Pub Date : 2024-05-26DOI: 10.1016/j.jscs.2024.101884
Hana M. Abumelha , Alaa M. Alqahtani , Haifa Alharbi , Adel I. Alalawy , Roba M.S. Attar , Matokah M. Abualnaja , Fawaz A. saad , Nashwa M. El-Metwaly
This work aims to evaluate the antimicrobial activity of some new quinoline derivatives linked to pyrazole derivatives. The target compounds pyrazolylvinylquinoline 11a-g and 12a-g were achieved by the reaction of 2-chloro-6-nitro-3-quinolinecarboxaldehyde (4) with bromotriphenylphosphonylmethylpyrazole derivatives 9a,b to give the new quinoline derivatives 10a,b which in turn reacted with different aryl amines to afford 11a-g and 12a-g. Pyrazole derivatives 9a,b were obtained by the reaction of hydroxymethylpyrazole derivatives 8a,b with triphenylphosphine hydrobromide. Antimicrobial evaluation of the newly synthesized compounds showed that most of the new compounds appeared active toward Gram-positive bacteria more than Gram-negative bacteria. The biological evaluation of compounds 12d-g displayed the highest antimicrobial activity against the tested microorganism strains. Additionally, compounds 12d and 12f showed excellent activity against P. aeruginosa (MIC50 0.019 mg/mL), while compounds 11d, 11f, 12e, and 12g displayed good activity against the same microorganism (MIC50 0.07 mg/mL). On the other hand, most of the new compounds have moderate activity against E. coli. Compounds 12d and 12f showed excellent activity versus C. albicans in vitro antifungal activity (MIC50 0.15 mg/mL) comparing to or slightly lower than that of Fluconazole. Using molecular docking simulations, we evaluated the binding affinities and interactions of four chosen derivatives 12d-g with a target PDB code 3WT0 protein.
{"title":"Design, synthesis, and structure–activity relationship of 2-chloro-3-formylquinoline containing hybrids as powerful antibacterial agents","authors":"Hana M. Abumelha , Alaa M. Alqahtani , Haifa Alharbi , Adel I. Alalawy , Roba M.S. Attar , Matokah M. Abualnaja , Fawaz A. saad , Nashwa M. El-Metwaly","doi":"10.1016/j.jscs.2024.101884","DOIUrl":"10.1016/j.jscs.2024.101884","url":null,"abstract":"<div><p>This work aims to evaluate the antimicrobial activity of some new quinoline derivatives linked to pyrazole derivatives. The target compounds pyrazolylvinylquinoline <strong>11a-g</strong> and <strong>12a-g</strong> were achieved by the reaction of 2-chloro-6-nitro-3-quinolinecarboxaldehyde <strong>(4)</strong> with bromotriphenylphosphonylmethylpyrazole derivatives <strong>9a,b</strong> to give the new quinoline derivatives <strong>10a,b</strong> which in turn reacted with different aryl amines to afford <strong>11a-g</strong> and <strong>12a-g</strong>. Pyrazole derivatives <strong>9a,b</strong> were obtained by the reaction of hydroxymethylpyrazole derivatives <strong>8a,b</strong> with triphenylphosphine hydrobromide. Antimicrobial evaluation of the newly synthesized compounds showed that most of the new compounds appeared active toward Gram-positive bacteria more than Gram-negative bacteria. The biological evaluation of compounds <strong>12d-g</strong> displayed the highest antimicrobial activity against the tested microorganism strains. Additionally, compounds <strong>12d</strong> and <strong>12f</strong> showed excellent activity against <em>P. aeruginosa</em> (MIC<sub>50</sub> 0.019 mg/mL), while compounds <strong>11d</strong>, <strong>11f</strong>, <strong>12e</strong>, and <strong>12g</strong> displayed good activity against the same microorganism (MIC<sub>50</sub> 0.07 mg/mL). On the other hand, most of the new compounds have moderate activity against <em>E. coli</em>. Compounds <strong>12d</strong> and <strong>12f</strong> showed excellent activity versus <em>C. albicans in vitro</em> antifungal activity (MIC<sub>50</sub> 0.15 mg/mL) comparing to or slightly lower than that of Fluconazole. Using molecular docking simulations, we evaluated the binding affinities and interactions of four chosen derivatives <strong>12d</strong>-<strong>g</strong> with a target PDB code 3WT0 protein.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101884"},"PeriodicalIF":5.6,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000796/pdfft?md5=7cf066baf316f9f9132778a034ecfaa3&pid=1-s2.0-S1319610324000796-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1016/j.jscs.2024.101880
Shiye Li , Yudan Chai , Jian Zhang , Jie Wang , Chao Yang , Jin Zhang , Shixing Cheng
Due to its adjustable pore structure, the metal–organic frameworks (MOFs) have attracted much attention in the treatment of organic dye molecules in wastewater. However, the general tuning of the pore channels of MOFs is mainly by changing the chain length of the organic ligands and metal nodes. This approach not only limits the types of MOFs, but also limits the treatment of a large number of dye methylene blue (MB) and methyl orange (MO) dye molecules in the wastewater. Hence, we synthesized photoresponsive Zn-AzDC/TPA MOF as adsorbents to adsorb and release organic dye molecules in a photo-controlled manner. The photoresponsive Zn-AzDC/TPA was prepared using a mixed ligand strategy, in which the azobenzene carboxylic acid derivative (AzDC) served as a photoresponsive ligand and terephthalic acid (TPA) served as a non-active ligand in coordination with zinc ion. The optical and structural properties of the synthesized Zn-AzDC/TPA was characterized by UV–vis, FT-IR, PXRD, SEM, TEM, TGA, and pore analysis. Interestingly, it was found that the photoresponsive AzDC unit of Zn-AzDC/TPA demonstrated reversible trans–cis isomerization under the alternating UV and visible light, resulting in reversible changes in the pore size of the Zn-AzDC/TPA. Its photoresponse properties can trapp and release dye molecules under light-driven conditions. This result provides a new direction for the application of photoresponsive MOF and also lays a foundation for the study of diversified optically responsive materials.
{"title":"A switchable zinc-based metal organic framework for the light triggered absorption and release of organic dyes","authors":"Shiye Li , Yudan Chai , Jian Zhang , Jie Wang , Chao Yang , Jin Zhang , Shixing Cheng","doi":"10.1016/j.jscs.2024.101880","DOIUrl":"10.1016/j.jscs.2024.101880","url":null,"abstract":"<div><p>Due to its adjustable pore structure, the metal–organic frameworks (MOFs) have attracted much attention in the treatment of organic dye molecules in wastewater. However, the general tuning of the pore channels of MOFs is mainly by changing the chain length of the organic ligands and metal nodes. This approach not only limits the types of MOFs, but also limits the treatment of a large number of dye methylene blue (MB) and methyl orange (MO) dye molecules in the wastewater. Hence, we synthesized photoresponsive <strong>Zn-AzDC/TPA</strong> MOF as adsorbents to adsorb and release organic dye molecules in a photo-controlled manner. The photoresponsive <strong>Zn-AzDC/TPA</strong> was prepared using a mixed ligand strategy, in which the azobenzene carboxylic acid derivative (AzDC) served as a photoresponsive ligand and terephthalic acid (TPA) served as a non-active ligand in coordination with zinc ion. The optical and structural properties of the synthesized <strong>Zn-AzDC/TPA</strong> was characterized by UV–vis, FT-IR, PXRD, SEM, TEM, TGA, and pore analysis. Interestingly, it was found that the photoresponsive AzDC unit of <strong>Zn-AzDC/TPA</strong> demonstrated reversible <em>trans</em>–<em>cis</em> isomerization under the alternating UV and visible light, resulting in reversible changes in the pore size of the <strong>Zn-AzDC/TPA</strong>. Its photoresponse properties can trapp and release dye molecules under light-driven conditions. This result provides a new direction for the application of photoresponsive MOF and also lays a foundation for the study of diversified optically responsive materials.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101880"},"PeriodicalIF":5.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000759/pdfft?md5=ce3cb09945aa94e843939f7d2b75250f&pid=1-s2.0-S1319610324000759-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.jscs.2024.101882
Asiyeh Sheikhzadeh Takabi , Arash Mouradzadegun
Here, we have synthesized Polycalix[4]resorcinarene (PC4RA) covalently coupled with carbon-modified porous graphitic carbon nitride (g-C3N4). The nanocomposites were characterized by (FTIR), (XRD), (SEM), Transmission (TEM), and DRS–UV–Vis spectroscopic methods. Photocatalytic activities of the PC4RA/g-C3N4 nanocomposites with different ratios of g-C3N4 were evaluated for degradation of 4-Nitrophenol under visible light irradiation under light irradiation of λ ≥ 320 nm. Three parameters were applied including the initial concentration of 4-nitrophenol, the amount of photocatalyst, and irradiation time. and the results of the photocatalytic performance suggest that the catalytic activity is strongly influenced by the presence of the g-C3N4 content. Especially the nanocomposite’s photocatalytic efficiency was the highest (98.32 % after 120 min) when the ratio of g-C3N4 was (1/2). However, an increase of the photocatalytic activities was related to the interfacial transfer of photogenerated electrons and holes, leading to the effective charge separation. The durability and stability of the nanocomposites have been examined and can endure the experimental conditions even after eight successive cycles. This approach opens up an avenue for the fabrication of graphitic carbon nitrite-based metal-free heterogeneous nanocomposites with high catalytic performance.
{"title":"Preparation of nanosheet g-C3N4 coupled with Polycalix [4] resorcinarene: Survey characterization and photocatalytic activity for the degradation of 4-Nitrophenol","authors":"Asiyeh Sheikhzadeh Takabi , Arash Mouradzadegun","doi":"10.1016/j.jscs.2024.101882","DOIUrl":"10.1016/j.jscs.2024.101882","url":null,"abstract":"<div><p>Here, we have synthesized Polycalix[4]resorcinarene (PC4RA) covalently coupled with carbon-modified porous graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). The nanocomposites were characterized by (FTIR), (XRD), (SEM), Transmission (TEM), and DRS–UV–Vis spectroscopic methods. Photocatalytic activities of the PC4RA/g-C<sub>3</sub>N<sub>4</sub> nanocomposites with different ratios of g-C<sub>3</sub>N<sub>4</sub> were evaluated for degradation of 4-Nitrophenol under visible light irradiation under light irradiation of λ ≥ 320 nm. Three parameters were applied including the initial concentration of 4-nitrophenol, the amount of photocatalyst, and irradiation time. and the results of the photocatalytic performance suggest that the catalytic activity is strongly influenced by the presence of the g-C<sub>3</sub>N<sub>4</sub> content. Especially the nanocomposite’s photocatalytic efficiency was the highest (98.32 % after 120 min) when the ratio of g-C<sub>3</sub>N<sub>4</sub> was (1/2). However, an increase of the photocatalytic activities was related to the interfacial transfer of photogenerated electrons and holes, leading to the effective charge separation. The durability and stability of the nanocomposites have been examined and can endure the experimental conditions even after eight successive cycles. This approach opens up an avenue for the fabrication of graphitic carbon nitrite-based metal-free heterogeneous nanocomposites with high catalytic performance.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101882"},"PeriodicalIF":5.6,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000772/pdfft?md5=d0ae234ac7b3760ebe6e8775cd9a24a5&pid=1-s2.0-S1319610324000772-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.jscs.2024.101881
Mehtab Parveen , Uzma , Mohammad Azam , Mohammad Azeem , Afroz Aslam , Masrat Bashir , Mahboob Alam
This method of sustainable synthesis utilizes a range of aromatic/heterocyclic aldehydes, phenylhydrazine, and ethyl acetoacetates. The TiO2 nanoparticle catalyst facilitates cyclization reactions, yielding pyrazolone derivatives with exceptional efficiency (95–97 %) under reflux conditions at 80 °C. The current method achieves high yields of the corresponding cyclo-products in a short reaction time. A variety of physicochemical methods were employed to ascertain the chemical characteristics and structure of the synthesized heterocycles, and the geometrical structure of the well-crystallized compound (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one was characterized by the use of single-crystal X-ray diffraction measurement. The morphology and elemental composition of TiO2 nanoparticles were examined using SEM/EDX before and after the model reaction. A drop in the Ti (titanium) signal following the reaction indicates surface alterations. The present process provides a new and improved synthesis process for the formation of pyrazolones that is more convenient, well organized in terms of good yields, a simple handling procedure, a short reaction time, and user-friendliness compared to other surviving procedures. One of the synthesized compounds, (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (2), exhibited significant DNA binding activity. This was further confirmed by a molecular docking study, which revealed a binding energy of −7.2 kcal/mol, and by analyzing the mode of interaction.
这种可持续合成方法利用了一系列芳香族/杂环醛、苯肼和乙酰乙酸乙酯。TiO2 纳米粒子催化剂可促进环化反应,在 80 °C 回流条件下以极高的效率(95-97%)生成吡唑酮衍生物。目前的方法能在较短的反应时间内获得高产率的相应环状产物。利用单晶 X 射线衍射测量表征了结晶良好的化合物 (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 的几何结构。在模型反应前后,使用 SEM/EDX 对 TiO2 纳米粒子的形态和元素组成进行了检测。反应后 Ti(钛)信号的下降表明表面发生了变化。本工艺为形成吡唑酮类化合物提供了一种新的改进合成工艺,与其他尚存的工艺相比,本工艺更方便,组织良好,产率高,处理过程简单,反应时间短,使用方便。合成的化合物之一 (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (2) 具有显著的 DNA 结合活性。分子对接研究和相互作用模式分析进一步证实了这一点。
{"title":"Catalytic activity of TiO2 nanoparticles in cyclization reactions for pyrazolone formation: DNA binding analysis via spectroscopy, X-ray crystallography, and molecular docking","authors":"Mehtab Parveen , Uzma , Mohammad Azam , Mohammad Azeem , Afroz Aslam , Masrat Bashir , Mahboob Alam","doi":"10.1016/j.jscs.2024.101881","DOIUrl":"10.1016/j.jscs.2024.101881","url":null,"abstract":"<div><p>This method of sustainable synthesis utilizes a range of aromatic/heterocyclic aldehydes, phenylhydrazine, and ethyl acetoacetates. The TiO<sub>2</sub> nanoparticle catalyst facilitates cyclization reactions, yielding pyrazolone derivatives with exceptional efficiency (95–97 %) under reflux conditions at 80 °C. The current method achieves high yields of the corresponding <em>cyclo</em>-products in a short reaction time. A variety of physicochemical methods were employed to ascertain the chemical characteristics and structure of the synthesized heterocycles, and the geometrical structure of the well-crystallized compound (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one was characterized by the use of single-crystal X-ray diffraction measurement. The morphology and elemental composition of TiO<sub>2</sub> nanoparticles were examined using SEM/EDX before and after the model reaction. A drop in the Ti (titanium) signal following the reaction indicates surface alterations. The present process provides a new and improved synthesis process for the formation of pyrazolones that is more convenient, well organized in terms of good yields, a simple handling procedure, a short reaction time, and user-friendliness compared to other surviving procedures. One of the synthesized compounds, (Z)-4-((5-bromofuran-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (2), exhibited significant DNA binding activity. This was further confirmed by a molecular docking study, which revealed a binding energy of −7.2 kcal/mol, and by analyzing the mode of interaction.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101881"},"PeriodicalIF":5.6,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000760/pdfft?md5=f8295bc9ba23678031c14d9f27c0898d&pid=1-s2.0-S1319610324000760-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.jscs.2024.101879
Zhengjie Li , Miao Liu , Chunxia Fang , Huanshu Zhang , Tianyi Liu , Yixian Liu , Heli Tian , Jilong Han , Zhikun Zhang
The widespread use and subsequent accumulation of florfenicol (FFC), a common antibiotic, through the food chain poses significant risks to aquatic ecosystems and human health, necessitating effective strategies for its removal from water bodies. To solve the challenge, herein, we developed a novel aluminum-based metal–organic framework CAU-1, engineered for the efficient adsorption of FFC. CAU-1 contains the plentiful –NH2 and μ-OH groups with the positively charged on the surface. In the adsorption process, CAU-1 perform hydrogen bonding interactions with FFC’s functional groups (−F, –OH, −Cl, –NH–, and −SO2–). Furthermore, the positively charged surface of CAU-1 enhances FFC adsorption via electrostatic attraction together. FFC adsorption equilibrium on CAU-1 is attained within 180 min with a monolayer adsorption capacity of 386 mg/g at 303 K, surpassing most of the reported adsorbents. The exothermic FFC adsorption process on CAU-1 remains largely unaffected by coexisting ions. Additionally, CAU-1 can be efficiently regenerated using a mixed solution of 0.1 M HCl and ethanol–water as an eluent. This work highlights CAU-1’s potential as an effective adsorbent for FFC removal, emphasizing the importance of tuning or designing surface functional groups on adsorbents to boost their adsorption capabilities.
{"title":"Aluminium-based MOF CAU-1 facilitates effective removal of florfenicol via hydrogen bonding","authors":"Zhengjie Li , Miao Liu , Chunxia Fang , Huanshu Zhang , Tianyi Liu , Yixian Liu , Heli Tian , Jilong Han , Zhikun Zhang","doi":"10.1016/j.jscs.2024.101879","DOIUrl":"10.1016/j.jscs.2024.101879","url":null,"abstract":"<div><p>The widespread use and subsequent accumulation of florfenicol (FFC), a common antibiotic, through the food chain poses significant risks to aquatic ecosystems and human health, necessitating effective strategies for its removal from water bodies. To solve the challenge, herein, we developed a novel aluminum-based metal–organic framework CAU-1, engineered for the efficient adsorption of FFC. CAU-1 contains the plentiful –NH<sub>2</sub> and μ-OH groups with the positively charged on the surface. In the adsorption process, CAU-1 perform hydrogen bonding interactions with FFC’s functional groups (−F, –OH, −Cl, –NH–, and −SO<sub>2</sub>–). Furthermore, the positively charged surface of CAU-1 enhances FFC adsorption via electrostatic attraction together. FFC adsorption equilibrium on CAU-1 is attained within 180 min with a monolayer adsorption capacity of 386 mg/g at 303 K, surpassing most of the reported adsorbents. The exothermic FFC adsorption process on CAU-1 remains largely unaffected by coexisting ions. Additionally, CAU-1 can be efficiently regenerated using a mixed solution of 0.1 M HCl and ethanol–water as an eluent. This work highlights CAU-1’s potential as an effective adsorbent for FFC removal, emphasizing the importance of tuning or designing surface functional groups on adsorbents to boost their adsorption capabilities.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101879"},"PeriodicalIF":5.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000747/pdfft?md5=d3a523ebf646df34a52b10b4347f1c39&pid=1-s2.0-S1319610324000747-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.jscs.2024.101877
Chengfei Wang , Shahriman Zainal Abidin , Natrina Mariane P. Toyong , Wenkai Zhu , Yingchao Zhang
Plywood is widely used in flooring, furniture and other indoor wood products due to its natural advantages. However, due to the rich nutrients and unique properties of plywood, it is easy to harbor mold, which affects the use value of plywood and endangers people’s health. In this paper, ZnO/TiO2 nanoparticles were prepared by a one-pot hydrothermal method, and plywood with anti-mold/anti-bacterial properties was successfully prepared. This study pioneered the novelty and originality of growing inorganic nanocomposites on the surface of plywood to prepare plywood with anti-mold and antimicrobial properties. The prepared samples were characterized by SEM, FTIR, XRD and XPS, and the results showed that ZnO/TiO2 was adsorbed on the surface of plywood by physical adsorption. The results of mold resistance and antimicrobial testing showed that ZnO/TiO2@plywood exhibited excellent performance as the content of ZnO/TiO2 nanoparticles increased. Moreover, the antibacterial rates of ZnO/TiO2@plywood against staphylococcus aureus and escherichia coli were 96.14% and 93.36%, respectively. The improvement in the anti-mold/anti-bacterial properties of plywood is due to the reaction of ZnO/TiO2 nanoparticles with water or dissolved oxygen in water to form electron-hole pairs, generating chemically active superoxide anion radicals and hydroxyl radicals. These radicals will directly attack the bacterial cells, leading to the degradation of organic matter in the bacterial cells, thus achieving the anti-mold/anti-bacterial effect. Therefore, the novel plywood with anti-mold/anti-bacterial properties prepared in this study will fundamentally improve the intrinsic properties of plywood.
{"title":"Mildew resistance and antibacterial activity of plywood decorated with ZnO/TiO2 nanoparticle","authors":"Chengfei Wang , Shahriman Zainal Abidin , Natrina Mariane P. Toyong , Wenkai Zhu , Yingchao Zhang","doi":"10.1016/j.jscs.2024.101877","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101877","url":null,"abstract":"<div><p>Plywood is widely used in flooring, furniture and other indoor wood products due to its natural advantages. However, due to the rich nutrients and unique properties of plywood, it is easy to harbor mold, which affects the use value of plywood and endangers people’s health. In this paper, ZnO/TiO2 nanoparticles were prepared by a one-pot hydrothermal method, and plywood with anti-mold/anti-bacterial properties was successfully prepared. This study pioneered the novelty and originality of growing inorganic nanocomposites on the surface of plywood to prepare plywood with anti-mold and antimicrobial properties. The prepared samples were characterized by SEM, FTIR, XRD and XPS, and the results showed that ZnO/TiO2 was adsorbed on the surface of plywood by physical adsorption. The results of mold resistance and antimicrobial testing showed that ZnO/TiO2@plywood exhibited excellent performance as the content of ZnO/TiO2 nanoparticles increased. Moreover, the antibacterial rates of ZnO/TiO<sub>2</sub>@plywood against <em>staphylococcus aureus</em> and <em>escherichia coli</em> were 96.14% and 93.36%, respectively. The improvement in the anti-mold/anti-bacterial properties of plywood is due to the reaction of ZnO/TiO2 nanoparticles with water or dissolved oxygen in water to form electron-hole pairs, generating chemically active superoxide anion radicals and hydroxyl radicals. These radicals will directly attack the bacterial cells, leading to the degradation of organic matter in the bacterial cells, thus achieving the anti-mold/anti-bacterial effect. Therefore, the novel plywood with anti-mold/anti-bacterial properties prepared in this study will fundamentally improve the intrinsic properties of plywood.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 4","pages":"Article 101877"},"PeriodicalIF":5.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000723/pdfft?md5=2665e3e227aaa5f1b5198d69f5a02b5e&pid=1-s2.0-S1319610324000723-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101876
Hossein Bayahia
FeNbO4 monoclinic nanocomposite semiconductors were synthesised using hydrothermal and sol gel methods; photocatalysts were then calcined at 800 °C. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy (UV/Vis) and X-ray diffraction (XRD) technologies were used to investigate crystallinity, morphology and optical properties of the photocatalysts. Fourier transform infrared spectroscopy (FTIR) was used to determine the functional groups of both treated and untreated FeNbO4. It was found that the S. molle extract-treated FeNbO4 prepared using the hydrothermal method (FeNbO4-HT + S. molle) has the smallest nanoparticles (22.8 nm) with the smallest band gap energy (2.78 eV). X-ray photoelectron spectroscopy verified the presence of the elements of FeNbO4 as well as their oxidation states. The photodegradation reactions of 10-ppm methyl orange dye solutions using FeNbO4-sol gel, FeNbO4-HT and FeNbO4-HT + S. molle were carried out under visible light (>420 nm) for 50 min. The reactions resulted in degradation percent of 74 %, 78 % and 96 % by using FeNbO4-sol gel, FeNbO4-HT and FeNbO4-HT + S. molle respectively. The photocatalytic activity of FeNbO4 treated with S. molle extract demonstrated superior light absorption and photostability, which is attributed to the consistency in the photocatalysts’ morphology, optical band gap, particle size distribution, and porosity. The photocatalysts remained stable and effective for five degradation cycles.
采用水热法和溶胶凝胶法合成了 FeNbO4 单斜纳米复合半导体,然后在 800 °C 煅烧光催化剂。扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见光谱(UV/Vis)和 X 射线衍射(XRD)技术被用来研究光催化剂的结晶度、形貌和光学特性。傅立叶变换红外光谱(FTIR)用于确定处理过和未处理过的 FeNbO4 的官能团。结果发现,采用水热法制备的经 S. molle 提取物处理的 FeNbO4(FeNbO4-HT + S. molle)具有最小的纳米颗粒(22.8 nm)和最小的带隙能(2.78 eV)。X 射线光电子能谱验证了 FeNbO4 中元素的存在及其氧化态。在可见光(420 纳米)条件下,使用 FeNbO4 溶胶凝胶、FeNbO4-HT 和 FeNbO4-HT + S. molle 对 10ppm 的甲基橙染料溶液进行了 50 分钟的光降解反应。使用 FeNbO4 溶胶、FeNbO4-HT 和 FeNbO4-HT + S. molle 进行反应,降解率分别为 74%、78% 和 96%。用 S. molle 提取物处理的 FeNbO4 的光催化活性表现出卓越的光吸收和光稳定性,这归功于光催化剂的形态、光带隙、粒度分布和孔隙率的一致性。光催化剂在五个降解循环中保持稳定和有效。
{"title":"Schinus molle extract mediated green synthesis of iron niobate photocatalyst for the degradation of methyl orange dye under visible light","authors":"Hossein Bayahia","doi":"10.1016/j.jscs.2024.101876","DOIUrl":"10.1016/j.jscs.2024.101876","url":null,"abstract":"<div><p>FeNbO<sub>4</sub> monoclinic nanocomposite semiconductors were synthesised using hydrothermal and sol gel methods; photocatalysts were then calcined at 800 °C. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy (UV/Vis) and X-ray diffraction (XRD) technologies were used to investigate crystallinity, morphology and optical properties of the photocatalysts. Fourier transform infrared spectroscopy (FTIR) was used to determine the functional groups of both treated and untreated FeNbO<sub>4</sub>. It was found that the <em>S. molle</em> extract-treated FeNbO<sub>4</sub> prepared using the hydrothermal method (FeNbO<sub>4</sub>-HT + <em>S. molle</em>) has the smallest nanoparticles (22.8 nm) with the smallest band gap energy (2.78 eV). X-ray photoelectron spectroscopy verified the presence of the elements of FeNbO<sub>4</sub> as well as their oxidation states. The photodegradation reactions of 10-ppm methyl orange dye solutions using FeNbO<sub>4</sub>-sol gel, FeNbO<sub>4</sub>-HT and FeNbO<sub>4</sub>-HT + <em>S. molle</em> were carried out under visible light (>420 nm) for 50 min. The reactions resulted in degradation percent of 74 %, 78 % and 96 % by using FeNbO<sub>4</sub>-sol gel, FeNbO<sub>4</sub>-HT and FeNbO<sub>4</sub>-HT + <em>S. molle</em> respectively. The photocatalytic activity of FeNbO<sub>4</sub> treated with <em>S. molle</em> extract demonstrated superior light absorption and photostability, which is attributed to the consistency in the photocatalysts’ morphology, optical band gap, particle size distribution, and porosity. The photocatalysts remained stable and effective for five degradation cycles.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101876"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000711/pdfft?md5=2d967b2d557402f29ac5ff450e857b6b&pid=1-s2.0-S1319610324000711-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101867
Changkuo Zhao , Linming Zuo , Xi Ke , Xianheng Wang
A simple method for Michael addition at C-5 of Camptothecin has been developed to construct 5-CPT derivatives. The addition products were obtained with moderate yields, and the structures of the target compounds were characterized by 1H NMR, 13C NMR, and HRMS spectra. The feasibility of various Michael addition acceptors for this reaction has also been investigated.
{"title":"Michael addition reaction in C-5 of Camptothecin","authors":"Changkuo Zhao , Linming Zuo , Xi Ke , Xianheng Wang","doi":"10.1016/j.jscs.2024.101867","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101867","url":null,"abstract":"<div><p>A simple method for Michael addition at C-5 of Camptothecin has been developed to construct 5-CPT derivatives. The addition products were obtained with moderate yields, and the structures of the target compounds were characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS spectra. The feasibility of various Michael addition acceptors for this reaction has also been investigated.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101867"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000620/pdfft?md5=cf578abf67f71780f8345bb578fdec55&pid=1-s2.0-S1319610324000620-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101866
Mouna Souad Abbassi , Talal Lahreche , Khaled Briki , Mokhtar Boualem Lahrech , Adil Ali Othman , Ahmed M. Elissawy , Abdel Nasser B. Singab
The synthesis and biological assessment of 2,5-disubstituted-1,3,4-oxadiazoles derivatives from amino acids as new potential antibacterial and antioxidant agents have been reported. The structures of the new synthesized compounds were characterized based on physicochemical and spectral data UV–Visible, IR, 1HNMR, 13CNMR. All the target compounds were screened for their in vitro antibacterial activity against three Gram-positive bacterial strains, namely Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, Listeria innocua ATCC 33090, and two Gram-negative bacterial strains, namely Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, and antifungal activity against Candida albicans ATCC 10231 in comparison with Amoxicillin, Tetracycline, Gentamicin and Oxacillin. The only compound 1-{(4S)-4-amino-4-[5-(2-hydroxyphenyl)-1,3,4-oxadiazol-2-yl]butyl}guanidine 5e with the amine radical that showed excellent results against all bacteria, particularly against L. innocua (IZ = 12 mm), has excellent antifungal activity (IZ = 32 mm). The compounds 2-[5-(1-amino-3-methylbutyl)-1,3,4-oxadiazol-2-yl]phenol 5b and 2-[5-(pyrrolidin-2-yl)-1,3,4-oxadiazol-2-yl]phenol 5j have excellent activities (IZ = 27 and IZ = 28 mm, respectively) against B. cereus and P. aeruginosa. Compounds 2-{5-[(1R)-1-amino-2-sulfanylethyl]-1,3,4-oxadiazol-2-yl}phenol 5c, 2-{5-[(1S)-1-amino-3-(methylsulfanyl)propyl]-1,3,4-oxadiazol-2-yl}phenol 5d with the sulfur radical, 3--[5-(2-3-amino hydroxyphenyl)-1,3,4-oxadiazol-2-yl]propanamide 5g with the amide radical, 5j with the amino radical, and 4-amino-4-[5-(2-hydroxyphenyl)-1,3,4-oxadiazol-2-yl]butanoic acid 5k gave good results against B. cereus, where 19 mm < IZ < 23 mm. We also found that compound 5j has the greatest activity (IZ = 33 mm) against C. albicans, followed by compounds 5e (IZ = 32 mm) and 5b (IZ = 30 mm). The synthesized compounds were also screened for radical scavenging antioxidant activities by DPPH, FRAP, and TAC assays and found to be good antioxidant agents. According to the IC50 values, all compounds demonstrated good to excellent activity, especially 5b and 2-{5-[1-amino-2-(1H-imidazol-4-yl)ethyl]-1,3,4-oxadiazol-2-yl}phenol 5i for DPPH, 5e and 5i for FRAP and methyl 2-hydroxybenzoate 2, 2-{5-[1-amino-2-(1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2-yl}phenol 5h with the imidazol group and 2-[5-(1,5-diaminopentyl)-1,3,4-oxadiazol-2-yl]phenol 5f with the imidazol group for TAC. All these compounds showed better activity than AA and BHT.
{"title":"Synthesis, characterization, antimicrobial and antioxidant activity of 2- (2′-hydroxyphenyl) -1,3,4-oxadiazolyl-5-amino acid derivatives","authors":"Mouna Souad Abbassi , Talal Lahreche , Khaled Briki , Mokhtar Boualem Lahrech , Adil Ali Othman , Ahmed M. Elissawy , Abdel Nasser B. Singab","doi":"10.1016/j.jscs.2024.101866","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101866","url":null,"abstract":"<div><p>The synthesis and biological assessment of 2,5-disubstituted-1,3,4-oxadiazoles derivatives from amino acids as new potential antibacterial and antioxidant agents have been reported. The structures of the new synthesized compounds were characterized based on physicochemical and spectral data UV–Visible, IR, <sup>1</sup>HNMR, <sup>13</sup>CNMR. All the target compounds were screened for their<!--> <!-->in vitro<!--> <!-->antibacterial activity<!--> <!-->against three Gram-positive<!--> <!-->bacterial strains,<!--> <!-->namely <em>Staphylococcus aureus</em> ATCC 25923, <em>Bacillus cereus</em> ATCC 14579, <em>Listeria innocua</em> ATCC 33090, and two Gram-negative bacterial strains,<!--> <!-->namely <em>Pseudomonas aeruginosa</em> ATCC 27853, <em>Escherichia coli</em> ATCC 25922, and<!--> <!-->antifungal activity<!--> <!-->against <em>Candida albicans</em> ATCC 10231 in comparison with Amoxicillin, Tetracycline, Gentamicin and Oxacillin. The only compound 1-{(4S)-4-amino-4-[5-(2-hydroxyphenyl)-1,3,4-oxadiazol-2-yl]butyl}guanidine 5e with the amine radical that<!--> <!-->showed excellent results against all bacteria, particularly against L. innocua (IZ = 12 mm), has excellent antifungal activity (IZ = 32 mm). The compounds 2-[5-(1-amino-3-methylbutyl)-1,3,4-oxadiazol-2-yl]phenol 5b and 2-[5-(pyrrolidin-2-yl)-1,3,4-oxadiazol-2-yl]phenol 5j have excellent activities (IZ = 27 and IZ = 28 mm, respectively) against B. cereus and P. aeruginosa. Compounds 2-{5-[(1R)-1-amino-2-sulfanylethyl]-1,3,4-oxadiazol-2-yl}phenol 5c, 2-{5-[(1S)-1-amino-3-(methylsulfanyl)propyl]-1,3,4-oxadiazol-2-yl}phenol 5d<!--> <!-->with the sulfur radical, 3--[5-(2-3-amino hydroxyphenyl)-1,3,4-oxadiazol-2-yl]propanamide 5g with the amide radical, 5j with the amino radical, and 4-amino-4-[5-(2-hydroxyphenyl)-1,3,4-oxadiazol-2-yl]butanoic acid 5k gave good results against B. cereus, where 19 mm < IZ < 23 mm. We also found that compound 5j has the greatest activity (IZ = 33 mm) against C. albicans, followed by compounds 5e (IZ = 32 mm) and 5b (IZ = 30 mm). The synthesized compounds were also screened for radical scavenging antioxidant activities by DPPH, FRAP, and TAC assays and found to be good antioxidant agents. According to the IC50 values, all compounds demonstrated good to excellent activity, especially 5b and 2-{5-[1-amino-2-(1H-imidazol-4-yl)ethyl]-1,3,4-oxadiazol-2-yl}phenol 5i for DPPH, 5e and 5i for FRAP and methyl 2-hydroxybenzoate 2,<!--> <!-->2-{5-[1-amino-2-(1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2-yl}phenol 5h with the imidazol group and 2-[5-(1,5-diaminopentyl)-1,3,4-oxadiazol-2-yl]phenol 5f with the imidazol group for TAC. All these compounds showed better activity than AA and BHT.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101866"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000619/pdfft?md5=0b555f98fc52e5a4eec63f54d15b8915&pid=1-s2.0-S1319610324000619-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101871
Khalid Mujasam Batoo , Kadhim Hussein Jassim , Talal Aziz Qassem , Sajjad Hussain , Wafaa Talib Hasson , Sarah Salah Jalal , Montather F. Ramadan , Safaa Mustafa Hameed , Ahmed Hussien Alawadi , Ali Alsaalamy
Herein, a novel magnetic visible-driven g-C3N4/TiO2/CuFe2O4 nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C3N4/TiO2/CuFe2O4 heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO2. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C3N4/TiO2/CuFe2O4 nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.
{"title":"Novel magnetically separable g-C3N4/TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM","authors":"Khalid Mujasam Batoo , Kadhim Hussein Jassim , Talal Aziz Qassem , Sajjad Hussain , Wafaa Talib Hasson , Sarah Salah Jalal , Montather F. Ramadan , Safaa Mustafa Hameed , Ahmed Hussien Alawadi , Ali Alsaalamy","doi":"10.1016/j.jscs.2024.101871","DOIUrl":"10.1016/j.jscs.2024.101871","url":null,"abstract":"<div><p>Herein, a novel magnetic visible-driven g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO<sub>2</sub>. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101871"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000668/pdfft?md5=3ef1bb78c0e5ef2bd29e764ed9c19543&pid=1-s2.0-S1319610324000668-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}