Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.
维生素 E 琥珀酸酯因其生物医学活性而成为治疗癌症的潜在药物,受到广泛关注。合成维生素 E 琥珀酸酯的主要方法之一是酶法工艺,这种方法虽然具有优势,但在优化、可扩展性方面存在固有的挑战,特别是脂肪酶在有机溶剂中的稳定性较差。为了应对这些挑战,我们的研究对脂肪酶 UM1 和其他三种固定化商用脂肪酶进行了全面的比较分析,结果表明脂肪酶 UM1 对有机溶剂的耐受性更强,在维生素 E 琥珀酸酯的生产中效率更高。利用脂肪酶 UM1 进行的进一步优化实验使转化率达到了前所未有的 99%。此外,我们还将该反应放大到了概念验证的工业水平。合成产品通过傅立叶变换红外光谱和核磁共振分析进行了验证,确保了其质量和一致性。这项研究验证了脂肪酶 UM1 是合成维生素 E 琥珀酸酯的高效催化剂,为工业化生产提供了一条前景广阔的途径,在癌症治疗等领域具有潜在的应用价值。
{"title":"Efficient enzymatic synthesis of vitamin E succinate using an organic solvent-stable immobilized lipase","authors":"Wenlin Li, Sen Lin, Dongming Lan, Yonghua Wang","doi":"10.1002/aocs.12847","DOIUrl":"10.1002/aocs.12847","url":null,"abstract":"<p>Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1357-1366"},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oilcane is an engineered sugarcane with the ability to hyper-accumulate vegetative lipids. It is processed to obtain juice and bagasse as a potential substrate for the production of biofuels and biochemicals. The juice comprises solid particles that are separated as waste mud before the fermentation of the juice. In this study, the oilcane waste mud (OWM) generated from 1000 liters of oilcane juice was quantified and evaluated as a potential resource for recovering biobased waxes. Hexane and ethyl acetate were evaluated as two different solvents for extracting waxes from OWM followed by its purification using acetone. The extracted biobased wax samples were characterized for their chemical and thermal profiles which were then compared with commercial natural waxes. Detailed mass balance shows that 53.6 ± 2.6 kg (dry basis) of solid OWM gets generated upon processing 1000 L (~1068 kg) of oilcane juice. Hexane and ethyl acetate led to a crude wax yield of 25.6 ± 0.2% and 16.6 ± 0.4% (wt/wt, dry basis) respectively from OWM at the end of 8 h. The relative purification of the wax samples was reported in the range of 58%–65% (wt/wt). The purified OWM wax has a melting point of 74.7°C. The waste mud was valorized as a source of biobased waxes with characteristic chemical and thermal profiles comparable to commercial natural waxes (carnauba and beeswax). Considering the decline in the supply of petroleum wax in the future coupled with the switch to “greener” alternative products by consumers, OWM could be a valuable source of natural wax in the industrial sector reducing the dependence on petroleum waxes. Eventually, recovering biobased wax as a co-product from OWM would bring in an additional stream of revenue leading to the development of a zero-waste biorefinery based on bioenergy crops.
{"title":"Harnessing the potential of oilcane waste mud for recovering biobased waxes","authors":"Shivali Banerjee, Kristen K. Eilts, Vijay Singh","doi":"10.1002/aocs.12844","DOIUrl":"10.1002/aocs.12844","url":null,"abstract":"<p>Oilcane is an engineered sugarcane with the ability to hyper-accumulate vegetative lipids. It is processed to obtain juice and bagasse as a potential substrate for the production of biofuels and biochemicals. The juice comprises solid particles that are separated as waste mud before the fermentation of the juice. In this study, the oilcane waste mud (OWM) generated from 1000 liters of oilcane juice was quantified and evaluated as a potential resource for recovering biobased waxes. Hexane and ethyl acetate were evaluated as two different solvents for extracting waxes from OWM followed by its purification using acetone. The extracted biobased wax samples were characterized for their chemical and thermal profiles which were then compared with commercial natural waxes. Detailed mass balance shows that 53.6 ± 2.6 kg (dry basis) of solid OWM gets generated upon processing 1000 L (~1068 kg) of oilcane juice. Hexane and ethyl acetate led to a crude wax yield of 25.6 ± 0.2% and 16.6 ± 0.4% (wt/wt, dry basis) respectively from OWM at the end of 8 h. The relative purification of the wax samples was reported in the range of 58%–65% (wt/wt). The purified OWM wax has a melting point of 74.7°C. The waste mud was valorized as a source of biobased waxes with characteristic chemical and thermal profiles comparable to commercial natural waxes (carnauba and beeswax). Considering the decline in the supply of petroleum wax in the future coupled with the switch to “greener” alternative products by consumers, OWM could be a valuable source of natural wax in the industrial sector reducing the dependence on petroleum waxes. Eventually, recovering biobased wax as a co-product from OWM would bring in an additional stream of revenue leading to the development of a zero-waste biorefinery based on bioenergy crops.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1417-1430"},"PeriodicalIF":1.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jill K. Winkler-Moser, Richard D. Ashby, Hailemichael O. Yosief, Joseph Msanne, Steven C. Peterson, Grigor B. Bantchev, Steven C. Cermak, Frederick C. Felker
Sophorolipids (SL) are glycolipids composed of a sophorose head-group linked to a hydroxy-fatty acid tail which makes them a potential source of structurally unique biobased hydroxy fatty acids. Furthermore, Lesquerella is a native southwestern plant that has been commercially cultivated as a replacement for castor seed oil due to high seed oil concentrations of 14-hydroxy-eicosenoic acid (14-OH-C20:1c11). In this study, SL-derived hydroxy fatty acids and methyl esters containing 15-hydroxy-palmitic acid (15-OH-C16), 17-hydroxy-stearic acid (17-OH-C18), 15-hydroxy-palmitic acid methyl ester (15-OH-C16ME), 17-hydroxy-stearic acid methyl ester (17-OH-C18ME), and 13-hydroxy-behenic acid methyl ester (13OH-C22ME) were obtained from the SL produced by two yeast strains. In addition, hydrogenated Lesquerella oil (HLO) was made with ~62% 14-OH-eicosanoic (C20) acid (14-OH-C20). These materials, along with 12-hydroxy-stearic acid (12-OH-C18) as a standard for comparison were used to make soybean oil oleogels, and their properties determined. The minimum gelation concentration (MGC) of 12-OH-C18 was 1% (wt/wt), while the MGC of 15-OH-C16 and 17-OH-C18 were 5% and 10%, respectively. The MGC for 15-OH-C16ME was 5%, but 17-OH-C18ME was unable to form a stable gel at concentrations up to 10%. HLO formed a viscous solution rather than an oleogel, but its crystal morphology underwent a large transformation during storage over a 2.5-month period, after which it was able to form a stable gel. SL-based hydroxy fatty acids were able to form oleogels in soybean oil and have the potential to be considered as a new source of low-molecular weight oleogelators as well as biobased hydroxy fatty acids.
槐糖脂(SL)是由槐糖头基与羟基脂肪酸尾相连的糖脂,这使其成为结构独特的生物基羟基脂肪酸的潜在来源。此外,莱斯奎拉是一种原产于美国西南部的植物,由于其种子油中含有高浓度的 14-羟基二十烯酸(14-OH-C20:1c11),已被商业化栽培作为蓖麻籽油的替代品。在这项研究中,SL 衍生的羟基脂肪酸和甲酯含有 15-羟基棕榈酸(15-OH-C16)、17-羟基硬脂酸(17-OH-C18)、15-羟基棕榈酸甲酯(15-OH-C16ME)、17-hydroxy-stearic acid methyl ester (17-OH-C18ME), and 13-hydroxy-behenic acid methyl ester (13OH-C22ME) were obtained from the SL produced by two yeast strains.此外,氢化莱斯奎拉油(HLO)是用约 62% 的 14-OH-二十烷酸(C20)(14-OH-C20)制成的。这些材料与作为比较标准的 12-羟基硬脂酸(12-OH-C18)一起被用来制造大豆油油凝胶,并测定其性质。12-OH-C18 的最小凝胶浓度(MGC)为 1%(重量比),而 15-OH-C16 和 17-OH-C18 的最小凝胶浓度分别为 5%和 10%。15-OH-C16ME 的 MGC 为 5%,但 17-OH-C18ME 在浓度达到 10% 时也无法形成稳定的凝胶。HLO 形成的是粘稠溶液而非油凝胶,但其晶体形态在 2.5 个月的储存过程中发生了巨大变化,之后便能形成稳定的凝胶。基于 SL 的羟基脂肪酸能够在大豆油中形成油凝胶,有望被视为低分子量油凝胶剂和生物基羟基脂肪酸的新来源。
{"title":"Properties of soybean oil oleogels produced from sophorolipid-derived hydroxy fatty acids, methyl esters and hydrogenated Lesquerella seed oil","authors":"Jill K. Winkler-Moser, Richard D. Ashby, Hailemichael O. Yosief, Joseph Msanne, Steven C. Peterson, Grigor B. Bantchev, Steven C. Cermak, Frederick C. Felker","doi":"10.1002/aocs.12843","DOIUrl":"10.1002/aocs.12843","url":null,"abstract":"<p>Sophorolipids (SL) are glycolipids composed of a sophorose head-group linked to a hydroxy-fatty acid tail which makes them a potential source of structurally unique biobased hydroxy fatty acids. Furthermore, Lesquerella is a native southwestern plant that has been commercially cultivated as a replacement for castor seed oil due to high seed oil concentrations of 14-hydroxy-eicosenoic acid (14-OH-C20:1<i>c</i>11). In this study, SL-derived hydroxy fatty acids and methyl esters containing 15-hydroxy-palmitic acid (15-OH-C16), 17-hydroxy-stearic acid (17-OH-C18), 15-hydroxy-palmitic acid methyl ester (15-OH-C16ME), 17-hydroxy-stearic acid methyl ester (17-OH-C18ME), and 13-hydroxy-behenic acid methyl ester (13OH-C22ME) were obtained from the SL produced by two yeast strains. In addition, hydrogenated Lesquerella oil (HLO) was made with ~62% 14-OH-eicosanoic (C20) acid (14-OH-C20). These materials, along with 12-hydroxy-stearic acid (12-OH-C18) as a standard for comparison were used to make soybean oil oleogels, and their properties determined. The minimum gelation concentration (MGC) of 12-OH-C18 was 1% (wt/wt), while the MGC of 15-OH-C16 and 17-OH-C18 were 5% and 10%, respectively. The MGC for 15-OH-C16ME was 5%, but 17-OH-C18ME was unable to form a stable gel at concentrations up to 10%. HLO formed a viscous solution rather than an oleogel, but its crystal morphology underwent a large transformation during storage over a 2.5-month period, after which it was able to form a stable gel. SL-based hydroxy fatty acids were able to form oleogels in soybean oil and have the potential to be considered as a new source of low-molecular weight oleogelators as well as biobased hydroxy fatty acids.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1383-1399"},"PeriodicalIF":1.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huazhen Liu, Mohammad Fazel Soltani Gishini, Micah Pope, Todd Doehring, Pradeep Kachroo, David Hildebrand
Previous reports indicate variable soybean quality parameters exported from different geographic regions. This review compares soybean and soybean co-products grown under diverse environmental conditions. While numerous studies have been conducted on whole soybean and soybean meal (SBM) composition by origin, similar analysis of soybean oil is lacking. This review has two objectives: 1) summarize soybean and SBM quality by origin using a meta-analysis approach, and 2) analyze collected crude degummed soybean oil samples that originate from the US, Brazil and Argentina for key quality attributes. Soybeans from Brazil have higher levels of protein (P < 0.05) than US soybeans, but US soybeans have lower heat damage (P < 0.05) and total damage (P < 0.05) than soybeans from Brazil. US and Brazil SBM have higher crude protein (CP) (P < 0.05) than SBM from Argentina. At equal CP content, US SBM had less fiber (P < 0.0001), more sucrose (P < 0.0001) and lysine (P < 0.0001) and better protein quality than South American SBMs. Methionine, threonine, and cysteine levels were similar in soybean protein from US and Argentina and higher than that in soybean protein from Brazil. Crude degummed soybean oil from Brazil had more (P < 0.05) free fatty acids, neutral oil loss, phosphorus, calcium and magnesium than crude degummed soybean oil from the US or Argentina. Our analysis suggests that environmental conditions under which soybeans are grown, stored, and handled can have a large impact on chemical composition and nutrient quality of soybean meal and soybean oil.
{"title":"Comparison of the quality of soybean meal and oil by soybean production origin","authors":"Huazhen Liu, Mohammad Fazel Soltani Gishini, Micah Pope, Todd Doehring, Pradeep Kachroo, David Hildebrand","doi":"10.1002/aocs.12835","DOIUrl":"10.1002/aocs.12835","url":null,"abstract":"<p>Previous reports indicate variable soybean quality parameters exported from different geographic regions. This review compares soybean and soybean co-products grown under diverse environmental conditions. While numerous studies have been conducted on whole soybean and soybean meal (SBM) composition by origin, similar analysis of soybean oil is lacking. This review has two objectives: 1) summarize soybean and SBM quality by origin using a meta-analysis approach, and 2) analyze collected crude degummed soybean oil samples that originate from the US, Brazil and Argentina for key quality attributes. Soybeans from Brazil have higher levels of protein (<i>P</i> < 0.05) than US soybeans, but US soybeans have lower heat damage (<i>P</i> < 0.05) and total damage (<i>P</i> < 0.05) than soybeans from Brazil. US and Brazil SBM have higher crude protein (CP) (<i>P</i> < 0.05) than SBM from Argentina. At equal CP content, US SBM had less fiber (<i>P</i> < 0.0001), more sucrose (<i>P</i> < 0.0001) and lysine (<i>P</i> < 0.0001) and better protein quality than South American SBMs. Methionine, threonine, and cysteine levels were similar in soybean protein from US and Argentina and higher than that in soybean protein from Brazil. Crude degummed soybean oil from Brazil had more (<i>P</i> < 0.05) free fatty acids, neutral oil loss, phosphorus, calcium and magnesium than crude degummed soybean oil from the US or Argentina. Our analysis suggests that environmental conditions under which soybeans are grown, stored, and handled can have a large impact on chemical composition and nutrient quality of soybean meal and soybean oil.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"817-826"},"PeriodicalIF":1.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olive leaves currently represent a waste from olive oil industry that can be reused as source of polyphenols and other compounds. The objective of this study was to test whether incorporation of olive leaf powder directly in olive oils can enhance and modify its chemical-sensory quality. Thus, leaves from cultivar “Koroneiki” were washed, sanitized, dried (37–40°C for 48 h) and milled until obtaining a powder that was added to “Arbequina” and “Koroneiki” extra virgin olive oils, at 1% and 3%. The oils were stored in dark conditions at room temperature and samples were checked after 0, 3, 6 and 12 months. The quality parameters, sensory properties, and nutrition quality (total phenolics, antioxidant, oleuropein and alpha-tocopherol) were evaluated. The olive leaves affected quality and chemical composition, mainly increasing resistance to oxidation, which was not verified in samples without leaves addition. The incorporation of leaves powder significantly increased the contents of C6-C5 alcohols/aldehydes, intensity of the green fruity and bitter, also artichoke, herbs, tomato leaf, olive leaves and banana peels sensations.
{"title":"Impact of olive leaves powder addition on extra virgin olive oil: Sensory, quality, nutritional and volatile compounds implications","authors":"Andressa Anelo Álvares, Lucas Tolio Silva, Luana Souza Cavalcante, Dafne Marcelle Alves Pires, Isabel Cristina Kasper Machado, Ana Lúcia Aboy, Wendell Mello, Camila Scheid, Josias Merib, Juliano Garavaglia","doi":"10.1002/aocs.12841","DOIUrl":"10.1002/aocs.12841","url":null,"abstract":"<p>Olive leaves currently represent a waste from olive oil industry that can be reused as source of polyphenols and other compounds. The objective of this study was to test whether incorporation of olive leaf powder directly in olive oils can enhance and modify its chemical-sensory quality. Thus, leaves from cultivar “Koroneiki” were washed, sanitized, dried (37–40°C for 48 h) and milled until obtaining a powder that was added to “Arbequina” and “Koroneiki” extra virgin olive oils, at 1% and 3%. The oils were stored in dark conditions at room temperature and samples were checked after 0, 3, 6 and 12 months. The quality parameters, sensory properties, and nutrition quality (total phenolics, antioxidant, oleuropein and alpha-tocopherol) were evaluated. The olive leaves affected quality and chemical composition, mainly increasing resistance to oxidation, which was not verified in samples without leaves addition. The incorporation of leaves powder significantly increased the contents of C6-C5 alcohols/aldehydes, intensity of the green fruity and bitter, also artichoke, herbs, tomato leaf, olive leaves and banana peels sensations.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1367-1381"},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Li, Wenlong Li, Zihan Ye, Yuewen Sun, Weijian Gong, Yiming Wang, Yanlan Bi
Vegetable oils-based polyols prepared by epoxidation-hydroxylation often have the phenomenon of the coexistence of epoxy and hydroxyl groups due to different ring-opening degrees. The acylation method recommended by the American Society of Testing Materials (ASTM) standard (D1957-86) and the Association of Official Analytical Chemists (AOAC) standard (965.32) is applicable only to fatty alcohols in oils and fats and their derivatives but not to vegetable oils-based polyols since the residual epoxy groups in vegetable oils-based polyols lead the tested hydroxyl value (OHV) to be higher than the actual OHV. A method combining ring-preopening of residual epoxy groups, ether extraction of ring-preopened vegetable oils-based polyols, and subsequent acetylation by acetic anhydride-acetic acid was established for OHV determination of vegetable oils-based polyols. The accuracy of the method was verified by the known theoretical OHVs of short-chain alcohols and simulated vegetable oils-based polyols. The absolute values of relative deviations for OHVs of short-chain alcohols and simulated vegetable oils-based polyols were within 1.0% and 3.1%, respectively, which indicates the feasibility of the established method in eliminating the negative effects of residual epoxy groups in vegetable oils-based polyols on OHV determination as well as accurately determining and evaluating the OHV of vegetable oils-based polyols. The method can broaden the range of OHV determination up to 1800 mg KOH/g. The ratio of acetic anhydride and acetic acid and reaction time are key factors affecting the complete degree of acetylation, which can be regulated mutually in accurately determining the OHV of vegetable oils-based polyols according to the practice. It is the first time, to our best knowledge, to establish a method to eliminate the negative effects of residual epoxy groups in vegetable oils-based polyols on OHV determination. The established method provides a feasible method for polyol industry to accurately evaluate the product quality of vegetable oils-based polyols.
{"title":"Determination of hydroxyl value of vegetable oils-based polyols through ring-preopening, solvent-extraction, and acetylation method","authors":"Jun Li, Wenlong Li, Zihan Ye, Yuewen Sun, Weijian Gong, Yiming Wang, Yanlan Bi","doi":"10.1002/aocs.12842","DOIUrl":"10.1002/aocs.12842","url":null,"abstract":"<p>Vegetable oils-based polyols prepared by epoxidation-hydroxylation often have the phenomenon of the coexistence of epoxy and hydroxyl groups due to different ring-opening degrees. The acylation method recommended by the American Society of Testing Materials (ASTM) standard (D1957-86) and the Association of Official Analytical Chemists (AOAC) standard (965.32) is applicable only to fatty alcohols in oils and fats and their derivatives but not to vegetable oils-based polyols since the residual epoxy groups in vegetable oils-based polyols lead the tested hydroxyl value (OHV) to be higher than the actual OHV. A method combining ring-preopening of residual epoxy groups, ether extraction of ring-preopened vegetable oils-based polyols, and subsequent acetylation by acetic anhydride-acetic acid was established for OHV determination of vegetable oils-based polyols. The accuracy of the method was verified by the known theoretical OHVs of short-chain alcohols and simulated vegetable oils-based polyols. The absolute values of relative deviations for OHVs of short-chain alcohols and simulated vegetable oils-based polyols were within 1.0% and 3.1%, respectively, which indicates the feasibility of the established method in eliminating the negative effects of residual epoxy groups in vegetable oils-based polyols on OHV determination as well as accurately determining and evaluating the OHV of vegetable oils-based polyols. The method can broaden the range of OHV determination up to 1800 mg KOH/g. The ratio of acetic anhydride and acetic acid and reaction time are key factors affecting the complete degree of acetylation, which can be regulated mutually in accurately determining the OHV of vegetable oils-based polyols according to the practice. It is the first time, to our best knowledge, to establish a method to eliminate the negative effects of residual epoxy groups in vegetable oils-based polyols on OHV determination. The established method provides a feasible method for polyol industry to accurately evaluate the product quality of vegetable oils-based polyols.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1343-1355"},"PeriodicalIF":1.9,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Huang, Baohui Pan, Xiaoming Jiang, Shu Wang, Jingting Guo, Pan Gao, Wu Zhong, Chuanrong Hu, Dongping He, Jiaojiao Yin
The objective of this study was to produce sunflower oil using pectinase, flavor protease, and alkaline protease. The optimal parameters for the enzymatic hydrolysis process were determined through sensory evaluation, resulting in a temperature of 120°C, a duration of 30 minutes, a polysaccharide to protein ratio of 2:1 for the enzymatic hydrolysate, and an enzymatic hydrolysate to oil ratio of 1:3. Under these specific conditions, the sunflower oil (K4) achieved the highest sensory score of 13.9, exhibiting a pronounced oily flavor alongside moderate baked and nutty flavors. Compared to the controls of first-grade sunflower oil (K1), sunflower kernel oil (K2) and sunflower oil prepared by roasting (K3), the acid value (AV) in K4 exhibited a statistically significant decrease compared to K2 and K3, conversely, the peroxide value (PV) and BaP content in K4 demonstrated a statistically significant increase compared to K1 and K2. Additionally, the tocopherols in K4 exhibited a lower concentration compared to K1, while the sterols were effectively retained and showed no significant difference to these control groups. The fatty acid composition of the four different sunflower oil samples were analyzed, revealing that the contents of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) in K4 were significantly higher than K2, and there was no significant difference compared to K1. This investigation of the present study could provide a certain theoretical basis for the production of sunflower oil by enzymes.
{"title":"Preparation and evaluation of sunflower oil by enzymatic aqueous extraction","authors":"He Huang, Baohui Pan, Xiaoming Jiang, Shu Wang, Jingting Guo, Pan Gao, Wu Zhong, Chuanrong Hu, Dongping He, Jiaojiao Yin","doi":"10.1002/aocs.12839","DOIUrl":"10.1002/aocs.12839","url":null,"abstract":"<p>The objective of this study was to produce sunflower oil using pectinase, flavor protease, and alkaline protease. The optimal parameters for the enzymatic hydrolysis process were determined through sensory evaluation, resulting in a temperature of 120°C, a duration of 30 minutes, a polysaccharide to protein ratio of 2:1 for the enzymatic hydrolysate, and an enzymatic hydrolysate to oil ratio of 1:3. Under these specific conditions, the sunflower oil (K4) achieved the highest sensory score of 13.9, exhibiting a pronounced oily flavor alongside moderate baked and nutty flavors. Compared to the controls of first-grade sunflower oil (K1), sunflower kernel oil (K2) and sunflower oil prepared by roasting (K3), the acid value (AV) in K4 exhibited a statistically significant decrease compared to K2 and K3, conversely, the peroxide value (PV) and BaP content in K4 demonstrated a statistically significant increase compared to K1 and K2. Additionally, the tocopherols in K4 exhibited a lower concentration compared to K1, while the sterols were effectively retained and showed no significant difference to these control groups. The fatty acid composition of the four different sunflower oil samples were analyzed, revealing that the contents of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) in K4 were significantly higher than K2, and there was no significant difference compared to K1. This investigation of the present study could provide a certain theoretical basis for the production of sunflower oil by enzymes.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1277-1285"},"PeriodicalIF":1.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preventing metal-catalyzed lipid oxidation in food products, which decreases nutritional value and sensory quality, is crucial in the food industry. This is typically achieved through the use of metal-chelating molecules. While the ferrozine assay is widely used to screen protein hydrolysates for metal chelating activity, it has proven difficult to use with pure peptides. This study evaluates the potential of surface plasmon resonance (SPR) and electrically switchable nanolever technology (switchSENSE®) as alternative screening methods. Unfortunately, solubility issues and large standard deviations precluded a direct correlation between the ferrozine assay and these biosensor techniques. Both techniques, however, were able to quantitatively distinguish between two peptides with very similar sequences despite the absence of a correlation between dissociation constants determined by SPR and switchSENSE®. This study highlights the potential of SPR and switchSENSE® for screening the metal chelating activity of pure peptides, advancing the understanding of peptide-metal ion interactions.
{"title":"Metal-chelating antioxidant peptides: Biosensor screening methods as alternatives to the ferrozine assay","authors":"Mads Bjørlie, Rachel Irankunda, Betül Yesiltas, Ann-Dorit Moltke Sørensen, Jean-Michel Girardet, Sandrine Boschi-Müller, Charlotte Jacobsen, Laetitia Canabady-Rochelle","doi":"10.1002/aocs.12834","DOIUrl":"10.1002/aocs.12834","url":null,"abstract":"<p>Preventing metal-catalyzed lipid oxidation in food products, which decreases nutritional value and sensory quality, is crucial in the food industry. This is typically achieved through the use of metal-chelating molecules. While the ferrozine assay is widely used to screen protein hydrolysates for metal chelating activity, it has proven difficult to use with pure peptides. This study evaluates the potential of surface plasmon resonance (SPR) and electrically switchable nanolever technology (switchSENSE®) as alternative screening methods. Unfortunately, solubility issues and large standard deviations precluded a direct correlation between the ferrozine assay and these biosensor techniques. Both techniques, however, were able to quantitatively distinguish between two peptides with very similar sequences despite the absence of a correlation between dissociation constants determined by SPR and switchSENSE®. This study highlights the potential of SPR and switchSENSE® for screening the metal chelating activity of pure peptides, advancing the understanding of peptide-metal ion interactions.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"827-837"},"PeriodicalIF":1.9,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12834","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvi Restiawaty, Faza Muhammad Rida, Aulia Maulana, Neng Tresna Umi Culsum, Wibawa Hendra Saputera, Pramujo Widiatmoko, Jenny Elisabeth, Yogi Wibisono Budhi
Palm oil processing can result in different food products like cooking oil and margarine. Nevertheless, these food products might contain harmful contaminants, namely 3-monochloropropane-1,2-diol ester (3-MCPDE) and glycidyl ester (GE), which can negatively affect animal organs and potentially cause human cancer. Therefore, the objective of this study was to lower the concentration of 3-MCPDE and GE in refined, bleached, and deodorized palm oil (RBDPO) using zeolite as an adsorbent. Adsorption experiments were conducted in a batch reactor, varying the percentage of adsorbents, temperature, type of zeolite, and the use of a mixture of zeolite and activated carbon (AC). The sample was analyzed before and after adsorption using gas chromatography–mass spectroscopy (GC–MS) to confirm the concentration alteration of 3-MCPDE and GE. The study showed that the most effective temperature for adsorption was 35°C and used a zeolite percentage of 2%. Beta zeolites resulted in the highest removal of 3-MCPDE (86%) among the evaluated zeolites attributed to their elevated pore volume, Si/Al ratio, and overall acidity strength. Through a synergistic combination of beta zeolite and AC, the removal percentage of 3-MCPDE was enhanced to 94%, with a corresponding 75% reduction in GE. This study paves the way for addressing 3-MCPDE and GE concerns in RBDPO by combining zeolite and AC.
棕榈油加工可产生不同的食品,如食用油和人造黄油。然而,这些食品可能含有有害污染物,即 3-氯丙二醇酯(3-MCPDE)和缩水甘油酯(GE),它们会对动物器官产生负面影响,并可能导致人类癌症。因此,本研究的目的是使用沸石作为吸附剂,降低精炼、漂白和脱臭棕榈油(RBDPO)中 3-MCPDE 和 GE 的浓度。吸附实验在间歇式反应器中进行,改变了吸附剂的百分比、温度、沸石类型以及沸石和活性炭(AC)混合物的使用。使用气相色谱-质谱法(GC-MS)对吸附前后的样品进行分析,以确认 3-MCPDE 和 GE 的浓度变化。研究表明,最有效的吸附温度为 35°C,使用的沸石比例为 2%。在所评估的沸石中,贝塔沸石对 3-MCPDE 的去除率最高(86%),这归功于其较高的孔隙率、硅/铝比率和整体酸度强度。通过贝塔沸石和 AC 的协同组合,3-MCPDE 的去除率提高到 94%,GE 相应减少 75%。这项研究为通过结合沸石和 AC 来解决 RBDPO 中的 3-MCPDE 和 GE 问题铺平了道路。
{"title":"Adsorption of 3-monochloropropane-1,2-diol ester and glycidyl ester from refined bleached deodorized palm oil using zeolite-based adsorbents","authors":"Elvi Restiawaty, Faza Muhammad Rida, Aulia Maulana, Neng Tresna Umi Culsum, Wibawa Hendra Saputera, Pramujo Widiatmoko, Jenny Elisabeth, Yogi Wibisono Budhi","doi":"10.1002/aocs.12838","DOIUrl":"10.1002/aocs.12838","url":null,"abstract":"<p>Palm oil processing can result in different food products like cooking oil and margarine. Nevertheless, these food products might contain harmful contaminants, namely 3-monochloropropane-1,2-diol ester (3-MCPDE) and glycidyl ester (GE), which can negatively affect animal organs and potentially cause human cancer. Therefore, the objective of this study was to lower the concentration of 3-MCPDE and GE in refined, bleached, and deodorized palm oil (RBDPO) using zeolite as an adsorbent. Adsorption experiments were conducted in a batch reactor, varying the percentage of adsorbents, temperature, type of zeolite, and the use of a mixture of zeolite and activated carbon (AC). The sample was analyzed before and after adsorption using gas chromatography–mass spectroscopy (GC–MS) to confirm the concentration alteration of 3-MCPDE and GE. The study showed that the most effective temperature for adsorption was 35°C and used a zeolite percentage of 2%. Beta zeolites resulted in the highest removal of 3-MCPDE (86%) among the evaluated zeolites attributed to their elevated pore volume, Si/Al ratio, and overall acidity strength. Through a synergistic combination of beta zeolite and AC, the removal percentage of 3-MCPDE was enhanced to 94%, with a corresponding 75% reduction in GE. This study paves the way for addressing 3-MCPDE and GE concerns in RBDPO by combining zeolite and AC.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"893-904"},"PeriodicalIF":1.9,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, it was aimed to determine the effects of different production and preservation methods on the shelf life and quality of the Gemlik variety of natural black table olives produced with low salt (2%). For this purpose, olives were processed by the traditional Turkish style dry salted black olive by using a starter culture. The MAP (Modified atmosphere packaging, 60% N2 and 40% CO2), vacuum and for the first time gamma irradiation methods (1, 3 and 5 kGy) were applied in the preservation of table olives. The 5 kGy irradiation treatment reduced the total phenolic amount and DPPH antioxidant activity of olives more than other irradiation doses. The pH (4.3–4.83) and titratable acidity (0.68–1.02%) of the samples changed in accordance with the legal regulations during the storage period (pH max. 5 and acidity min 0.3%). At the end of the fermentation and storage, total phenolic content and antioxidant activity decreased significantly (p-value <0.05). During the storage period, the total phenolic content in natural fermented olives (without starter culture) decreased from 232 to 144 mgCAE/100 g and in starter culture added table olives from 200 to 138 mgCAE/100 g. In addition, the antioxidant activity was changed between 60.94 and 47.14 μmolTE/100 g oil. As a result of the study, it was ensured that black table olives produced with less salt (2%) could be stored on the shelves for 6 months without using any preservatives. In addition, radiation effect on quality was relatively similar to other treatments (vacuum and MAP).
{"title":"Effect of irradiation on total biophenol and antioxidant activity during storage of natural black table olives obtained using starter culture","authors":"Şahnur Irmak, Ferişte Öztürk Güngör, Erkan Susamci, Didar Sevim, Oya Köseoğlu","doi":"10.1002/aocs.12837","DOIUrl":"10.1002/aocs.12837","url":null,"abstract":"<p>In this study, it was aimed to determine the effects of different production and preservation methods on the shelf life and quality of the Gemlik variety of natural black table olives produced with low salt (2%). For this purpose, olives were processed by the traditional Turkish style dry salted black olive by using a starter culture. The MAP (Modified atmosphere packaging, 60% N<sub>2</sub> and 40% CO<sub>2</sub>), vacuum and for the first time gamma irradiation methods (1, 3 and 5 kGy) were applied in the preservation of table olives. The 5 kGy irradiation treatment reduced the total phenolic amount and DPPH antioxidant activity of olives more than other irradiation doses. The pH (4.3–4.83) and titratable acidity (0.68–1.02%) of the samples changed in accordance with the legal regulations during the storage period (pH max. 5 and acidity min 0.3%). At the end of the fermentation and storage, total phenolic content and antioxidant activity decreased significantly (<i>p</i>-value <0.05). During the storage period, the total phenolic content in natural fermented olives (without starter culture) decreased from 232 to 144 mgCAE/100 g and in starter culture added table olives from 200 to 138 mgCAE/100 g. In addition, the antioxidant activity was changed between 60.94 and 47.14 μmolTE/100 g oil. As a result of the study, it was ensured that black table olives produced with less salt (2%) could be stored on the shelves for 6 months without using any preservatives. In addition, radiation effect on quality was relatively similar to other treatments (vacuum and MAP).</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"879-892"},"PeriodicalIF":1.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}