首页 > 最新文献

Journal of Vacuum Science & Technology A最新文献

英文 中文
Real-time artificial intelligence enhanced defect engineering in CeO2 nanostructures 实时人工智能增强CeO2纳米结构缺陷工程
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-11-02 DOI: 10.1116/6.0002912
Udit Kumar, Ayush Arunachalam, Corbin Feit, S. Novia Berriel, Kanad Basu, Parag Banerjee, Sudipta Seal
CeO2 nanostructures have been utilized for various biomedical, sensor, and catalysis applications owing to their unique defect structure, enabling them to have regenerative oxidative properties. Defect engineering in CeO2 nanostructures has major importance, enabling them to be utilized for specific applications. Despite various synthesis methods, it is challenging to have precise and reversible control over defect structures. Against this backdrop, in the current work, we have explored machine learning (ML) enhanced defect engineering of CeO2 nanofilms. In our earlier work [J. Vac. Sci. Technol. A 39, 060405 (2021)], we have developed an atomic layer deposition process for CeO2 using in situ ellipsometry measurements. In the current work, data collected through in situ spectroscopic ellipsometry and ex situ XPS have been correlated using two ML algorithms (gradient boost and random forest regressor) to exert better control over the chemical properties. Defect structures are one of the desired properties in CeO2 nanomaterials, characterized by the Ce3+/Ce4+ oxidation state ratio leading to its regenerative properties. We have shown that the defect structure of the CeO2 nanofilms can be predicted using in situ ellipsometry data in real time using a trained ML algorithm using two different methods. The first method involves an indirect approach of thickness prediction using an ML algorithm (k-nearest neighbors) followed by Ce3+/Ce4+ estimation using an experimental calibration curve. The second method with a more direct approach involves Ce3+/Ce4+ prediction using real-time ellipsometry data (amplitude ratio ψ and phase difference Δ) using gradient boost and random forest regressor.
由于其独特的缺陷结构,CeO2纳米结构已被用于各种生物医学,传感器和催化应用,使其具有再生氧化特性。CeO2纳米结构的缺陷工程具有重要的意义,使其能够用于特定的应用。尽管有各种各样的合成方法,但对缺陷结构进行精确和可逆的控制是一项挑战。在此背景下,在当前的工作中,我们探索了机器学习(ML)增强CeO2纳米膜缺陷工程。在我们早期的工作中[J]。真空吸尘器。科学。抛光工艺。[A 39, 060405(2021)],我们已经开发了一种使用原位椭偏振测量的CeO2原子层沉积工艺。在目前的工作中,通过原位光谱椭偏仪和非原位XPS收集的数据使用两种ML算法(梯度增强和随机森林回归)进行关联,以更好地控制化学性质。缺陷结构是CeO2纳米材料的理想性能之一,其特征是Ce3+/Ce4+氧化态比导致其再生性能。我们已经证明了CeO2纳米膜的缺陷结构可以使用两种不同的方法,使用训练好的ML算法实时预测原位椭偏数据。第一种方法是使用ML算法(k近邻)间接预测厚度,然后使用实验校准曲线进行Ce3+/Ce4+估计。第二种方法采用更直接的方法,使用梯度增强和随机森林回归,使用实时椭偏数据(振幅比ψ和相位差Δ)进行Ce3+/Ce4+预测。
{"title":"Real-time artificial intelligence enhanced defect engineering in CeO2 nanostructures","authors":"Udit Kumar, Ayush Arunachalam, Corbin Feit, S. Novia Berriel, Kanad Basu, Parag Banerjee, Sudipta Seal","doi":"10.1116/6.0002912","DOIUrl":"https://doi.org/10.1116/6.0002912","url":null,"abstract":"CeO2 nanostructures have been utilized for various biomedical, sensor, and catalysis applications owing to their unique defect structure, enabling them to have regenerative oxidative properties. Defect engineering in CeO2 nanostructures has major importance, enabling them to be utilized for specific applications. Despite various synthesis methods, it is challenging to have precise and reversible control over defect structures. Against this backdrop, in the current work, we have explored machine learning (ML) enhanced defect engineering of CeO2 nanofilms. In our earlier work [J. Vac. Sci. Technol. A 39, 060405 (2021)], we have developed an atomic layer deposition process for CeO2 using in situ ellipsometry measurements. In the current work, data collected through in situ spectroscopic ellipsometry and ex situ XPS have been correlated using two ML algorithms (gradient boost and random forest regressor) to exert better control over the chemical properties. Defect structures are one of the desired properties in CeO2 nanomaterials, characterized by the Ce3+/Ce4+ oxidation state ratio leading to its regenerative properties. We have shown that the defect structure of the CeO2 nanofilms can be predicted using in situ ellipsometry data in real time using a trained ML algorithm using two different methods. The first method involves an indirect approach of thickness prediction using an ML algorithm (k-nearest neighbors) followed by Ce3+/Ce4+ estimation using an experimental calibration curve. The second method with a more direct approach involves Ce3+/Ce4+ prediction using real-time ellipsometry data (amplitude ratio ψ and phase difference Δ) using gradient boost and random forest regressor.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"16 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-enhanced atomic layer deposition of Ru thin films using Ru(DMBD)(CO)3 and effect of forming gas anneal Ru(DMBD)(CO)3电子增强Ru薄膜原子层沉积及其形成气体退火的影响
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-11-01 DOI: 10.1116/6.0002938
Michael A. Collings, Marcel Junige, Andrew S. Cavanagh, Victor Wang, Andrew C. Kummel, Steven M. George
Ruthenium (Ru) thin films were deposited utilizing electron-enhanced atomic layer deposition (EE-ALD). Sequential exposures of Ru(DMBD)(CO)3 (DMBD = 2,3-dimethylbutadiene) and low-energy electrons at ∼125 eV were used to grow the Ru films at temperatures ≤160 °C. The electrons were obtained from a hollow cathode plasma electron source that provided an electron current of ∼200 mA over a surface area of ∼4 cm2. Low-energy electrons can desorb surface ligands derived from Ru(DMBD)(CO)3, such as CO, through electron-stimulated desorption. The desorbed surface ligands leave chemically reactive sites for subsequent Ru(DMBD)(CO)3 precursor absorption. Ru EE-ALD film growth was monitored utilizing in situ spectroscopic ellipsometry (SE). The electron exposures resulted in rapid Ru film nucleation and growth. Under saturation conditions at 160 °C, the growth rate for Ru EE-ALD was 0.2 Å/cycle. The electron efficiency factor for Ru EE-ALD was ∼21 500 electrons/deposited Ru atom. There was no film growth without electron exposures. Ru growth was observed on various substrates including silicon with native oxide and titanium. Ru growth was also obtained on insulating substrates such as 400 nm thick thermal SiO2 substrates. XPS analysis measured <1 at. % oxygen in the deposited Ru films. XRD, x-ray reflectivity, and SE were used to characterize the Ru films before and after forming gas anneal (FGA). FGA successfully removed carbon impurities from the as-deposited Ru films. The resistivity of the Ru EE-ALD films after FGA was determined to be as low as 17 μΩ cm for a film thickness of 6.7 nm. SE measurements of the imaginary part of the pseudodielectric function, 〈ɛ2〉, were utilized to characterize the as-deposited Ru films and the high purity Ru films after FGA. The low resistivity of the Ru films after FGA was consistent with a prominent Drude absorption in the ⟨ε2⟩ spectrum at ≤1 eV. Various reactive background gases such as H2, NH3, and H2O were utilized during EE-ALD to attempt to remove the carbon from the as-deposited Ru EE-ALD films.
采用电子增强原子层沉积技术(EE-ALD)制备钌薄膜。Ru(DMBD)(CO)3 (DMBD = 2,3-二甲基丁二烯)和低能电子在~ 125 eV下连续暴露,在≤160°C的温度下生长Ru薄膜。电子是从中空阴极等离子体电子源获得的,该电子源在约4 cm2的表面积上提供约200 mA的电子电流。低能电子通过电子刺激解吸,可以解吸Ru(DMBD)(CO)3衍生的表面配体,如CO。解吸的表面配体为随后的Ru(DMBD)(CO)3前体吸收留下了化学反应位点。利用原位光谱椭偏仪(SE)监测Ru EE-ALD薄膜的生长。电子暴露导致Ru膜快速成核和生长。在160℃饱和条件下,Ru EE-ALD的生长速率为0.2 Å/cycle。Ru EE-ALD的电子效率因子为~ 21 500个电子/沉积的Ru原子。没有电子曝光就没有薄膜生长。钌生长在不同的衬底上,包括天然氧化物硅和钛。在绝缘衬底(如400 nm厚的热SiO2衬底)上也可以得到Ru的生长。XPS分析测得<1 at。%氧在沉积的Ru膜。采用XRD、x射线反射率和SE对气体退火前后的Ru膜进行了表征。FGA成功地去除了沉积Ru膜中的碳杂质。当膜厚为6.7 nm时,经FGA处理后Ru EE-ALD薄膜的电阻率低至17 μΩ cm。利用赝介电函数虚部< 2 >的SE测量值来表征沉积的Ru膜和FGA后的高纯度Ru膜。FGA后Ru膜的低电阻率与≤1 eV时⟨ε2⟩谱中的显著Drude吸收一致。在EE-ALD过程中,利用各种反应性背景气体,如H2、NH3和H2O,试图从沉积的Ru EE-ALD膜中去除碳。
{"title":"Electron-enhanced atomic layer deposition of Ru thin films using Ru(DMBD)(CO)3 and effect of forming gas anneal","authors":"Michael A. Collings, Marcel Junige, Andrew S. Cavanagh, Victor Wang, Andrew C. Kummel, Steven M. George","doi":"10.1116/6.0002938","DOIUrl":"https://doi.org/10.1116/6.0002938","url":null,"abstract":"Ruthenium (Ru) thin films were deposited utilizing electron-enhanced atomic layer deposition (EE-ALD). Sequential exposures of Ru(DMBD)(CO)3 (DMBD = 2,3-dimethylbutadiene) and low-energy electrons at ∼125 eV were used to grow the Ru films at temperatures ≤160 °C. The electrons were obtained from a hollow cathode plasma electron source that provided an electron current of ∼200 mA over a surface area of ∼4 cm2. Low-energy electrons can desorb surface ligands derived from Ru(DMBD)(CO)3, such as CO, through electron-stimulated desorption. The desorbed surface ligands leave chemically reactive sites for subsequent Ru(DMBD)(CO)3 precursor absorption. Ru EE-ALD film growth was monitored utilizing in situ spectroscopic ellipsometry (SE). The electron exposures resulted in rapid Ru film nucleation and growth. Under saturation conditions at 160 °C, the growth rate for Ru EE-ALD was 0.2 Å/cycle. The electron efficiency factor for Ru EE-ALD was ∼21 500 electrons/deposited Ru atom. There was no film growth without electron exposures. Ru growth was observed on various substrates including silicon with native oxide and titanium. Ru growth was also obtained on insulating substrates such as 400 nm thick thermal SiO2 substrates. XPS analysis measured &amp;lt;1 at. % oxygen in the deposited Ru films. XRD, x-ray reflectivity, and SE were used to characterize the Ru films before and after forming gas anneal (FGA). FGA successfully removed carbon impurities from the as-deposited Ru films. The resistivity of the Ru EE-ALD films after FGA was determined to be as low as 17 μΩ cm for a film thickness of 6.7 nm. SE measurements of the imaginary part of the pseudodielectric function, 〈ɛ2〉, were utilized to characterize the as-deposited Ru films and the high purity Ru films after FGA. The low resistivity of the Ru films after FGA was consistent with a prominent Drude absorption in the ⟨ε2⟩ spectrum at ≤1 eV. Various reactive background gases such as H2, NH3, and H2O were utilized during EE-ALD to attempt to remove the carbon from the as-deposited Ru EE-ALD films.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"17 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of nitrogen pressure on the fabrication of AlCrFeCoNiCu0.5 high entropy nitride thin films via cathodic arc deposition 氮压力对阴极电弧沉积制备AlCrFeCoNiCu0.5高熵氮化物薄膜的影响
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-31 DOI: 10.1116/6.0003064
Tenghao Jiang, Hong Zhao, Kostadinos Tsoutas, Lixian Sun, Hongwei Liu, Yanping Liu, Fanjun Xu, Zhong Zheng, Marcela M. Bilek, Zongwen Liu
In the past two decades, high entropy alloy (HEA) coatings have attracted great attention due to their superior mechanical properties, outstanding corrosion and oxidation resistance, and exceptionally high thermal stability. In comparison to HEA thin films, high entropy nitrides (HENs) exhibit higher mechanical strength and chemical inertness. In this work, AlCrFeCoNiCu0.5 HEA and HEN thin films were fabricated using a filtered cathodic arc. By regulating the deposition pressure from 0.0005 Pa (HEA thin film) to 0.05 Pa, the nitrogen concentration in each thin film was precisely controlled to tune the mechanical properties. Scanning transmission electron microscopy-energy dispersive spectroscopy revealed that the nitrogen concentration of the films was up to 21.2 at. % at the pressure of 0.05 Pa. The reduced effect of preferential sputtering increased aluminum concentration from 8.3 ± 1.5 to 12.9 ± 2.2 at. % as pressure increased up to 0.05 Pa. X-ray photoelectron spectroscopy further confirmed the formation of AlN and CrN at pressures of 0.01–0.05 Pa. The highest hardness and elastic modulus of the HEN film were 12.4 ± 0.6 and 347.3 ± 17.7 GPa, respectively, which were 84.8% and 131.4% higher than those of the HEA thin film.
在过去的二十年里,高熵合金(HEA)涂层因其优异的机械性能、优异的抗腐蚀和抗氧化性能以及极高的热稳定性而备受关注。与HEA薄膜相比,高熵氮化物具有更高的机械强度和化学惰性。在这项工作中,使用过滤阴极电弧制备了AlCrFeCoNiCu0.5 HEA和HEN薄膜。通过调节沉积压力从0.0005 Pa (HEA薄膜)到0.05 Pa,可以精确控制各薄膜中的氮浓度,从而调节其力学性能。扫描透射电子显微镜-能量色散光谱分析表明,膜的氮浓度高达21.2 at。%在0.05 Pa的压力下。优先溅射的降低效应使铝浓度由8.3±1.5 at提高到12.9±2.2 at。%,压力增加到0.05 Pa。x射线光电子能谱进一步证实了在0.01 ~ 0.05 Pa压力下AlN和CrN的形成。HEN薄膜的最高硬度和弹性模量分别为12.4±0.6和347.3±17.7 GPa,分别比HEA薄膜高84.8%和131.4%。
{"title":"Effect of nitrogen pressure on the fabrication of AlCrFeCoNiCu0.5 high entropy nitride thin films via cathodic arc deposition","authors":"Tenghao Jiang, Hong Zhao, Kostadinos Tsoutas, Lixian Sun, Hongwei Liu, Yanping Liu, Fanjun Xu, Zhong Zheng, Marcela M. Bilek, Zongwen Liu","doi":"10.1116/6.0003064","DOIUrl":"https://doi.org/10.1116/6.0003064","url":null,"abstract":"In the past two decades, high entropy alloy (HEA) coatings have attracted great attention due to their superior mechanical properties, outstanding corrosion and oxidation resistance, and exceptionally high thermal stability. In comparison to HEA thin films, high entropy nitrides (HENs) exhibit higher mechanical strength and chemical inertness. In this work, AlCrFeCoNiCu0.5 HEA and HEN thin films were fabricated using a filtered cathodic arc. By regulating the deposition pressure from 0.0005 Pa (HEA thin film) to 0.05 Pa, the nitrogen concentration in each thin film was precisely controlled to tune the mechanical properties. Scanning transmission electron microscopy-energy dispersive spectroscopy revealed that the nitrogen concentration of the films was up to 21.2 at. % at the pressure of 0.05 Pa. The reduced effect of preferential sputtering increased aluminum concentration from 8.3 ± 1.5 to 12.9 ± 2.2 at. % as pressure increased up to 0.05 Pa. X-ray photoelectron spectroscopy further confirmed the formation of AlN and CrN at pressures of 0.01–0.05 Pa. The highest hardness and elastic modulus of the HEN film were 12.4 ± 0.6 and 347.3 ± 17.7 GPa, respectively, which were 84.8% and 131.4% higher than those of the HEA thin film.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption mechanism of dimeric Ga precursors in metalorganic chemical vapor deposition of gallium nitride 二聚体Ga前驱体在金属有机化学气相沉积氮化镓中的吸附机理
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-31 DOI: 10.1116/6.0002966
Hankyu Kim, Miso Kim, Bumsang Kim, Bonggeun Shong
Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.
氮化镓(GaN)作为具有多种潜在应用前景的下一代半导体材料引起了人们的极大兴趣。在使用三甲基镓(TMG)和NH3的金属有机化学气相沉积(MOCVD) GaN过程中,二聚体前体通过气相反应如加合物形成或热分解产生。本文采用密度泛函理论计算方法,研究了TMG、[(CH3)2Ga(NH2)]2和[(CH3)GaNH]2等单、二聚体Ga分子在GaN表面的吸附反应。发现在典型的GaN MOCVD工艺条件下,[(CH3)2Ga(NH2)]2是各种二聚体前驱体中最主要的形式。结果表明,由[(CH3)2Ga(NH2)]2热分解生成的二聚体[(CH3)GaNH]2前驱体在GaN表面具有较高的反应活性。我们的工作提供了关键的见解,可以为GaN MOCVD工艺的优化提供信息,从而导致基于GaN的高性能半导体的进步。
{"title":"Adsorption mechanism of dimeric Ga precursors in metalorganic chemical vapor deposition of gallium nitride","authors":"Hankyu Kim, Miso Kim, Bumsang Kim, Bonggeun Shong","doi":"10.1116/6.0002966","DOIUrl":"https://doi.org/10.1116/6.0002966","url":null,"abstract":"Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"17 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochromic properties of NiO films prepared by atomic layer deposition 原子层沉积法制备NiO薄膜的电致变色性能
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-30 DOI: 10.1116/6.0003040
Xi Su, Zexin Tu, Liwei Ji, Hao Wu, Hongxing Xu, Chang Liu
Nickel oxide (NiO) films were prepared on ITO-coated glass substrates by atomic layer deposition at different temperatures. NiO films exhibit good anodic electrochromic properties because of their polycrystalline structures. The optical modulation observed at 550 nm was around 44%, changing color from transparent to black. The largest coloration efficiency at 550 nm was calculated to be 31.7 cm2/C.
采用不同温度下原子层沉积的方法在ito镀膜玻璃衬底上制备了氧化镍薄膜。NiO薄膜由于其多晶结构而具有良好的阳极电致变色性能。在550 nm处观察到的光调制约为44%,颜色由透明变为黑色。在550 nm处,最大显色效率为31.7 cm2/C。
{"title":"Electrochromic properties of NiO films prepared by atomic layer deposition","authors":"Xi Su, Zexin Tu, Liwei Ji, Hao Wu, Hongxing Xu, Chang Liu","doi":"10.1116/6.0003040","DOIUrl":"https://doi.org/10.1116/6.0003040","url":null,"abstract":"Nickel oxide (NiO) films were prepared on ITO-coated glass substrates by atomic layer deposition at different temperatures. NiO films exhibit good anodic electrochromic properties because of their polycrystalline structures. The optical modulation observed at 550 nm was around 44%, changing color from transparent to black. The largest coloration efficiency at 550 nm was calculated to be 31.7 cm2/C.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding ion and atom fluxes during high-power impulse magnetron sputtering deposition of NbCx films from a compound target 了解高功率脉冲磁控溅射沉积NbCx薄膜过程中的离子和原子通量
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-27 DOI: 10.1116/6.0002944
M. Farahani, T. Kozák, A. D. Pajdarová, A. Bahr, H. Riedl, P. Zeman
A combination of time-averaged mass spectroscopy (MS), time-averaged optical emission spectroscopy (OES), and plasma transport modeling was employed to understand the transport processes of ions and atoms in high-power impulse magnetron sputtering discharges resulting in changes in the stoichiometry of NbCx films during their deposition from a stoichiometric NbC compound target at different repetition frequencies and duty cycles. Mass spectrometry showed that the fluxes of ions originating from the elements of the target increase with increasing pulse power density (and decreasing pulse length) due to an increasing electron density and, thus, electron-impact ionization probability. Due to the higher ionization energy and much lower ionization cross section of C (compared to Nb), it was found that the contribution of C+ ions to the deposition flux is practically negligible. Additionally, OES tracked the densities of ions and atoms at different distances from the target. The OES analysis revealed that the atom densities decreased as the pulse power density increased. In contrast, the ion densities exhibited an increase, which is consistent with the findings of MS. Using the data from MS, OES, and modeling, we were able to estimate the fluxes of atoms to the substrate. Our observations demonstrated a transition from C-rich toward Nb-rich flux of film-forming species with increasing pulse power density, corresponding to changes in the film composition. We further discuss the role of internal plasma processes that are responsible for this transition.
采用时间平均质谱(MS)、时间平均光学发射光谱(OES)和等离子体输运模型相结合的方法,研究了高功率脉冲磁控溅射放电中离子和原子的输运过程,从而导致NbCx薄膜在不同重复频率和占空比下从化学计量型NbC复合靶沉积过程中化学计量学的变化。质谱分析表明,随着脉冲功率密度的增加(和脉冲长度的减小),源自目标元素的离子通量增加,这是由于电子密度的增加,从而增加了电子撞击电离的概率。由于C具有较高的电离能和较低的电离截面(与Nb相比),C+离子对沉积通量的贡献几乎可以忽略不计。此外,OES还跟踪了距离目标不同距离处离子和原子的密度。OES分析表明,原子密度随脉冲功率密度的增大而减小。相比之下,离子密度呈现出增加,这与质谱分析的结果一致。利用质谱、OES和建模的数据,我们能够估计原子到底物的通量。我们的观察表明,随着脉冲功率密度的增加,成膜物质的通量从富c向富nb转变,这与薄膜成分的变化相对应。我们进一步讨论了负责这种转变的内部等离子体过程的作用。
{"title":"Understanding ion and atom fluxes during high-power impulse magnetron sputtering deposition of NbCx films from a compound target","authors":"M. Farahani, T. Kozák, A. D. Pajdarová, A. Bahr, H. Riedl, P. Zeman","doi":"10.1116/6.0002944","DOIUrl":"https://doi.org/10.1116/6.0002944","url":null,"abstract":"A combination of time-averaged mass spectroscopy (MS), time-averaged optical emission spectroscopy (OES), and plasma transport modeling was employed to understand the transport processes of ions and atoms in high-power impulse magnetron sputtering discharges resulting in changes in the stoichiometry of NbCx films during their deposition from a stoichiometric NbC compound target at different repetition frequencies and duty cycles. Mass spectrometry showed that the fluxes of ions originating from the elements of the target increase with increasing pulse power density (and decreasing pulse length) due to an increasing electron density and, thus, electron-impact ionization probability. Due to the higher ionization energy and much lower ionization cross section of C (compared to Nb), it was found that the contribution of C+ ions to the deposition flux is practically negligible. Additionally, OES tracked the densities of ions and atoms at different distances from the target. The OES analysis revealed that the atom densities decreased as the pulse power density increased. In contrast, the ion densities exhibited an increase, which is consistent with the findings of MS. Using the data from MS, OES, and modeling, we were able to estimate the fluxes of atoms to the substrate. Our observations demonstrated a transition from C-rich toward Nb-rich flux of film-forming species with increasing pulse power density, corresponding to changes in the film composition. We further discuss the role of internal plasma processes that are responsible for this transition.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"279 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136261865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic study of submonolayer nucleation characteristics during GaN (0001) homoepitaxial growth GaN(0001)同外延生长过程中亚单层成核特性的显微研究
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-26 DOI: 10.1116/6.0003115
Peng Su, Wensen Ai, Xuejiang Chen, Lijun Liu
An on-lattice kinetic Monte Carlo model is constructed to investigate microscopic nucleation behavior during the submonolayer epitaxial growth of GaN islands, where the Ga and N atoms are treated as the basic particles. The input kinetic parameters of Ga and N, including their surface diffusion energy barriers, were obtained from previous ab initio calculations. Furthermore, a simple and effective bond counting rule is applied in our kinetic Monte Carlo model, and the statistics of the GaN islands on the surface are realized via the application of the Hoshen–Kopelman algorithm. The growth temperature range covers the typical growth temperatures used in the molecular beam epitaxy of GaN. The results obtained show that triangular GaN flakes are observed and that the shapes of the GaN islands remain triangular when the growth temperature is changed. Additionally, the power law for the maximum density of islands versus the ratio of the effective diffusion to the deposition rate is obtained; the exponent of this law is −0.506 ± 0.006, indicating that these triplets represent the seeds required for further nucleation. Finally, the coexistence of the Ga-edge and N-edge types of triangular GaN islands is observed. The island formation mechanism is attributed to a local monomer density misbalance, and it is also shown that a slight variation in the Ga/N ratio in the deposition flux changes the proportion of the Ga-edge and N-edge type triangles; this represents a further indication that controllable GaN morphologies can be obtained by tuning the chemical potentials of the constituent elements.
建立了一种晶格动力学蒙特卡罗模型来研究GaN岛亚单层外延生长过程中的微观成核行为,其中Ga和N原子被视为基本粒子。Ga和N的输入动力学参数,包括它们的表面扩散能垒,都是由之前的从头计算得到的。此外,我们的动力学蒙特卡罗模型采用了简单有效的键计数规则,并通过Hoshen-Kopelman算法实现了表面GaN岛的统计。生长温度范围涵盖了氮化镓分子束外延中使用的典型生长温度。结果表明,当生长温度发生变化时,氮化镓片呈三角形,且氮化镓岛的形状仍保持三角形。此外,还得到了最大岛屿密度与有效扩散与沉积速率之比的幂律;该定律的指数为- 0.506±0.006,表明这些三联体代表进一步成核所需的种子。最后,观察到三角形GaN岛的ga边型和n边型共存。岛的形成机制归因于局部单体密度失衡,沉积通量中Ga/N比的微小变化也会改变Ga边型和N边型三角形的比例;这进一步表明,可以通过调整组成元素的化学势来获得可控的GaN形态。
{"title":"Microscopic study of submonolayer nucleation characteristics during GaN (0001) homoepitaxial growth","authors":"Peng Su, Wensen Ai, Xuejiang Chen, Lijun Liu","doi":"10.1116/6.0003115","DOIUrl":"https://doi.org/10.1116/6.0003115","url":null,"abstract":"An on-lattice kinetic Monte Carlo model is constructed to investigate microscopic nucleation behavior during the submonolayer epitaxial growth of GaN islands, where the Ga and N atoms are treated as the basic particles. The input kinetic parameters of Ga and N, including their surface diffusion energy barriers, were obtained from previous ab initio calculations. Furthermore, a simple and effective bond counting rule is applied in our kinetic Monte Carlo model, and the statistics of the GaN islands on the surface are realized via the application of the Hoshen–Kopelman algorithm. The growth temperature range covers the typical growth temperatures used in the molecular beam epitaxy of GaN. The results obtained show that triangular GaN flakes are observed and that the shapes of the GaN islands remain triangular when the growth temperature is changed. Additionally, the power law for the maximum density of islands versus the ratio of the effective diffusion to the deposition rate is obtained; the exponent of this law is −0.506 ± 0.006, indicating that these triplets represent the seeds required for further nucleation. Finally, the coexistence of the Ga-edge and N-edge types of triangular GaN islands is observed. The island formation mechanism is attributed to a local monomer density misbalance, and it is also shown that a slight variation in the Ga/N ratio in the deposition flux changes the proportion of the Ga-edge and N-edge type triangles; this represents a further indication that controllable GaN morphologies can be obtained by tuning the chemical potentials of the constituent elements.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"66 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density functional theory calculations of mechanical and electronic properties of W1−xTaxN6, W1−xMoxN6, and Mo1−xTaxN6 (0 ≤ x ≤ 1) alloys in a hexagonal structure W1−xTaxN6、W1−xMoxN6和Mo1−xTaxN6(0≤x≤1)六方结构合金力学和电子性能的密度泛函理论计算
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-26 DOI: 10.1116/6.0002923
S. R. Kandel, D. Gall, S. V. Khare
In this study, we report the structural, energetic, mechanical, electronic, thermal, and magnetic properties of W1−xTaxN6, W1−xMoxN6, and Mo1−xTaxN6 (0 ≤ x ≤ 1) alloys in a hexagonal structure (space group: R3¯m) determined using density functional theory–based first-principles calculations. These compounds are mechanically stable, whereas W0.33Ta0.66N6 is vibrationally unstable. Among both mechanically and vibrationally stable compounds, W0.66Ta0.33N6 and W0.66Mo0.33N6 have the highest hardness of 55 GPa, while the softest alloy (Mo0.33Ta0.66N6) exhibits 46 GPa, indicating new potential super hard materials. The high hardness in these materials is attributed to the combined effect of covalent N–N bonding of hexagonal rings and a metal to nitrogen charge transfer. Only two alloys, W0.33Mo0.66N6 and W0.66Mo0.33N6, are semiconducting alloys with electronic bandgaps of 1.82 and 1.92 eV, respectively. A significant magnetic moment of 0.82 μB per unit metal was calculated for W0.66Mo0.33N6.
在这项研究中,我们报告了W1−xTaxN6、W1−xMoxN6和Mo1−xTaxN6(0≤x≤1)合金在六角形结构(空间群:R3¯m)中的结构、能量、力学、电子、热学和磁性。这些化合物在机械上是稳定的,而W0.33Ta0.66N6在振动上是不稳定的。在力学稳定和振动稳定的化合物中,W0.66Ta0.33N6和W0.66Mo0.33N6的硬度最高,为55 GPa,而最软的合金(Mo0.33Ta0.66N6)的硬度为46 GPa,显示出新型超硬材料的潜力。这些材料的高硬度是由于六方环的共价N-N键和金属对氮电荷转移的共同作用。只有两种合金W0.33Mo0.66N6和W0.66Mo0.33N6是半导体合金,电子带隙分别为1.82和1.92 eV。W0.66Mo0.33N6的磁矩为0.82 μB /单位金属。
{"title":"Density functional theory calculations of mechanical and electronic properties of W1−xTaxN6, W1−xMoxN6, and Mo1−xTaxN6 (0 ≤ x ≤ 1) alloys in a hexagonal structure","authors":"S. R. Kandel, D. Gall, S. V. Khare","doi":"10.1116/6.0002923","DOIUrl":"https://doi.org/10.1116/6.0002923","url":null,"abstract":"In this study, we report the structural, energetic, mechanical, electronic, thermal, and magnetic properties of W1−xTaxN6, W1−xMoxN6, and Mo1−xTaxN6 (0 ≤ x ≤ 1) alloys in a hexagonal structure (space group: R3¯m) determined using density functional theory–based first-principles calculations. These compounds are mechanically stable, whereas W0.33Ta0.66N6 is vibrationally unstable. Among both mechanically and vibrationally stable compounds, W0.66Ta0.33N6 and W0.66Mo0.33N6 have the highest hardness of 55 GPa, while the softest alloy (Mo0.33Ta0.66N6) exhibits 46 GPa, indicating new potential super hard materials. The high hardness in these materials is attributed to the combined effect of covalent N–N bonding of hexagonal rings and a metal to nitrogen charge transfer. Only two alloys, W0.33Mo0.66N6 and W0.66Mo0.33N6, are semiconducting alloys with electronic bandgaps of 1.82 and 1.92 eV, respectively. A significant magnetic moment of 0.82 μB per unit metal was calculated for W0.66Mo0.33N6.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"26 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrathin VO2 grown with oxygen plasma molecular beam epitaxy on TiO2 (001) and Al2O3 (0001) 氧等离子体分子束外延在TiO2(001)和Al2O3(0001)上生长超薄VO2
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-25 DOI: 10.1116/6.0003096
Alyson Spitzig, Jennifer E. Hoffman, Jason D. Hoffman
Bulk VO2 undergoes an insulator-to-metal transition (IMT) with up to five orders of magnitude change in the resistance at 340 K. However, when VO2 is deposited as a film on a substrate, the strain from the substrate can alter the IMT temperature, resistivity ratio of IMT, and hysteresis. Here, we present single-phase VO2 ultrathin films (thickness less than 20 nm) grown using oxygen plasma molecular beam epitaxy (MBE) on TiO2 (001) and Al2O3 (0001) substrates. First, we modify existing recipes employing ozone MBE and reproduce the best films from literature on TiO2 (001), maintaining an almost three orders of magnitude transition in a 12 nm thick film with TIMT of 308 K (296 K) upon warming (cooling). We then extend our recipe to Al2O3 (0001) substrates where we stabilize a 12 nm thin single-phase VO2 film and observe two orders of magnitude transition at 337 K (329 K) upon warming (cooling), expanding the possible growth methods for ultrathin VO2 films on Al2O3 (0001).
大块VO2经历绝缘体到金属的转变(IMT),在340 K时电阻变化高达五个数量级。然而,当VO2作为薄膜沉积在衬底上时,衬底的应变会改变IMT的温度、电阻率和迟滞率。在这里,我们用氧等离子体分子束外延(MBE)在TiO2(001)和Al2O3(0001)衬底上生长了单相VO2超薄膜(厚度小于20 nm)。首先,我们利用臭氧MBE修改了现有的配方,并在TiO2(001)上重现了文献中最好的薄膜,在加热(冷却)时,在TIMT为308 K (296 K)的12 nm厚薄膜中保持了近三个数量级的转变。然后,我们将我们的配方扩展到Al2O3(0001)衬底,在那里我们稳定了12 nm薄的单相VO2薄膜,并在337 K (329 K)加热(冷却)时观察到两个数量级的转变,扩展了在Al2O3(0001)上超薄VO2薄膜的可能生长方法。
{"title":"Ultrathin VO2 grown with oxygen plasma molecular beam epitaxy on TiO2 (001) and Al2O3 (0001)","authors":"Alyson Spitzig, Jennifer E. Hoffman, Jason D. Hoffman","doi":"10.1116/6.0003096","DOIUrl":"https://doi.org/10.1116/6.0003096","url":null,"abstract":"Bulk VO2 undergoes an insulator-to-metal transition (IMT) with up to five orders of magnitude change in the resistance at 340 K. However, when VO2 is deposited as a film on a substrate, the strain from the substrate can alter the IMT temperature, resistivity ratio of IMT, and hysteresis. Here, we present single-phase VO2 ultrathin films (thickness less than 20 nm) grown using oxygen plasma molecular beam epitaxy (MBE) on TiO2 (001) and Al2O3 (0001) substrates. First, we modify existing recipes employing ozone MBE and reproduce the best films from literature on TiO2 (001), maintaining an almost three orders of magnitude transition in a 12 nm thick film with TIMT of 308 K (296 K) upon warming (cooling). We then extend our recipe to Al2O3 (0001) substrates where we stabilize a 12 nm thin single-phase VO2 film and observe two orders of magnitude transition at 337 K (329 K) upon warming (cooling), expanding the possible growth methods for ultrathin VO2 films on Al2O3 (0001).","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"498 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135111503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standing wave patterns in graphene systems studied using scanning tunneling spectroscopy 用扫描隧道光谱研究石墨烯系统中的驻波模式
3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2023-10-19 DOI: 10.1116/6.0003075
Won-Jun Jang, Min Hui Chang, Min Jeong Kang, Young Jae Song, Se-Jong Kahng
Standing wave patterns are formed near potential barriers or steps due to the interference of incident and reflected waves. Graphene systems show standing wave patterns near atomic step edges, defects, and impurities in scanning tunneling microscopy; however, there are still unexplored examples. In this study, we present our experimental results for graphene directly grown on hexagonal-BN/Cu by chemical vapor deposition. Standing wave patterns were observed in our scanning tunneling microscopy and spectroscopy, revealing linear dispersion relations with a Fermi velocity of about 106 m/s. Our study shows that graphene grown on hexagonal-BN/Cu provides a useful platform to study the electronic characteristics of graphene systems.
驻波模式是由于入射波和反射波的干扰而在势垒或台阶附近形成的。在扫描隧道显微镜下,石墨烯系统在原子台阶边缘、缺陷和杂质附近显示驻波模式;然而,仍有未开发的例子。在这项研究中,我们展示了化学气相沉积在六边形bn /Cu上直接生长石墨烯的实验结果。在扫描隧道显微镜和光谱学中观察到驻波模式,揭示了当费米速度约为106 m/s时的线性色散关系。我们的研究表明,在六边形bn /Cu上生长的石墨烯为研究石墨烯系统的电子特性提供了一个有用的平台。
{"title":"Standing wave patterns in graphene systems studied using scanning tunneling spectroscopy","authors":"Won-Jun Jang, Min Hui Chang, Min Jeong Kang, Young Jae Song, Se-Jong Kahng","doi":"10.1116/6.0003075","DOIUrl":"https://doi.org/10.1116/6.0003075","url":null,"abstract":"Standing wave patterns are formed near potential barriers or steps due to the interference of incident and reflected waves. Graphene systems show standing wave patterns near atomic step edges, defects, and impurities in scanning tunneling microscopy; however, there are still unexplored examples. In this study, we present our experimental results for graphene directly grown on hexagonal-BN/Cu by chemical vapor deposition. Standing wave patterns were observed in our scanning tunneling microscopy and spectroscopy, revealing linear dispersion relations with a Fermi velocity of about 106 m/s. Our study shows that graphene grown on hexagonal-BN/Cu provides a useful platform to study the electronic characteristics of graphene systems.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135779249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Vacuum Science & Technology A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1