Pub Date : 2024-09-04DOI: 10.1149/1945-7111/ad6e1d
Divya Deep Yadav, Ajay Kumar, Ranjana Jha, Sukhvir Singh
In the present work, a simple and effective hydrothermal method has been used to synthesize a nanocomposite of nickel oxide and molybdenum disulphide. Structural and optical characterizations of the as-synthesised MoS2/NiO nanocomposite nanoparticles were carried out using X-ray diffraction (XRD) and UV-visible spectroscopy techniques. The major peaks of MoS2 and NiO were detected in XRD, confirming the formation of a composite. The reduced band gap of 2.84 eV of MoS2/NiO nanocomposite, as compared to pure NiO with a 3.1 eV bandgap, indicates a blue shift. The surface morphology of MoS2/NiO nanocomposite was measured using field-emission scanning electron microscopy, showing a sheet-like structure with fine particles overlaid on them. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to determine the processes of charge transfer between electrodes, diffusion of molecules and ions within the electrolyte solution, and ion adsorption on the surface of the the electrode. The as-prepared composite shows an enhanced specific capacitance of 246 F g−1 at20 mV sec−1, a scan rate of which was more than both base materials in pristine form. EIS results thus obtained may give a new direction for supercapacitor applications with the as-synthesized sample.
本研究采用简单有效的水热法合成了氧化镍和二硫化钼的纳米复合材料。利用 X 射线衍射 (XRD) 和紫外可见光谱技术对合成的 MoS2/NiO 纳米复合纳米粒子进行了结构和光学表征。在 XRD 中检测到了 MoS2 和 NiO 的主要峰值,证实了复合材料的形成。与带隙为 3.1 eV 的纯 NiO 相比,MoS2/NiO 纳米复合材料的带隙减小到 2.84 eV,表明发生了蓝移。使用场发射扫描电子显微镜测量了 MoS2/NiO 纳米复合材料的表面形貌,结果表明其呈片状结构,上面叠加有细小颗粒。循环伏安法和电化学阻抗谱(EIS)用于确定电极间的电荷转移、电解质溶液中分子和离子的扩散以及电极表面的离子吸附过程。制备的复合材料在 20 mV sec-1 时的比电容为 246 F g-1,扫描速率高于两种原始形式的基底材料。由此获得的 EIS 结果可能会为合成样品的超级电容器应用提供一个新的方向。
{"title":"Flexible Ni-Foam-Based Electrode with Novel MoS2/NiO Nanocomposite for Superior Supercapacitor Applications","authors":"Divya Deep Yadav, Ajay Kumar, Ranjana Jha, Sukhvir Singh","doi":"10.1149/1945-7111/ad6e1d","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6e1d","url":null,"abstract":"In the present work, a simple and effective hydrothermal method has been used to synthesize a nanocomposite of nickel oxide and molybdenum disulphide. Structural and optical characterizations of the as-synthesised MoS<sub>2</sub>/NiO nanocomposite nanoparticles were carried out using X-ray diffraction (XRD) and UV-visible spectroscopy techniques. The major peaks of MoS<sub>2</sub> and NiO were detected in XRD, confirming the formation of a composite. The reduced band gap of 2.84 eV of MoS2/NiO nanocomposite, as compared to pure NiO with a 3.1 eV bandgap, indicates a blue shift. The surface morphology of MoS2/NiO nanocomposite was measured using field-emission scanning electron microscopy, showing a sheet-like structure with fine particles overlaid on them. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to determine the processes of charge transfer between electrodes, diffusion of molecules and ions within the electrolyte solution, and ion adsorption on the surface of the the electrode. The as-prepared composite shows an enhanced specific capacitance of 246 F g−1 at20 mV sec−1, a scan rate of which was more than both base materials in pristine form. EIS results thus obtained may give a new direction for supercapacitor applications with the as-synthesized sample.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1149/1945-7111/ad71f9
Shunsuke Tomita, Tatsuya Kikuchi
The electropolishing behavior of pure magnesium and its alloys in ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TrEG), and tetraethylene glycol (TeEG) solutions containing sodium chloride was investigated using electrochemical measurements, microscopic observations, and reflectance measurements. Large light-grayish cloudy areas with micrometer-scale linear irregularities were formed on the magnesium surface via constant-voltage electrolysis in the EG solution, whereas mirror-finished magnesium surfaces were successfully obtained in the DEG and TeEG solutions. Among these, the DEG solution is considered appropriate for electropolishing because of its lower viscosity and market price. The reflectance of the entire visible wavelength region gradually increased with time during electrolysis in the DEG solution at 308 K. We found that short-term electrolysis for 3 min at the higher voltage of 75 V should be selected if a moderately polished surface is to be rapidly obtained, whereas long-term electrolysis for 60–300 min at 50 V should be performed if a highly polished surface with an extremely high reflectivity measuring more than 80% can be obtained. Three-dimensional magnesium specimens with curved and spiral shapes and an LZ91 magnesium alloy consisting of a simple solid-solution matrix can also be electropolished via electrolysis in a DEG solution.
通过电化学测量、显微镜观察和反射率测量,研究了纯镁及其合金在含氯化钠的乙二醇(EG)、二甘醇(DEG)、三甘醇(TrEG)和四甘醇(TeEG)溶液中的电解抛光行为。在 EG 溶液中通过恒压电解,镁表面形成了大面积浅灰色浑浊区,并伴有微米级的线性不规则,而在 DEG 和 TeEG 溶液中则成功获得了镜面镁表面。其中,DEG 溶液因其较低的粘度和市场价格而被认为适合电解抛光。在 308 K 的 DEG 溶液中进行电解时,整个可见光波长区域的反射率随着时间的推移逐渐增加。我们发现,如果要快速获得中等抛光的表面,应选择在 75 V 的较高电压下进行 3 分钟的短期电解,而如果要获得反射率超过 80% 的高抛光表面,则应在 50 V 的电压下进行 60-300 分钟的长期电解。具有弯曲和螺旋形状的三维镁试样以及由简单固溶体基质组成的 LZ91 镁合金也可以通过在 DEG 溶液中电解进行电抛光。
{"title":"Electropolishing of Magnesium and Its Alloys Using a Safe Glycol Solution Containing Sodium Chloride","authors":"Shunsuke Tomita, Tatsuya Kikuchi","doi":"10.1149/1945-7111/ad71f9","DOIUrl":"https://doi.org/10.1149/1945-7111/ad71f9","url":null,"abstract":"The electropolishing behavior of pure magnesium and its alloys in ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TrEG), and tetraethylene glycol (TeEG) solutions containing sodium chloride was investigated using electrochemical measurements, microscopic observations, and reflectance measurements. Large light-grayish cloudy areas with micrometer-scale linear irregularities were formed on the magnesium surface via constant-voltage electrolysis in the EG solution, whereas mirror-finished magnesium surfaces were successfully obtained in the DEG and TeEG solutions. Among these, the DEG solution is considered appropriate for electropolishing because of its lower viscosity and market price. The reflectance of the entire visible wavelength region gradually increased with time during electrolysis in the DEG solution at 308 K. We found that short-term electrolysis for 3 min at the higher voltage of 75 V should be selected if a moderately polished surface is to be rapidly obtained, whereas long-term electrolysis for 60–300 min at 50 V should be performed if a highly polished surface with an extremely high reflectivity measuring more than 80% can be obtained. Three-dimensional magnesium specimens with curved and spiral shapes and an LZ91 magnesium alloy consisting of a simple solid-solution matrix can also be electropolished via electrolysis in a DEG solution.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"26 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1149/1945-7111/ad7291
Xinsheng Wu, Jay F. Whitacre
P2-phased layered oxide materials have been extensively studied as cathode material for sodium-ion batteries due to their high capacities and ionic conductivities, making them promising for large-scale applications. Additionally, manganese-based compounds, with their low cost and high capacity, have attracted significant attention in recent years. However, challenges remain regarding durability issues and related structural instability caused by the Jahn-Teller effect induced by Mn3+ ions formed during the cycling process in these materials, which causes manganese dissolution during use. In this study, we introduce a cathode composition of Na0.8Mn0.75Fe0.2Al0.05O2 and show that bismuth doping enhances the structural stability of the cathode material during electrochemical cycling. Electrodes with varying levels of bismuth doping were compared in half-cell configurations; material with 1% bismuth doping demonstrated outstanding stability, retaining 95.8% capacity after 200 cycles at a 0.2 C rate through the full potential range. dQ/dV analysis shows that bismuth doping effectively suppresses the excess Mn redox, which could otherwise deteriorate the cathode structure. As a proof of concept, Bi-doped materials were implemented in full cells paired with hard carbon that exhibited much better stability than those without bismuth doping. Lastly, the moisture and air stability of the bismuth-doped electrode were tested, demonstrating good stability.
{"title":"Bi-Doped P2 layered Sodium-Ion Battery Cathode with Improved Cycling Stability","authors":"Xinsheng Wu, Jay F. Whitacre","doi":"10.1149/1945-7111/ad7291","DOIUrl":"https://doi.org/10.1149/1945-7111/ad7291","url":null,"abstract":"P2-phased layered oxide materials have been extensively studied as cathode material for sodium-ion batteries due to their high capacities and ionic conductivities, making them promising for large-scale applications. Additionally, manganese-based compounds, with their low cost and high capacity, have attracted significant attention in recent years. However, challenges remain regarding durability issues and related structural instability caused by the Jahn-Teller effect induced by Mn<sup>3+</sup> ions formed during the cycling process in these materials, which causes manganese dissolution during use. In this study, we introduce a cathode composition of Na<sub>0.8</sub>Mn<sub>0.75</sub>Fe<sub>0.2</sub>Al<sub>0.05</sub>O<sub>2</sub> and show that bismuth doping enhances the structural stability of the cathode material during electrochemical cycling. Electrodes with varying levels of bismuth doping were compared in half-cell configurations; material with 1% bismuth doping demonstrated outstanding stability, retaining 95.8% capacity after 200 cycles at a 0.2 C rate through the full potential range. dQ/dV analysis shows that bismuth doping effectively suppresses the excess Mn redox, which could otherwise deteriorate the cathode structure. As a proof of concept, Bi-doped materials were implemented in full cells paired with hard carbon that exhibited much better stability than those without bismuth doping. Lastly, the moisture and air stability of the bismuth-doped electrode were tested, demonstrating good stability.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"9 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1149/1945-7111/ad7297
Sheng S. Zhang
Reducing particle size has been widely adopted to mitigate the cracking and pulverization of silicon particles and to enhance electrode reaction kinetics for silicon electrodes in cycling. However, the increased surface area promotes parasitic reactions with electrolyte solvents. This work comparatively studies nano-sized silicon (Si-NP) and micro-sized silicon (Si-MP) as anodes in Li-ion cells using nickel-rich LiNi0.80Co0.1Mn0.1O2 (NCM811) as the cathode. The focus is on capacity, capacity retention, Coulombic efficiency (CE), and rate capability by changing the negative-to-positive capacity (N/P) ratio and charging cutoff voltage. It is found that Si-NP initially exhibits a CE above 90%, however, it rarely exceeds 98% in subsequent cycles, leading to rapid capacity fade. Additionally, increasing the N/P ratio and lowering the charging cutoff voltage does not obviously improve the cycling stability of Si-NP cells. Compared with Si-NP, Si-MP experiences lower capacity and lower CE in the initial several cycles. However, with continued cycling, both the capacity and CE gradually increase to a maximum and stably remain at ∼99.9%. The findings of this work suggest that, with its excellent rate capability, Si-MP may be more advantageous than Si-NP in developing practical Li-ion batteries, provided its low CE during initial cycles can be successfully addressed.
减小硅颗粒的尺寸已被广泛采用,以减轻硅颗粒的开裂和粉碎,并增强硅电极在循环过程中的电极反应动力学。然而,表面积的增加会促进与电解质溶剂的寄生反应。本研究比较性地研究了纳米级硅(Si-NP)和微米级硅(Si-MP)在锂离子电池中用作阳极的情况,阴极使用富镍 LiNi0.80Co0.1Mn0.1O2 (NCM811)。研究重点是通过改变负负容量比(N/P)和充电截止电压来研究容量、容量保持率、库仑效率(CE)和速率能力。研究发现,Si-NP 最初的 CE 超过 90%,但在随后的循环中很少超过 98%,从而导致容量快速衰减。此外,提高 N/P 比和降低充电截止电压并不能明显改善 Si-NP 电池的循环稳定性。与 Si-NP 相比,Si-MP 在最初的几个循环中容量较低,CE 也较低。然而,随着循环的持续进行,容量和 CE 都会逐渐增加到最大值,并稳定地保持在 ∼ 99.9%。这项工作的研究结果表明,Si-MP 具有优异的速率能力,在开发实用锂离子电池方面可能比 Si-NP 更具优势,但前提是能成功解决其在初始循环期间的低 CE 问题。
{"title":"A Comparative Study of Nano and Micro-Sized Silicon in Lithium-Ion Cells with a Nickel-Rich Cathode","authors":"Sheng S. Zhang","doi":"10.1149/1945-7111/ad7297","DOIUrl":"https://doi.org/10.1149/1945-7111/ad7297","url":null,"abstract":"Reducing particle size has been widely adopted to mitigate the cracking and pulverization of silicon particles and to enhance electrode reaction kinetics for silicon electrodes in cycling. However, the increased surface area promotes parasitic reactions with electrolyte solvents. This work comparatively studies nano-sized silicon (Si-NP) and micro-sized silicon (Si-MP) as anodes in Li-ion cells using nickel-rich LiNi<sub>0.80</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) as the cathode. The focus is on capacity, capacity retention, Coulombic efficiency (CE), and rate capability by changing the negative-to-positive capacity (N/P) ratio and charging cutoff voltage. It is found that Si-NP initially exhibits a CE above 90%, however, it rarely exceeds 98% in subsequent cycles, leading to rapid capacity fade. Additionally, increasing the N/P ratio and lowering the charging cutoff voltage does not obviously improve the cycling stability of Si-NP cells. Compared with Si-NP, Si-MP experiences lower capacity and lower CE in the initial several cycles. However, with continued cycling, both the capacity and CE gradually increase to a maximum and stably remain at ∼99.9%. The findings of this work suggest that, with its excellent rate capability, Si-MP may be more advantageous than Si-NP in developing practical Li-ion batteries, provided its low CE during initial cycles can be successfully addressed.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"32 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The burgeoning intersection of machine learning (ML) with electrochemical sensing heralds a transformative era in analytical science, pushing the boundaries of what’s possible in detecting and quantifying chemical substances with unprecedented precision and efficiency. This convergence has accelerated a number of discoveries, improving electrochemical sensors’ sensitivity, selectivity, and ability to comprehend complicated data streams in real-time. Such advancements are crucial across various applications, from monitoring health biomarkers to detecting environmental pollutants and ensuring industrial safety. Yet, this integration is not without its challenges; it necessitates navigating intricate ethical considerations around data use, ensuring robust data privacy measures, and developing specialized software tools that balance accessibility and security. As the field progresses, addressing these challenges head-on is essential for harnessing the full potential of ML-enhanced electrochemical sensing. This review briefly explores these dimensions, spotlighting the significant technological strides, the ethical landscape, and the dynamic interplay between open-source and proprietary software solutions while also casting a forward gaze at the promising future directions of this interdisciplinary venture.