The preparation and characterization of laterally substituted 4-alkoxy-stilbazoles, 4-alkoxy-benzoic acids, and 4-alkoxy phenols and hydrogen bonded heterodimeric mixtures of these compounds are reported. Lateral substitution has a minimal effect on the ring electronics of 4-alkoxy benzoic acids and 4-alkoxy phenols; however the ring electronics of stilbazole units is extremely sensitive to lateral substitution. While lateral substitution is an effective technique for lowering the melting points of both hydrogen bonded complexes and their individual components, its effect on the electronics of stilbazoles and steric disruption of both intermolecular hydrogen bonding and molecular packing in the solid state disrupts the formation of liquid crystalline phases in both the individual components and hydrogen bonded complexes.
{"title":"Effect of Lateral Substitution on the Electronics and Phase Transitions of Stilbazoles, Benzoic Acids, Phenols, and Hydrogen Bonded Mixtures","authors":"J. R. Wolf","doi":"10.1155/2015/694729","DOIUrl":"https://doi.org/10.1155/2015/694729","url":null,"abstract":"The preparation and characterization of laterally substituted 4-alkoxy-stilbazoles, 4-alkoxy-benzoic acids, and 4-alkoxy phenols and hydrogen bonded heterodimeric mixtures of these compounds are reported. Lateral substitution has a minimal effect on the ring electronics of 4-alkoxy benzoic acids and 4-alkoxy phenols; however the ring electronics of stilbazole units is extremely sensitive to lateral substitution. While lateral substitution is an effective technique for lowering the melting points of both hydrogen bonded complexes and their individual components, its effect on the electronics of stilbazoles and steric disruption of both intermolecular hydrogen bonding and molecular packing in the solid state disrupts the formation of liquid crystalline phases in both the individual components and hydrogen bonded complexes.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"22 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85521376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study describes the feasibility of a novel adsorbent cum photocatalyst, poly(pyrrole-co-aniline)-coated TiO2/nanocellulose composite (P(Py-co-An)-TiO2/NCC), to remove eosin yellow (EY) from aqueous solutions. The removal of EY was investigated by batch adsorption followed by photocatalysis. The effect of various adsorption parameters like adsorbent dose, pH, contact time, initial concentration, and ionic strength has been optimized for treating effluents from the dye industry. Adsorption of EY reached maximum at pH 4.5 and complete removal of dye was achieved using 3.5 g/L of P(Py-co-An)-TiO2/NCC. Adsorption equilibrium data were fitted with Langmuir and Fritz-Schlunder isotherm models and the kinetics of adsorption follows a second-order mechanism. The adsorption capacity of P(Py-co-An)-TiO2/NCC was found to be 3.39 × 10−5 mol/g and reached equilibrium within 90 min. The photocatalytic degradation of adsorbed dye under sunlight was possible and about 92.3% of dye was degraded within 90 min. The reusability of P(Py-co-An)-TiO2/NCC was also investigated. The results indicate that P(Py-co-An)-TiO2/NCC is the best material for the wiping out of EY from aqueous solutions.
{"title":"Photocatalytic Degradation of Eosin Yellow Using Poly(pyrrole-co-aniline)-Coated TiO2/Nanocellulose Composite under Solar Light Irradiation","authors":"T. Anirudhan, S. R. Rejeena","doi":"10.1155/2015/636409","DOIUrl":"https://doi.org/10.1155/2015/636409","url":null,"abstract":"The present study describes the feasibility of a novel adsorbent cum photocatalyst, poly(pyrrole-co-aniline)-coated TiO2/nanocellulose composite (P(Py-co-An)-TiO2/NCC), to remove eosin yellow (EY) from aqueous solutions. The removal of EY was investigated by batch adsorption followed by photocatalysis. The effect of various adsorption parameters like adsorbent dose, pH, contact time, initial concentration, and ionic strength has been optimized for treating effluents from the dye industry. Adsorption of EY reached maximum at pH 4.5 and complete removal of dye was achieved using 3.5 g/L of P(Py-co-An)-TiO2/NCC. Adsorption equilibrium data were fitted with Langmuir and Fritz-Schlunder isotherm models and the kinetics of adsorption follows a second-order mechanism. The adsorption capacity of P(Py-co-An)-TiO2/NCC was found to be 3.39 × 10−5 mol/g and reached equilibrium within 90 min. The photocatalytic degradation of adsorbed dye under sunlight was possible and about 92.3% of dye was degraded within 90 min. The reusability of P(Py-co-An)-TiO2/NCC was also investigated. The results indicate that P(Py-co-An)-TiO2/NCC is the best material for the wiping out of EY from aqueous solutions.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"56 2 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83952147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srinivas Shenoy Heckadka, S. Nayak, Karan Narang, K. Pant
Polymer matrix composites are one of the materials being extensively researched and are gaining a lot of importance due to advantages like high specific strength, greater flexibility in design, and reduced cost of manufacturing. In this study, tensile, flexural, impact, and interlaminar shear strength of chopped strand/plain weave E-glass composites were considered. Composite laminates with different stacking sequence were fabricated using Vacuum Assisted Resin Infusion Moulding (VARIM) technique. Fiber volume fractions (FVF) of 22%, 26%, and 30% were adopted. Experiments were conducted in accordance with ASTM standards. Results indicate that laminates with three layers of plain weave mat exhibited better tensile, flexural, and interlaminar shear strength. However, laminates with two layers of chopped strand mat and one layer of plain weave mat showed improved impact resistance. In addition, scanning electron microscopy was used to analyze the fracture surface.
{"title":"Chopped Strand/Plain Weave E-Glass as Reinforcement in Vacuum Bagged Epoxy Composites","authors":"Srinivas Shenoy Heckadka, S. Nayak, Karan Narang, K. Pant","doi":"10.1155/2015/957043","DOIUrl":"https://doi.org/10.1155/2015/957043","url":null,"abstract":"Polymer matrix composites are one of the materials being extensively researched and are gaining a lot of importance due to advantages like high specific strength, greater flexibility in design, and reduced cost of manufacturing. In this study, tensile, flexural, impact, and interlaminar shear strength of chopped strand/plain weave E-glass composites were considered. Composite laminates with different stacking sequence were fabricated using Vacuum Assisted Resin Infusion Moulding (VARIM) technique. Fiber volume fractions (FVF) of 22%, 26%, and 30% were adopted. Experiments were conducted in accordance with ASTM standards. Results indicate that laminates with three layers of plain weave mat exhibited better tensile, flexural, and interlaminar shear strength. However, laminates with two layers of chopped strand mat and one layer of plain weave mat showed improved impact resistance. In addition, scanning electron microscopy was used to analyze the fracture surface.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"49 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2015-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82735421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on attempts to synthesize Mo nanoparticles under reducing conditions in ionic liquids (ILs). Ionic liquids were based on the 1-ethyl-3-methylimidazolium or 1-butyl-3-methylimidazolium (Emim and Bmim, resp.) cations and the dicyanamide N(CN)2, triflate (OTf), bis(trifluoromethylsulfonyl)imide-(NTf2), tetrafluoroborate (BF4), ethyl sulfate (ES), and methylsulfonate (MS) anions. (NH4)6Mo7O24∗4H2O and NaBH4 were reacted in a set of imidazolium ionic liquids (ILs) at 180°C to evaluate the potential of the ILs for stabilization of metallic Mo nanoparticles. XRD and TEM reveal a strong influence of the IL anion on the particle sizes, shapes, and crystal structures. The influence of the IL cation and the reaction temperature is much less pronounced.
{"title":"On the Synthesis of Molybdenum Nanoparticles under Reducing Conditions in Ionic Liquids","authors":"A. A. Ayi, C. A. Anyama, V. Khare, V. Khare","doi":"10.1155/2015/372716","DOIUrl":"https://doi.org/10.1155/2015/372716","url":null,"abstract":"We report on attempts to synthesize Mo nanoparticles under reducing conditions in ionic liquids (ILs). Ionic liquids were based on the 1-ethyl-3-methylimidazolium or 1-butyl-3-methylimidazolium (Emim and Bmim, resp.) cations and the dicyanamide N(CN)2, triflate (OTf), bis(trifluoromethylsulfonyl)imide-(NTf2), tetrafluoroborate (BF4), ethyl sulfate (ES), and methylsulfonate (MS) anions. (NH4)6Mo7O24∗4H2O and NaBH4 were reacted in a set of imidazolium ionic liquids (ILs) at 180°C to evaluate the potential of the ILs for stabilization of metallic Mo nanoparticles. XRD and TEM reveal a strong influence of the IL anion on the particle sizes, shapes, and crystal structures. The influence of the IL cation and the reaction temperature is much less pronounced.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"42 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76330127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear fusion reaction on the sun is the largest source of energy. In this paper, qualitative investigation of the numerical model of silicon germanium heterojunction solar cell is performed using MATLAB graphical user interface. The heterostructure is designed as for speculative determination of appropriate germanium mole fraction to get the maximized thin-film solar cell efficiency (ή). Other characteristics such as absorption coefficient (α), energy band gap (), reflectivity (r), open circuit voltage (), and generation rate are also considered. This user interface will reduce the complexity of solving differential equation for the analysis of silicon germanium heterojunction cell.
{"title":"MATLAB User Interface for Simulation of Silicon Germanium Solar Cell","authors":"A. Singh, Jahnvi Tiwari, Ashish Yadav, R. Jha","doi":"10.1155/2015/840718","DOIUrl":"https://doi.org/10.1155/2015/840718","url":null,"abstract":"Nuclear fusion reaction on the sun is the largest source of energy. In this paper, qualitative investigation of the numerical model of silicon germanium heterojunction solar cell is performed using MATLAB graphical user interface. The heterostructure is designed as for speculative determination of appropriate germanium mole fraction to get the maximized thin-film solar cell efficiency (ή). Other characteristics such as absorption coefficient (α), energy band gap (), reflectivity (r), open circuit voltage (), and generation rate are also considered. This user interface will reduce the complexity of solving differential equation for the analysis of silicon germanium heterojunction cell.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81890773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mujahid, A. Najeeb, A. Khan, T. Hussain, M. Raza, A. Shah, N. Iqbal, M. Ahmad
Molecular imprinted titania nanoparticles were developed for selective recognition of purines, for example, guanine and its final oxidation product uric acid. Titania nanoparticles were prepared by hydrolysis of titanium butoxide as precursor in the presence of pattern molecules. The morphology of synthesized nanoparticles is evaluated by SEM images. Recognition characteristics of imprinted titania nanoparticles are studied by exposing them to standard solution of guanine and uric acid, respectively. The resultant change in their concentration is determined by UV/Vis analysis that indicated imprinted titania nanoparticles possess high affinity for print molecules. In both cases, nonimprinted titania is taken as control to observe nonspecific binding interactions. Cross sensitivity studies suggested that imprinted titania is at least five times more selective for binding print molecules than competing analyte thus indicating its potential for bioassay of purines.
{"title":"Tailoring Imprinted Titania Nanoparticles for Purines Recognition","authors":"A. Mujahid, A. Najeeb, A. Khan, T. Hussain, M. Raza, A. Shah, N. Iqbal, M. Ahmad","doi":"10.1155/2015/903543","DOIUrl":"https://doi.org/10.1155/2015/903543","url":null,"abstract":"Molecular imprinted titania nanoparticles were developed for selective recognition of purines, for example, guanine and its final oxidation product uric acid. Titania nanoparticles were prepared by hydrolysis of titanium butoxide as precursor in the presence of pattern molecules. The morphology of synthesized nanoparticles is evaluated by SEM images. Recognition characteristics of imprinted titania nanoparticles are studied by exposing them to standard solution of guanine and uric acid, respectively. The resultant change in their concentration is determined by UV/Vis analysis that indicated imprinted titania nanoparticles possess high affinity for print molecules. In both cases, nonimprinted titania is taken as control to observe nonspecific binding interactions. Cross sensitivity studies suggested that imprinted titania is at least five times more selective for binding print molecules than competing analyte thus indicating its potential for bioassay of purines.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2015-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79592635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The single crystals were grown from preliminarily synthesized polycrystals by the method of chemical transport reactions in a closed volume with iodine used as a carrier. The influence of doping CdIn2S4 single crystals by gold (3 mol %) on their X-ray dosimetric parameters is studied. It is found that the X-ray sensitivity coefficients of crystals increase 6–8 times compared with undoped CdIn2S4 at effective radiation hardness keV and dose rate R/min. Moreover, the persistence of the crystal characteristics completely disappears and the supple voltage of a roentgen detector decreases threefold. The dependence of the steady X-ray-induced current in on the X-ray dose is described by linear law. The studied crystals have a rather high room-temperature X-ray sensitivity ( (A·min)/(R·V)) and are attractive as materials for X-ray detectors.
{"title":"Enhancing Roentgen Sensitivity of Gold-Doped CdIn2S4 Thiospinel for X-Ray Detection Applications","authors":"S. Mustafaeva, M. Asadov, D. T. Guseinov","doi":"10.1155/2015/956013","DOIUrl":"https://doi.org/10.1155/2015/956013","url":null,"abstract":"The single crystals were grown from preliminarily synthesized polycrystals by the method of chemical transport reactions in a closed volume with iodine used as a carrier. The influence of doping CdIn2S4 single crystals by gold (3 mol %) on their X-ray dosimetric parameters is studied. It is found that the X-ray sensitivity coefficients of crystals increase 6–8 times compared with undoped CdIn2S4 at effective radiation hardness keV and dose rate R/min. Moreover, the persistence of the crystal characteristics completely disappears and the supple voltage of a roentgen detector decreases threefold. The dependence of the steady X-ray-induced current in on the X-ray dose is described by linear law. The studied crystals have a rather high room-temperature X-ray sensitivity ( (A·min)/(R·V)) and are attractive as materials for X-ray detectors.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"308 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79610014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Goldsby, S. Raj, S. Guruswamy, Daniel David Azbill
First-principles methods were used to determine the magnetic state of a simulated cobalt-based binary alloy (Gd,Pr)Co17 along with its corresponding lattice parameters and density. The resulting composition was fabricated using two methods arc-melting and induction-melting and compared with the calculated values. The induction-melted samples showed greater homogeneity and successfully produced the R2Co17 structure. Calculated values qualitatively predict ferromagnetic behavior and lattice parameters to be within a low percent. The development of magnetic alloys with the assistance of computational methods promises faster development of new functional materials.
{"title":"First-Principle and Experimental Study of a Gadolinium-Praseodymium-Cobalt Pseudobinary Intermetallic Compound","authors":"J. Goldsby, S. Raj, S. Guruswamy, Daniel David Azbill","doi":"10.1155/2015/753612","DOIUrl":"https://doi.org/10.1155/2015/753612","url":null,"abstract":"First-principles methods were used to determine the magnetic state of a simulated cobalt-based binary alloy (Gd,Pr)Co17 along with its corresponding lattice parameters and density. The resulting composition was fabricated using two methods arc-melting and induction-melting and compared with the calculated values. The induction-melted samples showed greater homogeneity and successfully produced the R2Co17 structure. Calculated values qualitatively predict ferromagnetic behavior and lattice parameters to be within a low percent. The development of magnetic alloys with the assistance of computational methods promises faster development of new functional materials.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"31 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90326101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quang Trung Tran, H. T. Thu, V. Tran, T. Cuong, C. Hong
We found that inserting silver nanoparticles (AgNPs) between two layers of reduced grapheme oxide (rGO) has an effect on tailoring the work function of rGO. The utilization of rGO/AgNPs/rGO sandwich structure as the hole extraction layer in polymer solar cells is demonstrated. Solution-processable fabrication of this sandwich structure at the ITO/active layer interface facilitates the extraction of hole from active layer into ITO anode because of lowering the barrier level alignment at the interface. It results in an improvement of the short circuit current density and the overall photovoltaic performance.
{"title":"Solution-Processed rGO/AgNPs/rGO Sandwich Structure as a Hole Extraction Layer for Polymer Solar Cells","authors":"Quang Trung Tran, H. T. Thu, V. Tran, T. Cuong, C. Hong","doi":"10.1155/2015/652645","DOIUrl":"https://doi.org/10.1155/2015/652645","url":null,"abstract":"We found that inserting silver nanoparticles (AgNPs) between two layers of reduced grapheme oxide (rGO) has an effect on tailoring the work function of rGO. The utilization of rGO/AgNPs/rGO sandwich structure as the hole extraction layer in polymer solar cells is demonstrated. Solution-processable fabrication of this sandwich structure at the ITO/active layer interface facilitates the extraction of hole from active layer into ITO anode because of lowering the barrier level alignment at the interface. It results in an improvement of the short circuit current density and the overall photovoltaic performance.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"21 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78835436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanocomposites of polyethylene oxide (PEO) and polyvinylidene fluoride (PVDF) without and with low content of single and multiwalled carbon nanotubes (SWCNTs-MWCNTs) were prepared and studied by thermogravimetric analysis (TGA) using different heating rate. TGA results indicate that the thermal stability of neat PEO/PVDF blend was improved with both heating rate and incorporation of carbon nanotubes (CNTs). The degradation temperature for neat blend was lower than those of the nanocomposites after adding both SWCNTs and MWCNTs. As increase of heating rate, the onset of decomposition is irregularly moved to higher temperatures. This indicates that the thermal stability of the polymeric matrices has been improved after addition of CNTs. The residual weight of the samples left increased steadily with adding of both SWCNTs and MWCNTs. Kinetic thermodynamic parameters such as activation energy, enthalpy, entropy, and Gibbs free energy are evaluated from TGA data using Coats-Redfern model. The values of all parameters irregularly decrease with increasing of heating rate due to increasing of heating rate temperature, the random scission of macromolecule chain in the polymeric matrices predominates and the activation energy has a lower value.
{"title":"Thermal Spectroscopy and Kinetic Studies of PEO/PVDF Loaded by Carbon Nanotubes","authors":"L. Gaabour","doi":"10.1155/2015/824859","DOIUrl":"https://doi.org/10.1155/2015/824859","url":null,"abstract":"Nanocomposites of polyethylene oxide (PEO) and polyvinylidene fluoride (PVDF) without and with low content of single and multiwalled carbon nanotubes (SWCNTs-MWCNTs) were prepared and studied by thermogravimetric analysis (TGA) using different heating rate. TGA results indicate that the thermal stability of neat PEO/PVDF blend was improved with both heating rate and incorporation of carbon nanotubes (CNTs). The degradation temperature for neat blend was lower than those of the nanocomposites after adding both SWCNTs and MWCNTs. As increase of heating rate, the onset of decomposition is irregularly moved to higher temperatures. This indicates that the thermal stability of the polymeric matrices has been improved after addition of CNTs. The residual weight of the samples left increased steadily with adding of both SWCNTs and MWCNTs. Kinetic thermodynamic parameters such as activation energy, enthalpy, entropy, and Gibbs free energy are evaluated from TGA data using Coats-Redfern model. The values of all parameters irregularly decrease with increasing of heating rate due to increasing of heating rate temperature, the random scission of macromolecule chain in the polymeric matrices predominates and the activation energy has a lower value.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90241341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}