Pub Date : 2023-05-03DOI: 10.17159/2411-9717/1167/2023
A. Collins, C. Strydom, R. Matjie, J. Bunt, J. van Dyk
South African coal discards derived from feed coal for thermoprocesses pose human health and environmental problems and incur high disposal costs. These issues need to be resolved. Coal fines and a coal fines/ K2CO3 blend were combusted at 700°C in a laboratory rotary kiln to produce ashes containing metakaolinite (Al2O3.2SiO2) and illite/muscovite/orthoclase amorphous materials. The blend ash and coal fines ash, containing 18% K2O and <1% K2O respectively, were leached with water and with 1 M and 8 M NaOH at 80°C for 4 hours using a solid to liquid ratio of 1:5. The 8 M NaOH leach yielded 17% sodalite (Na8Si6Al6O24(OH)2) formation through SiO32-, Al(OH)4_, and Na+ precipitation in the leached ashes. The 1 M NaOH leach yielded no sodalite. X-ray fluorescence analysis of the original ashes and leached ashes showed low Al and Si dissolution efficiencies due to the sodalite formation. Sequential NaOH leaching resulted in the highest potassium dissolution efficiency of 89% for the ashes of fines/K2CO3 blend and 59% for the fines. It may be possible to increase the ash-derived zeolite concentration by using even higher NaOH concentrations (12-20 M NaOH) during leaching. Sodalite derived from coal ash could possibly be utilized for water purification in industrial applications, or as molecule separators. The potassium-containing liquid could be used in fertilizer manufacture.
南非用于热处理的饲料煤产生的废煤给人类健康和环境带来了问题,并产生了高昂的处置费用。这些问题需要解决。在实验室回转窑中,将煤粉和煤粉/ K2CO3共混物在700℃下燃烧,得到含有偏高岭石(Al2O3.2SiO2)和伊利石/白云母/正长石非晶态材料的灰烬。将K2O含量为18%的混合灰和K2O含量<1%的煤粉灰,在80℃条件下,以1 M和8 M NaOH为溶剂,料液比为1:5,加水浸出4小时。通过sio2 -、Al(OH)4_和Na+的析出,8 M NaOH浸出灰中形成了17%的钠石(Na8Si6Al6O24(OH)2)。1m NaOH浸出不产钠石。原始灰和浸出灰的x射线荧光分析显示,由于钠石质的形成,铝和硅的溶解效率较低。顺序NaOH浸出的钾溶出率最高,细粒/K2CO3混合灰溶出率为89%,细粒溶出率为59%。在浸出过程中使用更高的NaOH浓度(12-20 M NaOH)可能会增加灰源沸石的浓度。从煤灰中提取的钠石可能用于工业用水净化,或作为分子分离器。该含钾液体可用于化肥生产。
{"title":"Production of sodium-based zeolites and a potassium-containing leach liquor by alkaline leaching of South African coal fines ash","authors":"A. Collins, C. Strydom, R. Matjie, J. Bunt, J. van Dyk","doi":"10.17159/2411-9717/1167/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/1167/2023","url":null,"abstract":"South African coal discards derived from feed coal for thermoprocesses pose human health and environmental problems and incur high disposal costs. These issues need to be resolved. Coal fines and a coal fines/ K2CO3 blend were combusted at 700°C in a laboratory rotary kiln to produce ashes containing metakaolinite (Al2O3.2SiO2) and illite/muscovite/orthoclase amorphous materials. The blend ash and coal fines ash, containing 18% K2O and <1% K2O respectively, were leached with water and with 1 M and 8 M NaOH at 80°C for 4 hours using a solid to liquid ratio of 1:5. The 8 M NaOH leach yielded 17% sodalite (Na8Si6Al6O24(OH)2) formation through SiO32-, Al(OH)4_, and Na+ precipitation in the leached ashes. The 1 M NaOH leach yielded no sodalite. X-ray fluorescence analysis of the original ashes and leached ashes showed low Al and Si dissolution efficiencies due to the sodalite formation. Sequential NaOH leaching resulted in the highest potassium dissolution efficiency of 89% for the ashes of fines/K2CO3 blend and 59% for the fines. It may be possible to increase the ash-derived zeolite concentration by using even higher NaOH concentrations (12-20 M NaOH) during leaching. Sodalite derived from coal ash could possibly be utilized for water purification in industrial applications, or as molecule separators. The potassium-containing liquid could be used in fertilizer manufacture.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46329337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-14DOI: 10.17159/2411-9717/1247/2023
A. Mabentsela, A. Mainza
A finite element model of a 5 m radius DC arc ilmenite furnace in idling mode was used to test the notion that the slag solidifies when it comes in to contact with colder pig iron, thus constituting the initial step in the formation of solid slag at the slag-pig iron interface. It was found that a slag that is 150°C hotter than the pig iron does not solidify at the interface. The 150°C temperature difference between the slag and pig iron is a result of solid slag at the slag-pig iron interface, not the other way around as suggested in the literature. Calculations show that the thickness of the frozen slag at the slag-pig iron interface is 1.7 cm for the furnace used. It is proposed that slag solidification begins with the slow co-current flow of molten slag and pig iron in the outer parts of the furnace. This provides enough time for molten slag to interact with molten pig iron without solidifying. As the reduction products form due to reduction of the slag by carbon in the pig iron, the slag solidifies. This approach negates the need for the slag to solidify by merely coming into contact with an inherently colder pig iron. Making use of a low thermal contact conductance between the slag and pig iron was found to be sufficient to numerically capture the presence of solid slag at the slag-pig iron interface and to preserve the 150°C difference between the slag and pig iron phase.
{"title":"Numerical investigation into slag solidification inside an ilmenite DC arc furnace using a finite element method approach","authors":"A. Mabentsela, A. Mainza","doi":"10.17159/2411-9717/1247/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/1247/2023","url":null,"abstract":"A finite element model of a 5 m radius DC arc ilmenite furnace in idling mode was used to test the notion that the slag solidifies when it comes in to contact with colder pig iron, thus constituting the initial step in the formation of solid slag at the slag-pig iron interface. It was found that a slag that is 150°C hotter than the pig iron does not solidify at the interface. The 150°C temperature difference between the slag and pig iron is a result of solid slag at the slag-pig iron interface, not the other way around as suggested in the literature. Calculations show that the thickness of the frozen slag at the slag-pig iron interface is 1.7 cm for the furnace used. It is proposed that slag solidification begins with the slow co-current flow of molten slag and pig iron in the outer parts of the furnace. This provides enough time for molten slag to interact with molten pig iron without solidifying. As the reduction products form due to reduction of the slag by carbon in the pig iron, the slag solidifies. This approach negates the need for the slag to solidify by merely coming into contact with an inherently colder pig iron. Making use of a low thermal contact conductance between the slag and pig iron was found to be sufficient to numerically capture the presence of solid slag at the slag-pig iron interface and to preserve the 150°C difference between the slag and pig iron phase.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48348890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-14DOI: 10.17159/2411-9717/936/2023
N. Dzimunya, B. Besa, R. Nyirenda
The accurate estimation of peak particle velocity (PPV) is crucial during the design of bench blasting operations in open pit mines, since the vibrations caused by blasting can significantly affect the integrity of nearby buildings and other structures. Conventional models used to predict blast-induced vibrations are not capable of capturing nonlinear relationships between the different blasting-related parameters. Soft computing techniques, i.e., techniques that are founded on the principles of artificial intelligence, effectively model these complexities. In this paper, we use the random forest (RF) algorithm to develop a model to predict blast-induced ground vibrations from bench blasting using 48 data records. The model was trained and tested using WEKA data-mining software. To build this model, a feature selection process using several combinations of Attribute Evaluators and Search Methods under the WEKA Select Attributes tab was performed. The correlation coefficient of the actual data and RF model-predicted data was 0.95, and the weighted average of the relative absolute error (RAE) was 10.9%. The RF model performance was also compared to the equivalent-path-based (EPB) equation on the testing data-set, and it was seen that the RF model can effectively be used to predict PPV. The study also demonstrates that the EPB equation is a suitable empirical method for predicting PPV.
{"title":"Prediction of ground vibrations induced by bench blasting using the random forest algorithm","authors":"N. Dzimunya, B. Besa, R. Nyirenda","doi":"10.17159/2411-9717/936/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/936/2023","url":null,"abstract":"The accurate estimation of peak particle velocity (PPV) is crucial during the design of bench blasting operations in open pit mines, since the vibrations caused by blasting can significantly affect the integrity of nearby buildings and other structures. Conventional models used to predict blast-induced vibrations are not capable of capturing nonlinear relationships between the different blasting-related parameters. Soft computing techniques, i.e., techniques that are founded on the principles of artificial intelligence, effectively model these complexities. In this paper, we use the random forest (RF) algorithm to develop a model to predict blast-induced ground vibrations from bench blasting using 48 data records. The model was trained and tested using WEKA data-mining software. To build this model, a feature selection process using several combinations of Attribute Evaluators and Search Methods under the WEKA Select Attributes tab was performed. The correlation coefficient of the actual data and RF model-predicted data was 0.95, and the weighted average of the relative absolute error (RAE) was 10.9%. The RF model performance was also compared to the equivalent-path-based (EPB) equation on the testing data-set, and it was seen that the RF model can effectively be used to predict PPV. The study also demonstrates that the EPB equation is a suitable empirical method for predicting PPV.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48741375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-14DOI: 10.17159/2411-9717/1714/2023
T. Nghipulile, T. Moongo, G. Dzinomwa, K. Maweja, B. Mapani, J. Kurasha, M. Amwaama
The effect of mineralogy on the grindability was investigated using three copper ores - two sulphides and one oxide. The dominant copper minerals were identified by optical microscopy and mineral chemistry derived from SEM-EDS analysis. The sample designated sulphide 1 was bornite-rich, sulphide 2 ore was mainly chalcopyrite, and the oxide ore was predominantly malachite and minor azurite. The gangue minerals were identified using semi-qualitative XRD analysis. Sulphide 1 contained more than 80% (w/w) of quartz compared to about 70% in the other two ores. The Bond work indices were 13.8, 21.6, and 17.3 kWh/t for sulphide 1, sulphide 2, and oxide ore respectively. This suggested that the chalcopyrite-rich ore is the hardest, while the malachite-rich ore has intermediate hardness, and the bornite-rich ore is the softest. The brittleness indices of the ores were calculated using the chemical composition of the gangue, and a good correlation between brittleness indices and Bond work indices was observed, which highlights the importance of the gangue composition in determining the fracture behaviour of the ores. There is scope for further investigation into the relationship between ore mineralogy and comminution behaviour using other breakage characterization techniques.
{"title":"Effect of mineralogy on grindability -A case study of copper ores","authors":"T. Nghipulile, T. Moongo, G. Dzinomwa, K. Maweja, B. Mapani, J. Kurasha, M. Amwaama","doi":"10.17159/2411-9717/1714/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/1714/2023","url":null,"abstract":"The effect of mineralogy on the grindability was investigated using three copper ores - two sulphides and one oxide. The dominant copper minerals were identified by optical microscopy and mineral chemistry derived from SEM-EDS analysis. The sample designated sulphide 1 was bornite-rich, sulphide 2 ore was mainly chalcopyrite, and the oxide ore was predominantly malachite and minor azurite. The gangue minerals were identified using semi-qualitative XRD analysis. Sulphide 1 contained more than 80% (w/w) of quartz compared to about 70% in the other two ores. The Bond work indices were 13.8, 21.6, and 17.3 kWh/t for sulphide 1, sulphide 2, and oxide ore respectively. This suggested that the chalcopyrite-rich ore is the hardest, while the malachite-rich ore has intermediate hardness, and the bornite-rich ore is the softest. The brittleness indices of the ores were calculated using the chemical composition of the gangue, and a good correlation between brittleness indices and Bond work indices was observed, which highlights the importance of the gangue composition in determining the fracture behaviour of the ores. There is scope for further investigation into the relationship between ore mineralogy and comminution behaviour using other breakage characterization techniques.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49389706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/1508/2023
M. G. Willemse, C. Siyasiya, D. Marais, A. Venter, N. Arthur
Although additive manufacturing is fast gaining traction in the industrial world as a reputable manufacturing technique to complement traditional mechanical machining, it still has problems such as porosity and residual stresses in components that give rise to cracking, distortion, and delamination, which are important issues to resolve in structural load-bearing applications. This research project focused on the characterization of the evolution of residual stresses in Ti-6Al-4V extra-low interstitial (ELI) additive-manufactured test samples. Four square thin-walled tubular samples were deposited on the same baseplate, using the direct energy deposition laser printing process, to different build heights. The residual stresses were analysed in the as-printed condition by the neutron diffraction technique and correlated to qualitative predictions obtained using the ANSYS software suite. Good qualitative agreement between the stress measurements and predictions were observed. Both approaches revealed the existence of large tensile stresses along the laser track direction at the sections that were built last, i.e., centre of the top layers of the samples. This in addition leads to large tensile stresses at the outer edges (corners) which would have the effect of separating the samples from the baseplate should the stresses exceed the yield strength of the material. Such extreme conditions did not occur in this study, but the stresses did lead to significant distortion of the baseplate. In general, the microstructures and spatial elemental mapping revealed a strong correlation between the macro-segregation of elemental V and the distribution of the β-phase in the printed parts.
{"title":"Material characteristics of Ti-6AL-4V samples additively manufactured using laser-based direct energy deposition","authors":"M. G. Willemse, C. Siyasiya, D. Marais, A. Venter, N. Arthur","doi":"10.17159/2411-9717/1508/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/1508/2023","url":null,"abstract":"Although additive manufacturing is fast gaining traction in the industrial world as a reputable manufacturing technique to complement traditional mechanical machining, it still has problems such as porosity and residual stresses in components that give rise to cracking, distortion, and delamination, which are important issues to resolve in structural load-bearing applications. This research project focused on the characterization of the evolution of residual stresses in Ti-6Al-4V extra-low interstitial (ELI) additive-manufactured test samples. Four square thin-walled tubular samples were deposited on the same baseplate, using the direct energy deposition laser printing process, to different build heights. The residual stresses were analysed in the as-printed condition by the neutron diffraction technique and correlated to qualitative predictions obtained using the ANSYS software suite. Good qualitative agreement between the stress measurements and predictions were observed. Both approaches revealed the existence of large tensile stresses along the laser track direction at the sections that were built last, i.e., centre of the top layers of the samples. This in addition leads to large tensile stresses at the outer edges (corners) which would have the effect of separating the samples from the baseplate should the stresses exceed the yield strength of the material. Such extreme conditions did not occur in this study, but the stresses did lead to significant distortion of the baseplate. In general, the microstructures and spatial elemental mapping revealed a strong correlation between the macro-segregation of elemental V and the distribution of the β-phase in the printed parts.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43142102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/1890/2023
H. Mandende, C. Ndou, T. Mothupi
The technological advances in efficient, rapid, and non-destructive hyperspectral core logging systems for systematic mineral mapping have led to the discovery and exploitation of new mineral deposits Hyperspectral imaging in the long-wave infrared range has been recently used successfully to identify various phosphate-bearing minerals (monazite, xenotime, and britholite), with limited work on apatite associated with mafic-ultramafic layered intrusions. In this study we investigate the effectiveness of a hyperspectral imaging (HSI) system with long-wave infrared (LWIR) bandwidthsto identify apatite in the Upper Zone of the Bushveld Complex. The accuracy of the HSI results was validated by mineralogical and geochemical data. The two apatite-enriched zones detected by HSI suggesting widespread development of apatite throughout the uppermost 600 m of the Upper Zone. The lower apatite-enriched zone is approximately 40 m thick, while the upper apatite-enriched zone is about 23 m thick, consistent with previous thickness determinations by traditional logging and analytical methods. Spectral mixing observed in the response of apatite is ascribed either to the common association of apatite and olivine in these rocks, or to differences between the spatial resolution of the hyperspectral image and the size of apatite grains. The VNIR-SWIR wavelength region did not show prominent spectral features of apatite. Nonetheless, HSI in the LWIR range is effective in mapping apatite and should therefore be considered as an exploration tool. This research advances our knowledge of the reflectance spectroscopy of REE-bearing minerals, which makes it easier to detect, identify, and quantify REE-bearing silicate minerals by HSI.
{"title":"Hyperspectral core scanner: An effective mineral mapping tool for apatite in the Upper Zone, northern limb, Bushveld Complex","authors":"H. Mandende, C. Ndou, T. Mothupi","doi":"10.17159/2411-9717/1890/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/1890/2023","url":null,"abstract":"The technological advances in efficient, rapid, and non-destructive hyperspectral core logging systems for systematic mineral mapping have led to the discovery and exploitation of new mineral deposits Hyperspectral imaging in the long-wave infrared range has been recently used successfully to identify various phosphate-bearing minerals (monazite, xenotime, and britholite), with limited work on apatite associated with mafic-ultramafic layered intrusions. In this study we investigate the effectiveness of a hyperspectral imaging (HSI) system with long-wave infrared (LWIR) bandwidthsto identify apatite in the Upper Zone of the Bushveld Complex. The accuracy of the HSI results was validated by mineralogical and geochemical data. The two apatite-enriched zones detected by HSI suggesting widespread development of apatite throughout the uppermost 600 m of the Upper Zone. The lower apatite-enriched zone is approximately 40 m thick, while the upper apatite-enriched zone is about 23 m thick, consistent with previous thickness determinations by traditional logging and analytical methods. Spectral mixing observed in the response of apatite is ascribed either to the common association of apatite and olivine in these rocks, or to differences between the spatial resolution of the hyperspectral image and the size of apatite grains. The VNIR-SWIR wavelength region did not show prominent spectral features of apatite. Nonetheless, HSI in the LWIR range is effective in mapping apatite and should therefore be considered as an exploration tool. This research advances our knowledge of the reflectance spectroscopy of REE-bearing minerals, which makes it easier to detect, identify, and quantify REE-bearing silicate minerals by HSI.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41827474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/2271/2023
M. A. Razas, A. Hassan, M. Khan, M. Z. Emad, S. A. Saki
Digital modelling of a surface is crucial for Earth science and mining applications for many reasons. These days, high-tech digital representations are used to produce a high-fidelity topographic surface in the form of a digital terrain model (DTM). DTMs are created from 2D data-points collected by a variety of techniques such as traditional ground surveying, image processing, LiDAR, radar, and global positioning systems. At the points for which data is not available, the heights need to be interpolated or extrapolated from the points with measured elevations. There are several interpolation/extrapolation techniques available, which may be categorized based on criteria such as area size, accuracy or exactness of the surface, smoothness, continuity, and preciseness. In this paper we examine these DTM production methods and highlight their distinctive characteristics. Real data from a mine site is used, as a case study, to create DTMs using various interpolation techniques in Surfer® software. The significant variation in the resulting DTMs demonstrates that developing a DTM is not straightforward and it is important to choose the method carefully because the outcomes depend on the interpolation techniques used. In mining instances, where volume estimations are based on the produced DTM, this can have a significant impact. For our data-set, the natural neighbour interpolation method made the best predictions (R2 = 0.969, β = 0.98, P < 0.0001).
由于许多原因,地表的数字建模对于地球科学和采矿应用至关重要。如今,高科技数字表示被用于以数字地形模型(DTM)的形式产生高保真的地形表面。dtm是由各种技术(如传统地面测量、图像处理、激光雷达、雷达和全球定位系统)收集的2D数据点创建的。在没有数据的点,高度需要从测量到的高度点内插或外推。有几种可用的插值/外推技术,可以根据诸如面积大小、表面的准确性或精确性、平滑性、连续性和精确性等标准进行分类。本文对这些DTM制作方法进行了分析,并突出了它们各自的特点。使用来自矿山现场的真实数据作为案例研究,在Surfer®软件中使用各种插值技术创建dtm。所得到的DTM的显著变化表明,开发DTM不是直截了当的,仔细选择方法很重要,因为结果取决于所使用的插值技术。在采矿实例中,体积估计是基于生成的DTM,这可能会产生重大影响。对于我们的数据集,自然邻居插值法的预测效果最好(R2 = 0.969, β = 0.98, P < 0.0001)。
{"title":"A critical comparison of interpolation techniques for digital terrain modelling in mining","authors":"M. A. Razas, A. Hassan, M. Khan, M. Z. Emad, S. A. Saki","doi":"10.17159/2411-9717/2271/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/2271/2023","url":null,"abstract":"Digital modelling of a surface is crucial for Earth science and mining applications for many reasons. These days, high-tech digital representations are used to produce a high-fidelity topographic surface in the form of a digital terrain model (DTM). DTMs are created from 2D data-points collected by a variety of techniques such as traditional ground surveying, image processing, LiDAR, radar, and global positioning systems. At the points for which data is not available, the heights need to be interpolated or extrapolated from the points with measured elevations. There are several interpolation/extrapolation techniques available, which may be categorized based on criteria such as area size, accuracy or exactness of the surface, smoothness, continuity, and preciseness. In this paper we examine these DTM production methods and highlight their distinctive characteristics. Real data from a mine site is used, as a case study, to create DTMs using various interpolation techniques in Surfer® software. The significant variation in the resulting DTMs demonstrates that developing a DTM is not straightforward and it is important to choose the method carefully because the outcomes depend on the interpolation techniques used. In mining instances, where volume estimations are based on the produced DTM, this can have a significant impact. For our data-set, the natural neighbour interpolation method made the best predictions (R2 = 0.969, β = 0.98, P < 0.0001).","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44853514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/2425/2023
A. McQuillan, N. Bar
Geotechnical models developed during the planning stages of open pit mines are three-dimensional so as to capture the spatial variation in lithological, structural, hydrogeological, and geomechanical conditions. Geological models that describe the lithological and structural (faulting and folding) characteristics of a deposit are always 3D. Likewise, boreholes and piezometers used to develop geomechanical properties and groundwater models are drilled at spatial offsets across the deposit to understand the lateral and vertical characteristics. Yet when geotechnical analysis is completed, often the three-dimensional geological, hydrogeological, and structural models as well as geometrically complex 3D mine designs for optimizing economic mineral recovery and overburden removal are simplified to two-dimensional sections. In this paper we demonstrate that this simplification can lead to the wrong failure mechanism being identified, analysed, and/or a conservative factor of safety being calculated and hence an over-estimation of slope stability. Through case studies we show how three-dimensional analysis methods are more suited to rock slopes, particularly those with anisotropic material strength, when singularities such as geological faults are present, and nonlinear slope geometry. When the same slopes are analysed in two dimensions, the failure mechanism calculated is often fundamentally incorrect. The case studies further reveal that the factor of safety calculated in three dimensions is not always higher than the two-dimensional factor of safety.
{"title":"The necessity of 3D analysis for open-pit rock slope stability studies: Theory and practice","authors":"A. McQuillan, N. Bar","doi":"10.17159/2411-9717/2425/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/2425/2023","url":null,"abstract":"Geotechnical models developed during the planning stages of open pit mines are three-dimensional so as to capture the spatial variation in lithological, structural, hydrogeological, and geomechanical conditions. Geological models that describe the lithological and structural (faulting and folding) characteristics of a deposit are always 3D. Likewise, boreholes and piezometers used to develop geomechanical properties and groundwater models are drilled at spatial offsets across the deposit to understand the lateral and vertical characteristics. Yet when geotechnical analysis is completed, often the three-dimensional geological, hydrogeological, and structural models as well as geometrically complex 3D mine designs for optimizing economic mineral recovery and overburden removal are simplified to two-dimensional sections. In this paper we demonstrate that this simplification can lead to the wrong failure mechanism being identified, analysed, and/or a conservative factor of safety being calculated and hence an over-estimation of slope stability. Through case studies we show how three-dimensional analysis methods are more suited to rock slopes, particularly those with anisotropic material strength, when singularities such as geological faults are present, and nonlinear slope geometry. When the same slopes are analysed in two dimensions, the failure mechanism calculated is often fundamentally incorrect. The case studies further reveal that the factor of safety calculated in three dimensions is not always higher than the two-dimensional factor of safety.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42116800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/2029/2023
F. Moradpouri, S. Ahmadi, R. Ghaedrahmati, K. Barani
As exploration is time-consuming, costly, and risky, determination of the erosion surface of a metalliferous deposit before geophysical surveying and exploration drilling might be very helpful. Geochemical haloes can be used to determine whether the erosion surface is supra-ore or sub-ore and thus reduce the risk of exploration operations. The aim of this investigation is to determine the erosion surface of the North ROK porphyry deposit (NRPD) in northwestern British Columbia in Canada using linear productivity (LP), which is the content of an element defining the halo multiplied by the width of the halo. A total of 2045 soil samples from the B horizon were analysed using ICP-MS for 36 elements, including Cu, Mo, Pb, Zn, Au, As, Ag, Ni, Co, Fe, and Mn. The data-set was snalysed to obtain the statistical parameters and the elements Cu, Mo, Pb, and Zn were chosen to calculate the linear productivity and the total linear productivity. These four elements were modelled using probability plots to identify and separate subpopulations in terms of anomalous haloes and background, including the threshold values of each subpopulation. The results of the probability plot modelling and thresholds values were then used to map the distribution of each element in a GIS to calculate the linear productivity. The total linear productivity indicated that the erosion surface is supra-ore. Finally, a 3D orebody model of the Cu, Mo, Pb, and Zn distributions was constructed using borehole data and used to validate the results.
{"title":"Determination of the erosion level of a porphyry copper deposit using soil geochemistry","authors":"F. Moradpouri, S. Ahmadi, R. Ghaedrahmati, K. Barani","doi":"10.17159/2411-9717/2029/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/2029/2023","url":null,"abstract":"As exploration is time-consuming, costly, and risky, determination of the erosion surface of a metalliferous deposit before geophysical surveying and exploration drilling might be very helpful. Geochemical haloes can be used to determine whether the erosion surface is supra-ore or sub-ore and thus reduce the risk of exploration operations. The aim of this investigation is to determine the erosion surface of the North ROK porphyry deposit (NRPD) in northwestern British Columbia in Canada using linear productivity (LP), which is the content of an element defining the halo multiplied by the width of the halo. A total of 2045 soil samples from the B horizon were analysed using ICP-MS for 36 elements, including Cu, Mo, Pb, Zn, Au, As, Ag, Ni, Co, Fe, and Mn. The data-set was snalysed to obtain the statistical parameters and the elements Cu, Mo, Pb, and Zn were chosen to calculate the linear productivity and the total linear productivity. These four elements were modelled using probability plots to identify and separate subpopulations in terms of anomalous haloes and background, including the threshold values of each subpopulation. The results of the probability plot modelling and thresholds values were then used to map the distribution of each element in a GIS to calculate the linear productivity. The total linear productivity indicated that the erosion surface is supra-ore. Finally, a 3D orebody model of the Cu, Mo, Pb, and Zn distributions was constructed using borehole data and used to validate the results.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48537348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-24DOI: 10.17159/2411-9717/2321/2023
S. Soqinase, J. Steenkamp, P. den Hoed, N. Wagner
In pyrometallurgical processes, metal oxides are reduced from molten slag through carbothermic reduction. It is of interest to evaluate the reactivity of the carbonaceous materials towards substances such as slag. Characterization techniques such as coal petrography can provide insight into the influence of feed coal properties and how they potentially dictate reductant performance. This study aimed to compare the petrographically determined organic composition of coal to reductant reactivity. Two South African medium-rank C bituminous coals and one anthracite sample were investigated together with high-carbon ferromanganese industrial slag. The reductant reactivity tests were conducted at 1500°C in a muffle furnace to assess the potential of carbonaceous reductant in reacting with the main slag components. SEM-EDS was applied to understand the extent of MnO (and to a lesser extent, SiO2) reduction from the slag. Coal 2, consisting of a greater proportion of vitrinite (59.5 vol% on a mineral matter-free basis and 54.7 vol% including mineral matter) was the most reactive reductant. The anthracite sample, with the highest inert maceral proportions (71.8 vol% including mineral matter and 76.8 vol% on a mineral matter-free basis), was the least reactive reductant.
{"title":"The effect of petrographically determined parameters on reductant reactivity in the production of high-carbon ferromanganese","authors":"S. Soqinase, J. Steenkamp, P. den Hoed, N. Wagner","doi":"10.17159/2411-9717/2321/2023","DOIUrl":"https://doi.org/10.17159/2411-9717/2321/2023","url":null,"abstract":"In pyrometallurgical processes, metal oxides are reduced from molten slag through carbothermic reduction. It is of interest to evaluate the reactivity of the carbonaceous materials towards substances such as slag. Characterization techniques such as coal petrography can provide insight into the influence of feed coal properties and how they potentially dictate reductant performance. This study aimed to compare the petrographically determined organic composition of coal to reductant reactivity. Two South African medium-rank C bituminous coals and one anthracite sample were investigated together with high-carbon ferromanganese industrial slag. The reductant reactivity tests were conducted at 1500°C in a muffle furnace to assess the potential of carbonaceous reductant in reacting with the main slag components. SEM-EDS was applied to understand the extent of MnO (and to a lesser extent, SiO2) reduction from the slag. Coal 2, consisting of a greater proportion of vitrinite (59.5 vol% on a mineral matter-free basis and 54.7 vol% including mineral matter) was the most reactive reductant. The anthracite sample, with the highest inert maceral proportions (71.8 vol% including mineral matter and 76.8 vol% on a mineral matter-free basis), was the least reactive reductant.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41445434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}