Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101872
Nouman Aslam , Saba Akram , M.I. Yousaf , Abdulrahman Alshammari , Norah A. Albekairi , D.J. Fu
Local bacterial infection remains an increasingly severe threat to human health worldwide, and infection control is still a challenging task. Carbon Quantum Dots (CQSs) and barium tungstate show antibacterial properties. CQDs doped Barium Tungstate (BaWO4) are synthesized by using a hydrothermal route and their optical and antimicrobial activities against the Gram-positive bacteria staphylococcus aureus and optical properties were investigated. The UV–Vis reveals a shift in the bandgap from 3.62 eV to 2.93 eV due to doping of CQDs in BaWO4. The structure of the CQDs/BaWO4 were studied by XRD, which shows CQDs doped BaWO4 samples possess tetragona4 werelite structure with the preferred orientation of (1 1 2) identified by XRD at 26° having crystallite size ∼ 31 nm. Nanocomposite BaWO4/CQDs exhibit a spherical-like shape and are composed of Ba, O, W and C according to the design of the experiment. Zeta sizer of CQDs by DLS shows the size of CQDs is 7.65 nm. The FT-IR shows the presence of functional groups in doped material like CC, CO, and COOH bonds which indicate that the C-dots are functionalized with epoxy, carbonyl, hydroxyl, and carboxylic acid groups. Their elemental composition and surface morphology were studied by EDS which shows the percentage variation of CQDs in BaWO4, SEM results show the change in shape of the sample by adding CQDs to BaWO4. The TEM image proves the presence of doped material in the BaWO4. The PL spectra reveals the emission spectra shift towards a higher wavelength and absorption increases. The qualitative analysis shows the antimicrobial activity and enlargement of the inhibition zone and quantitative analysis confirms it.
{"title":"Effect of carbon quantum dots doping on structural, optical, and antibacterial properties of barium tungstate nanocomposite material","authors":"Nouman Aslam , Saba Akram , M.I. Yousaf , Abdulrahman Alshammari , Norah A. Albekairi , D.J. Fu","doi":"10.1016/j.jscs.2024.101872","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101872","url":null,"abstract":"<div><p>Local bacterial infection remains an increasingly severe threat to human health worldwide, and infection control is still a challenging task. Carbon Quantum Dots (CQSs) and barium tungstate show antibacterial properties. CQDs doped Barium Tungstate (BaWO<sub>4</sub>) are synthesized by using a hydrothermal route and their optical and antimicrobial activities against the Gram-positive bacteria staphylococcus aureus and optical properties were investigated. The UV–Vis reveals a shift in the bandgap from 3.62 eV to 2.93 eV due to doping of CQDs in BaWO<sub>4</sub>. The structure of the CQDs/BaWO<sub>4</sub> were studied by XRD, which shows CQDs doped BaWO<sub>4</sub> samples possess tetragona4 werelite structure with the preferred orientation of (1<!--> <!-->1<!--> <!-->2) identified by XRD at 26° having crystallite size ∼ 31 nm. Nanocomposite BaWO<sub>4</sub>/CQDs exhibit a spherical-like shape and are composed of Ba, O, W and C according to the design of the experiment. Zeta sizer of CQDs by DLS shows the size of CQDs is 7.65 nm. The FT-IR shows the presence of functional groups in doped material like C<img>C, C<img>O, and COOH bonds which indicate that the C-dots are functionalized with epoxy, carbonyl, hydroxyl, and carboxylic acid groups. Their elemental composition and surface morphology were studied by EDS which shows the percentage variation of CQDs in BaWO<sub>4</sub>, SEM results show the change in shape of the sample by adding CQDs to BaWO<sub>4</sub>. The TEM image proves the presence of doped material in the BaWO<sub>4</sub>. The PL spectra reveals the emission spectra shift towards a higher wavelength and absorption increases. The qualitative analysis shows the antimicrobial activity and enlargement of the inhibition zone and quantitative analysis confirms it.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101872"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131961032400067X/pdfft?md5=9375cd1b160c65dae2a27b44b257ad90&pid=1-s2.0-S131961032400067X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101869
M. Zahid Shafiq , Wajeehah Shahid , Samiah Shahid , M.I. Khan , Jeong Ryeol Choi , Eman A. Al-Abbad
Photocatalytic responses and synergistic effects of V2O5, TiO2, and V2O5/TiO2 heterostructures with varied ratios have been investigated, revealing promising outcomes. The successful synthesis of nanostructures and heterostructures was verified through energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses. Notably, ultraviolet–visible spectroscopy and photoluminescence spectral studies confirmed that the optical band gap of V2O5/TiO2 heterostructures increases with higher TiO2 concentrations. These findings enhance our understanding of the agglomerated heterostructures of V2O5/TiO2, particularly with ratios of 1:1 and 1:3, showcasing potential applications in photocatalysis. Furthermore, their performance was subjected to Malachite Green dye degradation using a solar simulator, achieving an impressive efficiency of 93.29%. Additionally, the photocatalytic efficacy was assessed through reusability experiments over three cycles. Remarkably, the heterostructures exhibited stability across these cycles, suggesting their potential for extended use in diverse photocatalytic purposes. The importance of these results is the applicability of our fabricated V2O5/TiO2 heterostructures as a photocatalyst with high performance, especially in the realm of sustainable and efficient dye degradation processes.
{"title":"Enhancing photocatalytic efficiency of type II V2O5/TiO2 heterojunctions for malachite green dye using solar simulator irradiation","authors":"M. Zahid Shafiq , Wajeehah Shahid , Samiah Shahid , M.I. Khan , Jeong Ryeol Choi , Eman A. Al-Abbad","doi":"10.1016/j.jscs.2024.101869","DOIUrl":"10.1016/j.jscs.2024.101869","url":null,"abstract":"<div><p>Photocatalytic responses and synergistic effects of V<sub>2</sub>O<sub>5</sub>, TiO<sub>2</sub>, and V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> heterostructures with varied ratios have been investigated, revealing promising outcomes. The successful synthesis of nanostructures and heterostructures was verified through energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses. Notably, ultraviolet–visible spectroscopy and photoluminescence spectral studies confirmed that the optical band gap of V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> heterostructures increases with higher TiO<sub>2</sub> concentrations. These findings enhance our understanding of the agglomerated heterostructures of V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub>, particularly with ratios of 1:1 and 1:3, showcasing potential applications in photocatalysis. Furthermore, their performance was subjected to Malachite Green dye degradation using a solar simulator, achieving an impressive efficiency of 93.29%. Additionally, the photocatalytic efficacy was assessed through reusability experiments over three cycles. Remarkably, the heterostructures exhibited stability across these cycles, suggesting their potential for extended use in diverse photocatalytic purposes. The importance of these results is the applicability of our fabricated V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> heterostructures as a photocatalyst with high performance, especially in the realm of sustainable and efficient dye degradation processes.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101869"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000644/pdfft?md5=b879c6f54716375726a7634044abbf83&pid=1-s2.0-S1319610324000644-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141056112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, magnetic graphene oxide (MGO-Fe3O4) nanocomposite was prepared by co-precipitating of FeCl3.6H2O and FeCl2.4H2O on waste battery-derived graphene oxide and used as an adsorbent for the efficient removal of As(III) from aqueous solutions. The prepared nanocomposite was characterized by Fourier transformed infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, and a vibrating sample magnetometer. These characterizations revealed that spare like Fe3O4 nanoparticles (10.5 nm) were decorated on graphene oxide nanosheets and showed excellent saturation magnetization (89.73 emu/g). The adsorption of As(III) by MGO-Fe3O4 was optimized by analyzing various parameters. Experiments showed that 98 % of As(III) was removed at neutral pH in a just 20 min, even though the adsorbent dose was only 0.14 g/L. The adsorption kinetic and isotherm were best fitted with the pseudo-second order kinetic and Frendlich isotherm model. The maximum adsorption capacity (qmax) was found to be 50.2 mg/g at room temperature. Thermodynamic studies showed that the As(III) adsorption process was spontaneous and exothermic in nature. The enhanced adsorption capacity and magnetic properties of MGO-Fe3O4 are crucial in the drinking water treatment process due to the easy magnetic separation of MGO-Fe3O4 from aqueous solution after the adsorption process. Density Functional Theory (DFT) was also used to investigate the interaction between MGO-Fe3O4 and As(III), which further suggested that MGO-Fe3O4 and As(III) mostly interact with each other through surface complexation and hydrogen bonding.
{"title":"Cost-effective synthesis of magnetic graphene oxide nanocomposite from waste battery for the removal of arsenic from aqueous solutions: Adsorption mechanism with DFT calculation","authors":"Md. Sanwar Hossain, Sabina Yasmin, Md Humayun Kabir","doi":"10.1016/j.jscs.2024.101873","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101873","url":null,"abstract":"<div><p>In this study, magnetic graphene oxide (MGO-Fe<sub>3</sub>O<sub>4</sub>) nanocomposite was prepared by co-precipitating of FeCl<sub>3</sub>.6H<sub>2</sub>O and FeCl<sub>2</sub>.4H<sub>2</sub>O on waste battery-derived graphene oxide and used as an adsorbent for the efficient removal of As(III) from aqueous solutions. The prepared nanocomposite was characterized by Fourier transformed infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, and a vibrating sample magnetometer. These characterizations revealed that spare like Fe<sub>3</sub>O<sub>4</sub> nanoparticles (10.5 nm) were decorated on graphene oxide nanosheets and showed excellent saturation magnetization (89.73 emu/g). The adsorption of As(III) by MGO-Fe<sub>3</sub>O<sub>4</sub> was optimized by analyzing various parameters. Experiments showed that 98 % of As(III) was removed at neutral pH in a just 20 min, even though the adsorbent dose was only 0.14 g/L. The adsorption kinetic and isotherm were best fitted with the pseudo-second order kinetic and Frendlich isotherm model. The maximum adsorption capacity (q<sub>max</sub>) was found to be 50.2 mg/g at room temperature. Thermodynamic studies showed that the As(III) adsorption process was spontaneous and exothermic in nature. The enhanced adsorption capacity and magnetic properties of MGO-Fe<sub>3</sub>O<sub>4</sub> are crucial in the drinking water treatment process due to the easy magnetic separation of MGO-Fe<sub>3</sub>O<sub>4</sub> from aqueous solution after the adsorption process. Density Functional Theory (DFT) was also used to investigate the interaction between MGO-Fe<sub>3</sub>O<sub>4</sub> and As(III), which further suggested that MGO-Fe<sub>3</sub>O<sub>4</sub> and As(III) mostly interact with each other through surface complexation and hydrogen bonding.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101873"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000681/pdfft?md5=bfc0eacf79bc63d59c17ae5f970056e2&pid=1-s2.0-S1319610324000681-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101865
Krishnan Vancheeswaran Prasad , Mohanraj Kumar , Ching-Lung Chen , Mon-Shu Ho , Khursheed Muzammil , Yousef Zahrani , Musa M almutheibi , Jih-Hsing Chang
The emergence of COVID-19 had an unprecedented impact on society, leading to the widespread usage and disposal of surgical face masks (FMs). This work contributes to repurposing FMs into carbon materials through simplified solvothermal-assisted pyrolysis processes for supercapacitor applications. XRD and FESEM were employed to investigate the materials' microstructural and micrographic characteristics. The FM 700 has a specific capacitance value of 182.61 Fg−1, more significant than the other produced sample in the 1 M KOH electrolyte. The symmetric solid-state supercapacitor with a maximum capacitance of 92.67 Fg−1 is constructed under perfect circumstances. After 10,000 cycles, FM 700-SSSD maintained 89 % of its value. Turning FMs into carbon materials for energy storage applications is made more accessible by this method and also prevents the environment from pollution.
{"title":"A novel carbon microtubes derived from the used surgical face mask for the Ni-F/FMs symmetric supercapacitor device","authors":"Krishnan Vancheeswaran Prasad , Mohanraj Kumar , Ching-Lung Chen , Mon-Shu Ho , Khursheed Muzammil , Yousef Zahrani , Musa M almutheibi , Jih-Hsing Chang","doi":"10.1016/j.jscs.2024.101865","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101865","url":null,"abstract":"<div><p>The emergence of COVID-19 had an unprecedented impact on society, leading to the widespread usage and disposal of surgical face masks (FMs). This work contributes to repurposing FMs into carbon materials through simplified solvothermal-assisted pyrolysis processes for supercapacitor applications. XRD and FESEM were employed to investigate the materials' microstructural and micrographic characteristics. The FM 700 has a specific capacitance value of 182.61 Fg<sup>−1</sup>, more significant than the other produced sample in the 1 M KOH electrolyte. The symmetric solid-state supercapacitor with a maximum capacitance of 92.67 Fg<sup>−1</sup> is constructed under perfect circumstances. After 10,000 cycles, FM 700-SSSD maintained 89 % of its value. Turning FMs into carbon materials for energy storage applications is made more accessible by this method and also prevents the environment from pollution.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101865"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000607/pdfft?md5=e0b33e7ced9d3bc260b72f74d7ad5c8b&pid=1-s2.0-S1319610324000607-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101874
Ali H. Bashal
This study utilized incipient wetness impregnation to synthesize bentonite materials and to enhance their physical characteristics with ruthenium (Ru) and strontium (Sr) ions. The atomic composition of the materials was confirm confirmed via the analysis of the EDX measurements. X-ray crystallography indicates that the materials have almost similar diffraction peak profiles, and that the addition of Sr increases the crystallinity of the bentonite grains. Dielectric and electrical properties, measured between 25 °C and 55 °C at frequencies of 1 kHz −1 MHz, revealed that the real and imaginary impedances increased upon the introduction of 5 % Ru and 5 % Sr, possibly due to Ru and Sr segregation into the grain boundaries, increasing the resistance of the bentonite granular structure. For all materials, the observed saturation of the real electric modulus at high frequencies, and the reduction of the permittivity with increasing frequency, may be explained by the Maxwell-Wagner interfacial polarization and Koop's empirical theory. This trend is more pronounced for the bentonite with Sr, highlighting the essence of the present work for engineering interfacial polarisation applications associated with supercapacitors and batteries.
本研究利用萌发湿浸渍法合成膨润土材料,并用钌(Ru)和锶(Sr)离子增强其物理特性。这些材料的原子组成是通过电离辐射 X 射线测量分析确认的。X 射线晶体学显示,这两种材料的衍射峰分布几乎相似,而锶的加入则增加了膨润土晶粒的结晶度。在 25 °C 和 55 °C 之间以 1 kHz -1 MHz 频率测量的介电性能和电学性能表明,在引入 5 % Ru 和 5 % Sr 后,实阻抗和虚阻抗都增加了,这可能是由于 Ru 和 Sr 偏析到晶界中,增加了膨润土颗粒结构的电阻。对于所有材料,观察到的高频率下实际电模量的饱和以及随频率增加而降低的介电常数,可以用麦克斯韦-瓦格纳界面极化和库普经验理论来解释。这种趋势在含 Sr 的膨润土中更为明显,突出了本研究在与超级电容器和电池相关的工程界面极化应用中的本质。
{"title":"Tailoring the dielectric properties of bentonite for advanced capacitor Applications: The role of ruthenium and strontium incorporation","authors":"Ali H. Bashal","doi":"10.1016/j.jscs.2024.101874","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101874","url":null,"abstract":"<div><p>This study utilized incipient wetness impregnation to synthesize bentonite materials and to enhance their physical characteristics with ruthenium (Ru) and strontium (Sr) ions. The atomic composition of the materials was confirm confirmed via the analysis of the EDX measurements. X-ray crystallography indicates that the materials have almost similar diffraction peak profiles, and that the addition of Sr increases the crystallinity of the bentonite grains. Dielectric and electrical properties, measured between 25 °C and 55 °C at frequencies of 1 kHz −1 MHz, revealed that the real and imaginary impedances increased upon the introduction of 5 % Ru and 5 % Sr, possibly due to Ru and Sr segregation into the grain boundaries, increasing the resistance of the bentonite granular structure. For all materials, the observed saturation of the real electric modulus at high frequencies, and the reduction of the permittivity with increasing frequency, may be explained by the Maxwell-Wagner interfacial polarization and Koop's empirical theory. This trend is more pronounced for the bentonite with Sr, highlighting the essence of the present work for engineering interfacial polarisation applications associated with supercapacitors and batteries.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101874"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000693/pdfft?md5=e1639e4d021d8819faeea9f5b522d3af&pid=1-s2.0-S1319610324000693-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140948363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101861
Sumayya Akram , Tooba Jabeen , Sana Aslam , Amnah Yusaf , Matloob Ahmad , Muhammad Shahid Nazir , Sami A. Al-Hussain , Magdi E.A. Zaki
N-Arylpyrazoles are important building blocks in many biologically active compounds, natural products, pharmaceuticals, and industries. It is an important moiety of various drugs and exhibits extensive biological activities viz., antibiotic, anticancer, antifungal, anti-inflammatory, anti-coagulant, analgesic, antipyretic, anti-depressant, insecticidal, and hyperglycemic activities. Various protocols have been designed for the synthesis of N-arylpyrazoles facilitated by a wide variety of metal-based catalysts at high or room temperature, metal free reactions, various named reactions, multicomponent reactions, and those occurring under different electromagnetic radiations. Various ligands are found to promote Cu-catalyzed N-arylation of pyrazole under mild conditions in short time. This review describes the synthesis and biological applications of N-arylpyrazole derivatives reported during 2019–2023.
{"title":"N-Arylpyrazole based Scaffolds: Synthesis and biological applications","authors":"Sumayya Akram , Tooba Jabeen , Sana Aslam , Amnah Yusaf , Matloob Ahmad , Muhammad Shahid Nazir , Sami A. Al-Hussain , Magdi E.A. Zaki","doi":"10.1016/j.jscs.2024.101861","DOIUrl":"10.1016/j.jscs.2024.101861","url":null,"abstract":"<div><p><em>N</em>-Arylpyrazoles are important building blocks in many biologically active compounds, natural products, pharmaceuticals, and industries. It is an important moiety of various drugs and exhibits extensive biological activities viz., antibiotic, anticancer, antifungal, anti-inflammatory, anti-coagulant, analgesic, antipyretic, anti-depressant, insecticidal, and hyperglycemic activities. Various protocols have been designed for the synthesis of <em>N</em>-arylpyrazoles facilitated by a wide variety of metal-based catalysts at high or room temperature, metal free reactions, various named reactions, multicomponent reactions, and those occurring under different electromagnetic radiations. Various ligands are found to promote Cu-catalyzed <em>N</em>-arylation of pyrazole under mild conditions in short time. This review describes the synthesis and biological applications of <em>N</em>-arylpyrazole derivatives reported during 2019–2023.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101861"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000565/pdfft?md5=4e142af206912fac68d95354810523c5&pid=1-s2.0-S1319610324000565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140788199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces MnFe2O4@SiO2-SiO3H as a novel magnetic catalyst and thoroughly investigates its structure, catalytic activity, and reusability. The synthesis of the magnetic catalyst was meticulously characterized using an array of analytical techniques. Utilizing MnFe2O4@SiO2-SiO3H, the synthesis of functionalized oxazolidine-2-ones were performed, versatile compounds widely employed in chiral auxiliaries, protecting groups, and medicinal chemistry. Remarkably, the two-step process from chalcones demonstrated one of the shortest reported pathways, highlighting the efficiency of our novel nanocatalyst. To elucidate the stability and reactivity of the synthesized products, we employed Density Functional Theory (DFT) calculations, including molecular electrostatic potential (MEP) mapping and reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO). Furthermore, our investigations extended to the recycling capabilities of the nanocatalyst. Through a comprehensive evaluation of at least five reaction cycles, MnFe2O4@SiO2-SiO3H showcased a remarkable retention of activity (97–92 %), reaffirming its reusability and long-term potential. Our research presents MnFe2O4@SiO2-SiO3H as a highly effective and recoverable nanomagnetic catalyst for organic reactions, with demonstrated applications in synthesizing functionalized oxazolidine-2-ones. As such, our findings offer a promising alternative to traditional methods, presenting new opportunities in catalysis and materials science.
{"title":"Synthesis and density functional theory study of functionalized Oxazolidine-2-ones using a novel MnFe2O4@SiO2-SiO3H magnetic nanocatalyst","authors":"Soheila Nikmanesh, Fariba Heidarizadeh, Zabihollah Mahdavifar","doi":"10.1016/j.jscs.2024.101870","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101870","url":null,"abstract":"<div><p>This study introduces MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>-SiO<sub>3</sub>H as a novel magnetic catalyst and thoroughly investigates its structure, catalytic activity, and reusability. The synthesis of the magnetic catalyst was meticulously characterized using an array of analytical techniques. Utilizing MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>-SiO<sub>3</sub>H, the synthesis of functionalized oxazolidine-2-ones were performed, versatile compounds widely employed in chiral auxiliaries, protecting groups, and medicinal chemistry. Remarkably, the two-step process from chalcones demonstrated one of the shortest reported pathways, highlighting the efficiency of our novel nanocatalyst. To elucidate the stability and reactivity of the synthesized products, we employed Density Functional Theory (DFT) calculations, including molecular electrostatic potential (MEP) mapping and reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO). Furthermore, our investigations extended to the recycling capabilities of the nanocatalyst. Through a comprehensive evaluation of at least five reaction cycles, MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>-SiO<sub>3</sub>H showcased a remarkable retention of activity (97–92 %), reaffirming its reusability and long-term potential. Our research presents MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>-SiO<sub>3</sub>H as a highly effective and recoverable nanomagnetic catalyst for organic reactions, with demonstrated applications in synthesizing functionalized oxazolidine-2-ones. As such, our findings offer a promising alternative to traditional methods, presenting new opportunities in catalysis and materials science.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101870"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000656/pdfft?md5=fe93d006d39ca87d1ed4ec3a4a36f7e2&pid=1-s2.0-S1319610324000656-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101868
Reem A.K. Alharbi , Sayed M. Riyadh , Nadia S. Al-Kaff , Musa A. Said
The designed and synthesized multifunctional properties of bis-hydrazono[1,3,4]thiadiazoles became important for developing an efficient medication for Alzheimer’s disease. Thiadiazoles were characterized and studied towards this target as an acetylcholinesterase inhibitor (ChEIs). In this study, one-pot synthetic strategy was applied for the synthesis of bis-hydrazono[1,3,4]thiadiazole series from 2,2′-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbodithioic acid) and hydrazonoyl chlorides. The greener pastures, in silico, an environmentally-friendly and free computer-aided method, bioactivity studies of the bis-hydrazono[1,3,4]thiadiazoles 4a-h exhibited various possible interesting inhibitory activities against AChE showing similar behaviour to the approved drugs, Donepezil, Galantamine and Rivastigmine. For a fair comparison, the superpositions of 4a-h, and Donepezil, Galantamine and Rivastigmine docked together into the functional domain (binding pocket) of 1EVE to reveal interesting different molecular laydowns of the compounds. On the other side, the display of the molecules before and after docking was discussed. The binding affinity slightly differs between Donepezil, Galantamine, Rivastigmine, and the ligands 4a-h. The range of the recorded binding affinity for 4a-h is from (−9.4 to −8.4 kcal/mol−1), whereas the binding affinity for Donepezil, Galantamine and Rivastigmine is (−11.1, −9.8 and −8.0 kcal/mol−1 respectively), which is higher than all the prepared ligands.
Furthermore, the binding amino acids also varied among the studied compounds in this study. Phe290, Phe330, Phe331, Trp279, Tyr70, Tyr121 and Tyr334 are the common amino acids binding with the FDA-approved AChE inhibitors for treating AD, Donepezil, Galantamine and Rivastigmine and ligands. Notably, the number of hydrophobic and hydrogen interactions studied between the ligands 4a-h and the Donepezil, Galantamine and Rivastigmine drugs were compared as a preliminary indicator towards a successful inhibitor. The comparative study in this research work aims to rank our compounds with respect to the approved medications. This is a friendly environmental preliminary helpful indication before leaping into time and energy-consuming experimental work. Organ toxicological endpoints and toxicity-predicted activity were obtained using the ProTox-II web server for both the approved medication and ligands. Later, in-vitro acetylcholinesterase inhibition assays were conducted to assess the efficacy of bis-hydrazono[1,3,4]thiadiazoles 4a-h as inhibitors of acetylcholinesterase (AChE) in comparison to Donepezil. Results indicated promising inhibition activities for example 4 h, 4 g and 4d to the testing drug Donepezil for breaking down the neurotransmitter acetylcholine.
{"title":"Newly synthesized Bis-Hydrazono[1,3,4] thiadiazoles as Anti-Alzheimer’s Agents: Greener past and In-Vitro acetylcholinesterase inhibition assay investigations","authors":"Reem A.K. Alharbi , Sayed M. Riyadh , Nadia S. Al-Kaff , Musa A. Said","doi":"10.1016/j.jscs.2024.101868","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101868","url":null,"abstract":"<div><p>The designed and synthesized multifunctional properties of bis-hydrazono[1,3,4]thiadiazoles became important for developing an efficient medication for Alzheimer’s disease. Thiadiazoles were characterized and studied towards this target as an acetylcholinesterase inhibitor (ChEIs). In this study, one-pot synthetic strategy was applied for the synthesis of bis-hydrazono[1,3,4]thiadiazole series from 2,2′-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbodithioic acid) and hydrazonoyl chlorides. The greener pastures, in silico, an environmentally-friendly and free computer-aided method, bioactivity studies of the bis-hydrazono[1,3,4]thiadiazoles 4a-h exhibited various possible interesting inhibitory activities against AChE showing similar behaviour to the approved drugs, Donepezil, Galantamine and Rivastigmine. For a fair comparison, the superpositions of 4a-h, and Donepezil, Galantamine and Rivastigmine docked together into the functional domain (binding pocket) of 1EVE to reveal interesting different molecular laydowns of the compounds. On the other side, the display of the molecules before and after docking was discussed. The binding affinity slightly differs between Donepezil, Galantamine, Rivastigmine, and the ligands 4a-h. The range of the recorded binding affinity for 4a-h is from (−9.4 to −8.4 kcal/mol<sup>−1</sup>)<sup>,</sup> whereas the binding affinity for Donepezil, Galantamine and Rivastigmine is (−11.1, −9.8 and −8.0 kcal/mol<sup>−1</sup> respectively), which is higher than all the prepared ligands.</p><p>Furthermore, the binding amino acids also varied among the studied compounds in this study. Phe290, Phe330, Phe331, Trp279, Tyr70, Tyr121 and Tyr334 are the common amino acids binding with the FDA-approved AChE inhibitors for treating AD, Donepezil, Galantamine and Rivastigmine and ligands. Notably, the number of hydrophobic and hydrogen interactions studied between the ligands 4a-h and the Donepezil, Galantamine and Rivastigmine drugs were compared as a preliminary indicator towards a successful inhibitor. The comparative study in this research work aims to rank our compounds with respect to the approved medications. This is a friendly environmental preliminary helpful indication before leaping into time and energy-consuming experimental work. Organ toxicological endpoints and toxicity-predicted activity were obtained using the ProTox-II web server for both the approved medication and ligands. Later, in-vitro acetylcholinesterase inhibition assays were conducted to assess the efficacy of bis-hydrazono[1,3,4]thiadiazoles 4a-h as inhibitors of acetylcholinesterase (AChE) in comparison to Donepezil. Results indicated promising inhibition activities for example 4 h, 4 g and 4d to the testing drug Donepezil for breaking down the neurotransmitter acetylcholine.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101868"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000632/pdfft?md5=bbaa87612adda6d3888c9e537b784691&pid=1-s2.0-S1319610324000632-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.jscs.2024.101875
Jahir Ahmed , M. Faisal , Jari S. Algethami , Mohammed M. Rahman , Farid A. Harraz
The primary objective of this research endeavor is to develop a highly sensitive and selective electrochemical sensor for the accurate detection of hydroquinone (HQ), a prevalent environmental contaminant. To achieve this, we employed a novel nanocomposite consisting of Ga2O3-doped ZnO (Ga2O3.ZnO) as the active nanomaterial for fabricating a glassy carbon electrode (GCE). The structure and morphology of the Ga2O3.ZnO nanocomposite were rigorously analyzed using a diverse range of techniques to ensure its suitability as the sensing nanomaterial. This innovative sensor exhibits remarkable capabilities, enabling the detection of HQ across a broad concentration range, spanning from 1 to 11070 µM, in a neutral phosphate buffer solution. It boasts an exceptionally high sensitivity of 1.0229 µA µM−1 cm−2 and an impressive detection limit of 0.063 µM. Thanks to its exceptional sensitivity and specificity, this sensor can precisely quantify HQ levels in real-world samples. Moreover, its outstanding reproducibility, repeatability, and stability establish it as a dependable and resilient choice for HQ determination.
{"title":"Electrochemical detection of hydroquinone as an environmental contaminant using Ga2O3 incorporated ZnO nanomaterial","authors":"Jahir Ahmed , M. Faisal , Jari S. Algethami , Mohammed M. Rahman , Farid A. Harraz","doi":"10.1016/j.jscs.2024.101875","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101875","url":null,"abstract":"<div><p>The primary objective of this research endeavor is to develop a highly sensitive and selective electrochemical sensor for the accurate detection of hydroquinone (HQ), a prevalent environmental contaminant. To achieve this, we employed a novel nanocomposite consisting of Ga<sub>2</sub>O<sub>3</sub>-doped ZnO (Ga<sub>2</sub>O<sub>3</sub>.ZnO) as the active nanomaterial for fabricating a glassy carbon electrode (GCE). The structure and morphology of the Ga<sub>2</sub>O<sub>3</sub>.ZnO nanocomposite were rigorously analyzed using a diverse range of techniques to ensure its suitability as the sensing nanomaterial. This innovative sensor exhibits remarkable capabilities, enabling the detection of HQ across a broad concentration range, spanning from 1 to 11070 µM, in a neutral phosphate buffer solution. It boasts an exceptionally high sensitivity of 1.0229 µA µM<sup>−1</sup> cm<sup>−2</sup> and an impressive detection limit of 0.063 µM. Thanks to its exceptional sensitivity and specificity, this sensor can precisely quantify HQ levels in real-world samples. Moreover, its outstanding reproducibility, repeatability, and stability establish it as a dependable and resilient choice for HQ determination.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101875"},"PeriodicalIF":5.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131961032400070X/pdfft?md5=dbfdd7221b189af671f5bf99a6c461dd&pid=1-s2.0-S131961032400070X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.jscs.2024.101864
Jie Gao, Yanan Sang, Xiaobing Han, Yuan Zhao, Tian Liang, Tao Chen
The release rate and time are very important for the drug carriers, silica aerogel filled hydroxypropyl cellulose/chitosan (SA/HPC/CS) composites were fabricated for the release of 5-fluorouracil (5-Fu), and the release rate and time were regulated with the content of SA, pH value and external coating material. Firstly, the 5-Fu loaded SA/HPC/CS composites and Eudragit L100 coated composites were prepared with cross-linking followed by freeze-drying, and characterized by SEM, FTIR, XRD, DSC, and TG. Then, the effect of SA content on the encapsulation efficiency of SA/HPC/CS@5-Fu was investigated, and 5-Fu release behavior under different pH values from these aerogel composites was evaluated with four kinetic models. In addition, to further solve the abrupt effect of the obtained composites, Eudragit L100 coated SA/HPC/CS@5-Fu was fabricated, the sustained release behavior revealed that the coating technique can effectively improve the release behavior and extend release time.
{"title":"Preparation of Eudragit L100 coated silica aerogel filled HPC/CS pH-sensitive composites for sustained release of 5-fluorouracil","authors":"Jie Gao, Yanan Sang, Xiaobing Han, Yuan Zhao, Tian Liang, Tao Chen","doi":"10.1016/j.jscs.2024.101864","DOIUrl":"https://doi.org/10.1016/j.jscs.2024.101864","url":null,"abstract":"<div><p>The release rate and time are very important for the drug carriers, silica aerogel filled hydroxypropyl cellulose/chitosan (SA/HPC/CS) composites were fabricated for the release of 5-fluorouracil (5-Fu), and the release rate and time were regulated with the content of SA, pH value and external coating material. Firstly, the 5-Fu loaded SA/HPC/CS composites and Eudragit L100 coated composites were prepared with cross-linking followed by freeze-drying, and characterized by SEM, FTIR, XRD, DSC, and TG. Then, the effect of SA content on the encapsulation efficiency of SA/HPC/CS@5-Fu was investigated, and 5-Fu release behavior under different pH values from these aerogel composites was evaluated with four kinetic models. In addition, to further solve the abrupt effect of the obtained composites, Eudragit L100 coated SA/HPC/CS@5-Fu was fabricated, the sustained release behavior revealed that the coating technique can effectively improve the release behavior and extend release time.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101864"},"PeriodicalIF":5.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000590/pdfft?md5=c5f6e87d7090234a6f5f27fec5bc32a8&pid=1-s2.0-S1319610324000590-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}