由于这些高耐久性复合膜具有优异的电池性能,如高 EE、容量衰减慢和长期使用寿命长,因此有可能用作商用 VRFB 的离子交换膜。
{"title":"High durable SPEEK/TiO2 nanopaper composite membrane for vanadium redox flow battery","authors":"Song Il Han,&nbsp;Song Hyok Jon,&nbsp;Un Hyang Kim,&nbsp;Gang Hyok Kim,&nbsp;Sang Mo Jon","doi":"10.1016/j.jscs.2024.101931","DOIUrl":"10.1016/j.jscs.2024.101931","url":null,"abstract":"<div><p>Sulfonated poly (ether ether ketone) (SPEEK) ion exchange membranes for VRFB are promising alternatives to Nafion, but require improved mechanical and chemical stability for long-term operation. Here, we have fabricated composite membranes using SPEEK as proton conductive medium and TiO<sub>2</sub> nanopapers as reinforcing framework to improve the mechanical and chemical stabilities of SPEEK membranes. The SPEEK/TiO<sub>2</sub> nanopaper composite membranes exhibited almost twice the tensile strength and only one-third the vanadium ion permeability compared to pristine SPEEK (DS=60 %). Due to the excellent cell performance such as high EE, slow capacity degradation and long-term lifetime, these high durable composite membranes could be found their potential use as ion exchange membranes for commercial VRFBs.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101931"},"PeriodicalIF":5.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001261/pdfft?md5=8fbb588597f96e1f8e783317eeca9d06&pid=1-s2.0-S1319610324001261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Saudi Chemical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1