E3 ubiquitin ligases, crucial enzymes in the ubiquitination pathway, significantly influence the development of malignant tumors, including gastric cancer (GC), by regulating the stability of oncogenic and tumor-suppressive proteins. This study employed bioinformatics analysis of public databases alongside various experimental techniques-tissue arrays, real-time reverse-transcription polymerase chain reaction, western blot, immunofluorescence, and coimmunoprecipitation-to identify and explore the role of HECW1, a pivotal NEDD4 family E3 ubiquitin ligase, in GC progression. The results demonstrated that HECW1 is markedly overexpressed in GC tissues relative to normal gastric tissues, and its elevated expression correlates with poor prognosis in GC patients. In vitro experiments revealed that HECW1 overexpression significantly enhances the metastatic capabilities of GC cells. Mechanistically, HECW1 interacts with HIPK2 to facilitate its ubiquitination and degradation, thereby activating AKT and promoting the expression of downstream epithelial mesenchymal transition-related genes. In vivo experiments confirmed HECW1's role in promoting GC cell metastasis, highlighting the HECW1-HIPK2-AKT signaling axis as critical in GC metastasis. These findings not only elucidate a novel metastasis mechanism of GC but also suggest potential molecular targets for developing new therapeutic strategies against GC.
{"title":"HECW1-Mediated Ubiquitination of HIPK2 Drives Metastasis in Gastric Cancer Through the AKT Signaling Pathway.","authors":"Guangze Zhang, Weilong Qu, Xinkun Huang, Jianfeng Yi, Hanxu Gao, Jiancheng He, Wanjiang Xue","doi":"10.1016/j.labinv.2024.102202","DOIUrl":"10.1016/j.labinv.2024.102202","url":null,"abstract":"<p><p>E3 ubiquitin ligases, crucial enzymes in the ubiquitination pathway, significantly influence the development of malignant tumors, including gastric cancer (GC), by regulating the stability of oncogenic and tumor-suppressive proteins. This study employed bioinformatics analysis of public databases alongside various experimental techniques-tissue arrays, real-time reverse-transcription polymerase chain reaction, western blot, immunofluorescence, and coimmunoprecipitation-to identify and explore the role of HECW1, a pivotal NEDD4 family E3 ubiquitin ligase, in GC progression. The results demonstrated that HECW1 is markedly overexpressed in GC tissues relative to normal gastric tissues, and its elevated expression correlates with poor prognosis in GC patients. In vitro experiments revealed that HECW1 overexpression significantly enhances the metastatic capabilities of GC cells. Mechanistically, HECW1 interacts with HIPK2 to facilitate its ubiquitination and degradation, thereby activating AKT and promoting the expression of downstream epithelial mesenchymal transition-related genes. In vivo experiments confirmed HECW1's role in promoting GC cell metastasis, highlighting the HECW1-HIPK2-AKT signaling axis as critical in GC metastasis. These findings not only elucidate a novel metastasis mechanism of GC but also suggest potential molecular targets for developing new therapeutic strategies against GC.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102202"},"PeriodicalIF":5.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.labinv.2024.102199
Hua Xie, Zhongxian Zhu, Jiaqi Tang, Wei Zhu, Mengyan Zhu, Amy Wing Yi Wai, Junzhi Li, Zhongluan Wu, Paul Kwong Hang Tam, Vincent Chi Hang Lui, Weibing Tang
The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17). Morphologic, immunofluorescence, RNA-seq, and bioinformatic analyses were performed. Oxidative stress in human intrahepatic biliary epithelial cells transfected with a constitutively active YAP1 (YAPS127A) plasmid was assessed using quantitative reverse transcriptase-PCR and fluorescence-activated cell sorting analysis. PRDX1 expression in BA and experimental BA mouse model livers was examined by double immunofluorescence. The mRNA expression and nuclear localization of YAP1 in EpCAM-expressing bile duct cells were increased in the livers of BA and experimental BA mouse model. Aberrant development of intrahepatic organoids, differential expression of oxidative stress response genes Sod3 and Prdx1, enrichment of oxidative stress, and mitochondrial reactive oxidative stress-associated gene sets were observed in organoids treated with the Hippo-YAP1 activator, whereas organoid development was unaffected by the addition of the Hippo-YAP1 inhibitor. Transfection with constitutively active YAP1 led to the downregulation of PRDX1 and oxidative stress in human intrahepatic biliary epithelial cells. Additionally, reduced PRDX1 expression was also observed in the bile duct of human BA and experimental BA mouse livers. In conclusion, dysregulated activation of Hippo-YAP1 signaling induces oxidative stress and impairs the development of intrahepatic biliary organoids, which indicates therapeutic strategies targeting Hippo-YAP1 signaling may offer the potential to improve biliary repair and regeneration in patients with BA.
典型的Hippo-YAP1信号通路对肝脏的发育和再生至关重要,但它在胆道闭锁(BA)肝内胆管的修复和再生中的作用在很大程度上仍然未知。本研究采用定量反转录酶-PCR(qRT-PCR)和双重免疫荧光技术检测了YAP1在胆道闭锁患者肝组织和恒河猴轮状病毒(RRV)诱导的实验性胆道闭锁小鼠模型中的表达。生成小鼠 EpCAM 表达细胞衍生的肝脏器官组织,并用 Hippo-YAP1 通路激活剂(Xmu-mp-1 和 TRULI)或抑制剂(Peptide17)处理。研究人员进行了形态学、免疫荧光、RNA-seq和生物信息学分析。利用 qRT-PCR 和荧光激活细胞分选分析评估了转染了组成型活性 YAP1(YAPS127A)质粒的人肝内胆管上皮细胞(HiBECs)的氧化应激。通过双重免疫荧光检测了 BA 和实验性 BA 小鼠模型肝脏中 PRDX1 的表达。在 BA 和实验性 BA 小鼠模型肝脏中,表达 EpCAM 的胆管细胞中 YAP1 的 mRNA 表达和核定位增加。在使用Hippo-YAP1激活剂处理的器官组织中,观察到肝内器官组织发育异常、氧化应激反应基因Sod3和Prdx1的差异表达、氧化应激和线粒体反应性氧化应激(mito-ROS)相关基因组的富集,而加入Hippo-YAP1抑制剂后器官组织的发育不受影响。转染组成型活性 YAP1 会导致 PRDX1 下调和 HiBECs 中的氧化应激。此外,在人类 BA 和实验性 BA 小鼠肝脏的胆管中也观察到了 PRDX1 表达的降低。总之,Hippo-YAP1 信号的失调激活会诱导氧化应激并损害肝内胆道器官组织的发育,这表明针对 Hippo-YAP1 信号的治疗策略可能会改善 BA 患者的胆道修复和再生。
{"title":"Dysregulated Activation of Hippo-YAP1 Signaling Induces Oxidative Stress and Aberrant Development of Intrahepatic Biliary Cells in Biliary Atresia.","authors":"Hua Xie, Zhongxian Zhu, Jiaqi Tang, Wei Zhu, Mengyan Zhu, Amy Wing Yi Wai, Junzhi Li, Zhongluan Wu, Paul Kwong Hang Tam, Vincent Chi Hang Lui, Weibing Tang","doi":"10.1016/j.labinv.2024.102199","DOIUrl":"10.1016/j.labinv.2024.102199","url":null,"abstract":"<p><p>The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17). Morphologic, immunofluorescence, RNA-seq, and bioinformatic analyses were performed. Oxidative stress in human intrahepatic biliary epithelial cells transfected with a constitutively active YAP1 (YAPS127A) plasmid was assessed using quantitative reverse transcriptase-PCR and fluorescence-activated cell sorting analysis. PRDX1 expression in BA and experimental BA mouse model livers was examined by double immunofluorescence. The mRNA expression and nuclear localization of YAP1 in EpCAM-expressing bile duct cells were increased in the livers of BA and experimental BA mouse model. Aberrant development of intrahepatic organoids, differential expression of oxidative stress response genes Sod3 and Prdx1, enrichment of oxidative stress, and mitochondrial reactive oxidative stress-associated gene sets were observed in organoids treated with the Hippo-YAP1 activator, whereas organoid development was unaffected by the addition of the Hippo-YAP1 inhibitor. Transfection with constitutively active YAP1 led to the downregulation of PRDX1 and oxidative stress in human intrahepatic biliary epithelial cells. Additionally, reduced PRDX1 expression was also observed in the bile duct of human BA and experimental BA mouse livers. In conclusion, dysregulated activation of Hippo-YAP1 signaling induces oxidative stress and impairs the development of intrahepatic biliary organoids, which indicates therapeutic strategies targeting Hippo-YAP1 signaling may offer the potential to improve biliary repair and regeneration in patients with BA.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102199"},"PeriodicalIF":5.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Postoperative cognitive dysfunction (POCD) is a common complication with no effective treatment in elderly patients. POCD, Alzheimer disease (AD), and many other cognitive diseases mostly involve neurotoxic microglia response, and recently, β2-microglobulin (B2M) has been suggested to play a pivotal role. A novel pyromeconic acid-styrene hybrid compound D30 was synthesized by our team and shown to be safe and effective in some neurodegenerative mouse models. In this study, we evaluated D30 on POCD and its potential mechanism. Fourteen- to 18-month-old male C57BL/6 mice were used to establish POCD through isoflurane anesthesia and surgery. The plasma of elderly patients was collected pre- and postoperatively. Primary mouse microglia were subjected to various stimulations in multiple experimental designs to imitate in vivo POCD-like conditions. Morris water maze, fear conditioning, western blot, immunofluorescent staining, and blood-brain barrier (BBB) permeability tests were conducted in this study. D30 administration significantly improved learning and memory in aged mice following POCD. Neurotoxic M1 microglia cells were dramatically increased following POCD, manifested as morphologically changing into fewer and shorter branches, enlarged somatic areas, and upregulated expression of iNOS and C1q. Notably, following POCD, B2M was significantly upregulated in the plasma and the brain. D30 treatment significantly suppressed these pathologic changes, by inhibiting the POCD-induced BBB breakdown while suppressing the surge of plasma B2M levels. D30 treatment suppressed POCD-induced surge of B2M and Aβ plaques in the brain and preserved adult hippocampal neurogenesis vulnerable to POCD. Furthermore, postoperative levels of B2M were significantly elevated over the preoperative levels in patients aged 80 years and over. In parallel with mouse plasma after POCD, the postoperative patient plasma was also much more effective at activating M1 microglia. Of note, this POCD plasma-induced activation of M1 microglia was largely prevented by D30 treatment. Taken together, by inhibiting the surge of plasma B2M, protecting BBB integrity, and reducing inflammatory response, D30 protected aged mice from B2M-facilitated POCD.
{"title":"D30 Alleviates β2-Microglobulin-Facilitated Neurotoxic Microglial Responses in Isoflurane/Surgery-Induced Cognitive Dysfunction in Aged Mice.","authors":"Ping Chen, Wan-Lan Lin, Xue-Yan Liu, Si-Jun Li, Ruo-Fan Chen, Zhi-Hui Hu, Peng-Tao Lin, Mou-Hui Lin, Meng-Yu Shi, Wei Wu, Ying Wang, Qing-Song Lin, Zu-Cheng Ye","doi":"10.1016/j.labinv.2024.102190","DOIUrl":"10.1016/j.labinv.2024.102190","url":null,"abstract":"<p><p>Postoperative cognitive dysfunction (POCD) is a common complication with no effective treatment in elderly patients. POCD, Alzheimer disease (AD), and many other cognitive diseases mostly involve neurotoxic microglia response, and recently, β2-microglobulin (B2M) has been suggested to play a pivotal role. A novel pyromeconic acid-styrene hybrid compound D30 was synthesized by our team and shown to be safe and effective in some neurodegenerative mouse models. In this study, we evaluated D30 on POCD and its potential mechanism. Fourteen- to 18-month-old male C57BL/6 mice were used to establish POCD through isoflurane anesthesia and surgery. The plasma of elderly patients was collected pre- and postoperatively. Primary mouse microglia were subjected to various stimulations in multiple experimental designs to imitate in vivo POCD-like conditions. Morris water maze, fear conditioning, western blot, immunofluorescent staining, and blood-brain barrier (BBB) permeability tests were conducted in this study. D30 administration significantly improved learning and memory in aged mice following POCD. Neurotoxic M1 microglia cells were dramatically increased following POCD, manifested as morphologically changing into fewer and shorter branches, enlarged somatic areas, and upregulated expression of iNOS and C1q. Notably, following POCD, B2M was significantly upregulated in the plasma and the brain. D30 treatment significantly suppressed these pathologic changes, by inhibiting the POCD-induced BBB breakdown while suppressing the surge of plasma B2M levels. D30 treatment suppressed POCD-induced surge of B2M and Aβ plaques in the brain and preserved adult hippocampal neurogenesis vulnerable to POCD. Furthermore, postoperative levels of B2M were significantly elevated over the preoperative levels in patients aged 80 years and over. In parallel with mouse plasma after POCD, the postoperative patient plasma was also much more effective at activating M1 microglia. Of note, this POCD plasma-induced activation of M1 microglia was largely prevented by D30 treatment. Taken together, by inhibiting the surge of plasma B2M, protecting BBB integrity, and reducing inflammatory response, D30 protected aged mice from B2M-facilitated POCD.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102190"},"PeriodicalIF":5.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olfactory receptor neurons (ORNs) in the olfactory epithelium are characterized by high regenerative capacity even after birth, but the molecular mechanisms involved in ORN regeneration remain unclear. Complement component 3 (C3) has been shown to promote tissue regeneration, so we hypothesized that C3 activates innate immunity and also promotes the regeneration of ORNs. In this study, we investigate the role of C3 in ORN regeneration. We used C3 knockout (KO) and wild-type C57BL/6J mice in this study to examine the olfactory regeneration process for 42 days after methimazole-induced olfactory disorder. To compare the regeneration process after ORN damage between C3 KO and wild-type mice, we conducted olfactory behavioral tests and immunohistologic analysis and examined growth factors and inflammatory cell induction. C3 KO mice showed delayed olfactory recovery with lower olfactory epithelial thickness. In C3 KO mice, ORN maturation was delayed in association with increased accumulation of immature ORNs. In the normal ORN regeneration process, undesirable immature ORNs are produced and eliminated by apoptosis. C3 deficiency reduced neutrophils induced during ORN regeneration, suggesting the involvement of C3 in ORN regeneration through neutrophil-dependent elimination of undesired ORNs. C3 is therefore suggested to have promoted ORN regeneration by preventing the accumulation of immature ORNs. In addition, C3 may assist ORN maturation by participating in ORN axon selection such as synaptic pruning. Our results indicate that C3, which is activated during pathogen infection, also promotes recovery from ORN damage. These findings may lead to new therapeutic strategies for olfactory disorder.
{"title":"Complement Component 3 Promotes Regeneration of Olfactory Receptor Neurons.","authors":"Hiroki Kuwazoe, Hideki Sakatani, Masamitsu Kono, Shizuya Saika, Norimitsu Inoue, Muneki Hotomi","doi":"10.1016/j.labinv.2024.102200","DOIUrl":"10.1016/j.labinv.2024.102200","url":null,"abstract":"<p><p>Olfactory receptor neurons (ORNs) in the olfactory epithelium are characterized by high regenerative capacity even after birth, but the molecular mechanisms involved in ORN regeneration remain unclear. Complement component 3 (C3) has been shown to promote tissue regeneration, so we hypothesized that C3 activates innate immunity and also promotes the regeneration of ORNs. In this study, we investigate the role of C3 in ORN regeneration. We used C3 knockout (KO) and wild-type C57BL/6J mice in this study to examine the olfactory regeneration process for 42 days after methimazole-induced olfactory disorder. To compare the regeneration process after ORN damage between C3 KO and wild-type mice, we conducted olfactory behavioral tests and immunohistologic analysis and examined growth factors and inflammatory cell induction. C3 KO mice showed delayed olfactory recovery with lower olfactory epithelial thickness. In C3 KO mice, ORN maturation was delayed in association with increased accumulation of immature ORNs. In the normal ORN regeneration process, undesirable immature ORNs are produced and eliminated by apoptosis. C3 deficiency reduced neutrophils induced during ORN regeneration, suggesting the involvement of C3 in ORN regeneration through neutrophil-dependent elimination of undesired ORNs. C3 is therefore suggested to have promoted ORN regeneration by preventing the accumulation of immature ORNs. In addition, C3 may assist ORN maturation by participating in ORN axon selection such as synaptic pruning. Our results indicate that C3, which is activated during pathogen infection, also promotes recovery from ORN damage. These findings may lead to new therapeutic strategies for olfactory disorder.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102200"},"PeriodicalIF":5.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.labinv.2024.102189
Derya Demir, Kutsev Bengisu Ozyoruk, Yasin Durusoy, Ezgi Cinar, Gurdeniz Serin, Kayhan Basak, Emre Cagatay Kose, Malik Ergin, Murat Sezak, G Evren Keles, Sergulen Dervisoglu, Basak Doganavsargil Yakut, Yavuz Nuri Ertas, Feras Alaqad, Mehmet Turan
Hirschsprung disease, a congenital disease characterized by the absence of ganglion cells, presents significant surgical challenges. Addressing a critical gap in intraoperative diagnostics, we introduce transformative artificial intelligence approach that significantly enhances the detection of ganglion cells in frozen sections. The data set comprises 366 frozen and 302 formalin-fixed-paraffin-embedded hematoxylin and eosin-stained slides obtained from 164 patients from 3 centers. The ganglion cells were annotated on the whole-slide images (WSIs) using bounding boxes. Tissue regions within WSIs were segmented and split into patches of 2000 × 2000 pixels. A deep learning pipeline utilizing ResNet-50 model for feature extraction and gradient-weighted class activation mapping algorithm to generate heatmaps for ganglion cell localization was employed. The binary classification performance of the model was evaluated on independent test cohorts. In the multireader study, 10 pathologists assessed 50 frozen WSIs, with 25 slides containing ganglion cells, and 25 slides without. In the first phase of the study, pathologists evaluated the slides as a routine practice. After a 2-week washout period, pathologists re-evaluated the same WSIs along with the 4 patches with the highest probability of containing ganglion cells. The proposed deep learning approach achieved an accuracy of 91.3%, 92.8%, and 90.1% in detecting ganglion cells within WSIs in the test data set obtained from centers. In the reader study, on average, the pathologists' diagnostic accuracy increased from 77% to 85.8% with the model's heatmap support, whereas the diagnosis time decreased from an average of 139.7 to 70.5 seconds. Notably, when applied in real-world settings with a group of pathologists, our model's integration brought about substantial improvement in diagnosis precision and reduced the time required for diagnoses by half. This notable advance in artificial intelligence-driven diagnostics not only sets a new standard for surgical decision making in Hirschsprung disease but also creates opportunities for its wider implementation in various clinical settings, highlighting its pivotal role in enhancing the efficacy and accuracy of frozen sections analyses.
{"title":"The Future of Surgical Diagnostics: Artificial Intelligence-Enhanced Detection of Ganglion Cells for Hirschsprung Disease.","authors":"Derya Demir, Kutsev Bengisu Ozyoruk, Yasin Durusoy, Ezgi Cinar, Gurdeniz Serin, Kayhan Basak, Emre Cagatay Kose, Malik Ergin, Murat Sezak, G Evren Keles, Sergulen Dervisoglu, Basak Doganavsargil Yakut, Yavuz Nuri Ertas, Feras Alaqad, Mehmet Turan","doi":"10.1016/j.labinv.2024.102189","DOIUrl":"10.1016/j.labinv.2024.102189","url":null,"abstract":"<p><p>Hirschsprung disease, a congenital disease characterized by the absence of ganglion cells, presents significant surgical challenges. Addressing a critical gap in intraoperative diagnostics, we introduce transformative artificial intelligence approach that significantly enhances the detection of ganglion cells in frozen sections. The data set comprises 366 frozen and 302 formalin-fixed-paraffin-embedded hematoxylin and eosin-stained slides obtained from 164 patients from 3 centers. The ganglion cells were annotated on the whole-slide images (WSIs) using bounding boxes. Tissue regions within WSIs were segmented and split into patches of 2000 × 2000 pixels. A deep learning pipeline utilizing ResNet-50 model for feature extraction and gradient-weighted class activation mapping algorithm to generate heatmaps for ganglion cell localization was employed. The binary classification performance of the model was evaluated on independent test cohorts. In the multireader study, 10 pathologists assessed 50 frozen WSIs, with 25 slides containing ganglion cells, and 25 slides without. In the first phase of the study, pathologists evaluated the slides as a routine practice. After a 2-week washout period, pathologists re-evaluated the same WSIs along with the 4 patches with the highest probability of containing ganglion cells. The proposed deep learning approach achieved an accuracy of 91.3%, 92.8%, and 90.1% in detecting ganglion cells within WSIs in the test data set obtained from centers. In the reader study, on average, the pathologists' diagnostic accuracy increased from 77% to 85.8% with the model's heatmap support, whereas the diagnosis time decreased from an average of 139.7 to 70.5 seconds. Notably, when applied in real-world settings with a group of pathologists, our model's integration brought about substantial improvement in diagnosis precision and reduced the time required for diagnoses by half. This notable advance in artificial intelligence-driven diagnostics not only sets a new standard for surgical decision making in Hirschsprung disease but also creates opportunities for its wider implementation in various clinical settings, highlighting its pivotal role in enhancing the efficacy and accuracy of frozen sections analyses.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102189"},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.labinv.2024.102187
Lu Xia , Tao Xu , Yongsheng Zheng , Baohua Li , Yongfang Ao , Xun Li , Weijing Wu , Jiabian Lian
Lung squamous cell carcinoma (LUSC), a subtype of non–small cell lung cancer, represents a significant portion of lung cancer cases with distinct histologic patterns impacting prognosis and treatment. The current pathological assessment methods face limitations such as interobserver variability, necessitating more reliable techniques. This study seeks to predict lymph node metastasis in LUSC using deep learning models applied to histopathology images of primary tumors, offering a more accurate and objective method for diagnosis and prognosis. Whole slide images (WSIs) from the Outdo-LUSC and the cancer genome atlas cohorts were used to train and validate deep learning models. Multiinstance learning was applied, with patch-level predictions aggregated into WSI-level outcomes. The study employed the ResNet-18 network, transfer learning, and rigorous data preprocessing. To represent WSI features, innovative techniques like patch likelihood histogram and bag of words were used, followed by training of machine learning classifiers, including the ExtraTrees algorithm. The diagnostic model for lymph node metastasis showed strong performance, particularly using the ExtraTrees algorithm, as demonstrated by receiver operating characteristic curves and gradient-weighted class activation mapping visualizations. The signature generated by the ExtraTrees algorithm, named lymph node status-related in situ LUSC histopathology (LN_ISLUSCH), achieved an area under the curve of 0.941 (95% CI: 0.926-0.955) in the training set and 0.788 (95% CI: 0.748-0.827) in the test set. Kaplan-Meier analyses confirmed that the LN_ISLUSCH model was a significant prognostic factor (P = .02). This study underscores the potential of artificial intelligence in enhancing diagnostic precision in pathology. The LN_ISLUSCH model stands out as a promising tool for predicting lymph node metastasis and prognosis in LUSC. Future studies should focus on larger and more diverse cohorts and explore the integration of additional omics data to further refine predictive accuracy and clinical utility.
{"title":"Lymph Node Metastasis Prediction From In Situ Lung Squamous Cell Carcinoma Histopathology Images Using Deep Learning","authors":"Lu Xia , Tao Xu , Yongsheng Zheng , Baohua Li , Yongfang Ao , Xun Li , Weijing Wu , Jiabian Lian","doi":"10.1016/j.labinv.2024.102187","DOIUrl":"10.1016/j.labinv.2024.102187","url":null,"abstract":"<div><div>Lung squamous cell carcinoma (LUSC), a subtype of non–small cell lung cancer, represents a significant portion of lung cancer cases with distinct histologic patterns impacting prognosis and treatment. The current pathological assessment methods face limitations such as interobserver variability, necessitating more reliable techniques. This study seeks to predict lymph node metastasis in LUSC using deep learning models applied to histopathology images of primary tumors, offering a more accurate and objective method for diagnosis and prognosis. Whole slide images (WSIs) from the Outdo-LUSC and the cancer genome atlas cohorts were used to train and validate deep learning models. Multiinstance learning was applied, with patch-level predictions aggregated into WSI-level outcomes. The study employed the ResNet-18 network, transfer learning, and rigorous data preprocessing. To represent WSI features, innovative techniques like patch likelihood histogram and bag of words were used, followed by training of machine learning classifiers, including the ExtraTrees algorithm. The diagnostic model for lymph node metastasis showed strong performance, particularly using the ExtraTrees algorithm, as demonstrated by receiver operating characteristic curves and gradient-weighted class activation mapping visualizations. The signature generated by the ExtraTrees algorithm, named lymph node status-related in situ LUSC histopathology (LN_ISLUSCH), achieved an area under the curve of 0.941 (95% CI: 0.926-0.955) in the training set and 0.788 (95% CI: 0.748-0.827) in the test set. Kaplan-Meier analyses confirmed that the LN_ISLUSCH model was a significant prognostic factor (<em>P</em> = .02). This study underscores the potential of artificial intelligence in enhancing diagnostic precision in pathology. The LN_ISLUSCH model stands out as a promising tool for predicting lymph node metastasis and prognosis in LUSC. Future studies should focus on larger and more diverse cohorts and explore the integration of additional omics data to further refine predictive accuracy and clinical utility.</div></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"105 1","pages":"Article 102187"},"PeriodicalIF":5.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.labinv.2024.102183
John L McAfee, Tyler J Alban, Vladimir Makarov, Amit Rupani, Prerana B Parthasarathy, Zheng Tu, Shira Ronen, Steven D Billings, C Marcela Diaz, Timothy A Chan, Jennifer S Ko
Superficial malignant peripheral nerve sheath tumors (SF-MPNSTs) are rare cancers and can be difficult to distinguish from spindle cell (SCM) or desmoplastic (DM) melanomas. Their biology is poorly understood. We performed whole-exome sequencing and RNA sequencing (RNA-seq) on SF-MPNST (n = 8) and compared them with cases of SCM (n = 7), DM (n = 8), and deep MPNST (D-MPNST, n = 8). Immunohistochemical staining for H3K27me3 and PRAME was also performed. SF-MPNST demonstrated intermediate features between D-MPNST and melanoma. Patients were younger than those with melanoma and older than those with D-MPNST; the outcome was worse and better, respectively. SF-MPNST tumor mutational burden (TMB) was higher than D-MPNST and lower than melanoma; differences were significant only between SF-MPNST and SCM (P = .0454) and between D-MPNST and SCM (P = .001, Dunn's Kruskal-Wallis post hoc test). Despite having an overlapping mutational profile in some common cancer-associated genes, the COSMIC mutational signatures clustered DM and SCM together with UV light exposure signatures (SBS7a, 7b), and SF- and D-MPNST together with defective DNA base excision repair (SBS30, 36). RNA-seq revealed differentially expressed genes between SF-MPNST and SCM (1670 genes), DM (831 genes), and D-MPNST (614 genes), some of which hold promise for development as immunohistochemical markers (SOX8 and PLCH1) or aids (MLPH, CALB2, SOX11, and TBX4). H3K27me3 immunoreactivity was diffusely lost in most D-MPNSTs (7/8, 88%) but showed variable and patchy loss in SF-MPNSTs (2/8, 25%). PRAME was entirely negative in the majority (0+ in 20/31, 65%), including 11/15 melanomas, and showed no significant difference between groups (P = .105, Kruskal-Wallis test). Expression of immune cell transcripts was upregulated in melanomas relative to MPNSTs. Next-generation sequencing revealed multiple differential features between SF- MPNST, D-MPNST, SCM, and DM, including tumor mutation burden, mutational signatures, and differentially expressed genes. These findings help advance our understanding of disease pathogenesis and improve diagnostic modalities.
{"title":"Genomic Landscape of Superficial Malignant Peripheral Nerve Sheath Tumor.","authors":"John L McAfee, Tyler J Alban, Vladimir Makarov, Amit Rupani, Prerana B Parthasarathy, Zheng Tu, Shira Ronen, Steven D Billings, C Marcela Diaz, Timothy A Chan, Jennifer S Ko","doi":"10.1016/j.labinv.2024.102183","DOIUrl":"10.1016/j.labinv.2024.102183","url":null,"abstract":"<p><p>Superficial malignant peripheral nerve sheath tumors (SF-MPNSTs) are rare cancers and can be difficult to distinguish from spindle cell (SCM) or desmoplastic (DM) melanomas. Their biology is poorly understood. We performed whole-exome sequencing and RNA sequencing (RNA-seq) on SF-MPNST (n = 8) and compared them with cases of SCM (n = 7), DM (n = 8), and deep MPNST (D-MPNST, n = 8). Immunohistochemical staining for H3K27me3 and PRAME was also performed. SF-MPNST demonstrated intermediate features between D-MPNST and melanoma. Patients were younger than those with melanoma and older than those with D-MPNST; the outcome was worse and better, respectively. SF-MPNST tumor mutational burden (TMB) was higher than D-MPNST and lower than melanoma; differences were significant only between SF-MPNST and SCM (P = .0454) and between D-MPNST and SCM (P = .001, Dunn's Kruskal-Wallis post hoc test). Despite having an overlapping mutational profile in some common cancer-associated genes, the COSMIC mutational signatures clustered DM and SCM together with UV light exposure signatures (SBS7a, 7b), and SF- and D-MPNST together with defective DNA base excision repair (SBS30, 36). RNA-seq revealed differentially expressed genes between SF-MPNST and SCM (1670 genes), DM (831 genes), and D-MPNST (614 genes), some of which hold promise for development as immunohistochemical markers (SOX8 and PLCH1) or aids (MLPH, CALB2, SOX11, and TBX4). H3K27me3 immunoreactivity was diffusely lost in most D-MPNSTs (7/8, 88%) but showed variable and patchy loss in SF-MPNSTs (2/8, 25%). PRAME was entirely negative in the majority (0+ in 20/31, 65%), including 11/15 melanomas, and showed no significant difference between groups (P = .105, Kruskal-Wallis test). Expression of immune cell transcripts was upregulated in melanomas relative to MPNSTs. Next-generation sequencing revealed multiple differential features between SF- MPNST, D-MPNST, SCM, and DM, including tumor mutation burden, mutational signatures, and differentially expressed genes. These findings help advance our understanding of disease pathogenesis and improve diagnostic modalities.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102183"},"PeriodicalIF":5.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate whole-cell segmentation is essential in various biomedical applications, particularly in studying the tumor microenvironment. Despite advancements in machine learning for nuclei segmentation in hematoxylin and eosin (H&E)-stained images, there remains a need for effective whole-cell segmentation methods. This study aimed to develop a deep learning-based pipeline to automatically segment cells in H&E-stained tissues, thereby advancing the capabilities of pathological image analysis. The Cell Segmentation with Globally Optimized boundaries (CSGO) framework integrates nuclei and membrane segmentation algorithms, followed by postprocessing using an energy-based watershed method. Specifically, we used the You Only Look Once (YOLO) object detection algorithm for nuclei segmentation and U-Net for membrane segmentation. The membrane detection model was trained on a data set of 7 hepatocellular carcinomas and 11 normal liver tissue patches. The cell segmentation performance was extensively evaluated on 5 external data sets, including liver, lung, and oral disease cases. CSGO demonstrated superior performance over the state-of-the-art method Cellpose, achieving higher F1 scores ranging from 0.37 to 0.53 at an intersection over union threshold of 0.5 in 4 of the 5 external datasets, compared to that of Cellpose from 0.21 to 0.36. These results underscore the robustness and accuracy of our approach in various tissue types. A web-based application is available at https://ai.swmed.edu/projects/csgo, providing a user-friendly platform for researchers to apply our method to their own data sets. Our method exhibits remarkable versatility in whole-cell segmentation across diverse cancer subtypes, serving as an accurate and reliable tool to facilitate tumor microenvironment studies. The advancements presented in this study have the potential to significantly enhance the precision and efficiency of pathologic image analysis, contributing to better understanding and treatment of cancer.
{"title":"Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues.","authors":"Zifan Gu, Shidan Wang, Ruichen Rong, Zhuo Zhao, Fangjiang Wu, Qin Zhou, Zhuoyu Wen, Zhikai Chi, Yisheng Fang, Yan Peng, Liwei Jia, Mingyi Chen, Donghan M Yang, Yujin Hoshida, Yang Xie, Guanghua Xiao","doi":"10.1016/j.labinv.2024.102184","DOIUrl":"10.1016/j.labinv.2024.102184","url":null,"abstract":"<p><p>Accurate whole-cell segmentation is essential in various biomedical applications, particularly in studying the tumor microenvironment. Despite advancements in machine learning for nuclei segmentation in hematoxylin and eosin (H&E)-stained images, there remains a need for effective whole-cell segmentation methods. This study aimed to develop a deep learning-based pipeline to automatically segment cells in H&E-stained tissues, thereby advancing the capabilities of pathological image analysis. The Cell Segmentation with Globally Optimized boundaries (CSGO) framework integrates nuclei and membrane segmentation algorithms, followed by postprocessing using an energy-based watershed method. Specifically, we used the You Only Look Once (YOLO) object detection algorithm for nuclei segmentation and U-Net for membrane segmentation. The membrane detection model was trained on a data set of 7 hepatocellular carcinomas and 11 normal liver tissue patches. The cell segmentation performance was extensively evaluated on 5 external data sets, including liver, lung, and oral disease cases. CSGO demonstrated superior performance over the state-of-the-art method Cellpose, achieving higher F1 scores ranging from 0.37 to 0.53 at an intersection over union threshold of 0.5 in 4 of the 5 external datasets, compared to that of Cellpose from 0.21 to 0.36. These results underscore the robustness and accuracy of our approach in various tissue types. A web-based application is available at https://ai.swmed.edu/projects/csgo, providing a user-friendly platform for researchers to apply our method to their own data sets. Our method exhibits remarkable versatility in whole-cell segmentation across diverse cancer subtypes, serving as an accurate and reliable tool to facilitate tumor microenvironment studies. The advancements presented in this study have the potential to significantly enhance the precision and efficiency of pathologic image analysis, contributing to better understanding and treatment of cancer.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102184"},"PeriodicalIF":5.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.labinv.2024.102180
Taehwan Oh , YoungMin Woo , Green Kim , Bon-Sang Koo , Seung Ho Baek , Eun-Ha Hwang , You Jung An , Yujin Kim , Dong-Yeon Kim , Jung Joo Hong
Although lymph node structures may be compromised in severe SARS-CoV-2 infection, the extent and parameters of recovery in convalescing patients remain unclear. Therefore, this study aimed to elucidate the nuances of lymphoid structural recovery and their implications for immunologic memory in nonhuman primates infected with SARS-CoV-2. To do so, we utilized imaging-based spatial transcriptomics to delineate immune cell composition and tissue architecture formation in the lung-draining lymph nodes during primary infection, convalescence, and reinfection from COVID-19. We noted the establishment of a germinal center with memory B cell differentiation within lymphoid follicles during convalescence accompanied by contrasting transcriptome patterns indicative of the acquisition of follicular helper T cells versus the loss of regulatory T cells. Additionally, repopulation of germinal center-like B cells was observed in the medullary niche with accumulating plasma cells along with enhanced transcriptional expression of B cell-activating factor receptor over the course of reinfection. The spatial transcriptome atlas produced herein enhances our understanding of germinal center formation with immune cell dynamics during COVID-19 convalescence and lymphoid structural recovery with transcriptome dynamics following reinfection. These findings have the potential to inform the optimization of vaccine strategies and the development of precise therapeutic interventions in the spatial context.
虽然淋巴结结构在严重的 SARS-CoV-2 感染中可能受到损害,但康复期患者的恢复程度和参数仍不清楚。因此,本研究旨在阐明感染 SARS-CoV-2 的非人灵长类动物淋巴结构恢复的细微差别及其对免疫记忆的影响。为此,我们利用基于成像的空间转录组学来描述 COVID-19 在原发感染、康复和再感染期间肺部引流淋巴结的免疫细胞组成和组织结构形成。我们注意到,在康复期,淋巴滤泡内建立了具有记忆性 B 细胞分化的生殖中心,同时出现了表明滤泡辅助性 T 细胞获得与调节性 T 细胞丧失的对比转录组模式。此外,在髓质龛中还观察到了生殖中心样 B 细胞的重新增殖,浆细胞不断积累,B 细胞活化因子受体的转录表达在再感染过程中也得到了增强。本文绘制的空间转录组图谱增强了我们对COVID-19康复期生殖中心形成与免疫细胞动态以及再感染后淋巴结构恢复与转录组动态的了解。这些发现有可能为优化疫苗策略和开发精确的空间治疗干预措施提供信息。
{"title":"Spatiotemporal Cellular Dynamics of Germinal Center Reaction in Coronavirus Disease 2019 Lung-Draining Lymph Node Based on Imaging-Based Spatial Transcriptomics","authors":"Taehwan Oh , YoungMin Woo , Green Kim , Bon-Sang Koo , Seung Ho Baek , Eun-Ha Hwang , You Jung An , Yujin Kim , Dong-Yeon Kim , Jung Joo Hong","doi":"10.1016/j.labinv.2024.102180","DOIUrl":"10.1016/j.labinv.2024.102180","url":null,"abstract":"<div><div>Although lymph node structures may be compromised in severe SARS-CoV-2 infection, the extent and parameters of recovery in convalescing patients remain unclear. Therefore, this study aimed to elucidate the nuances of lymphoid structural recovery and their implications for immunologic memory in nonhuman primates infected with SARS-CoV-2. To do so, we utilized imaging-based spatial transcriptomics to delineate immune cell composition and tissue architecture formation in the lung-draining lymph nodes during primary infection, convalescence, and reinfection from COVID-19. We noted the establishment of a germinal center with memory B cell differentiation within lymphoid follicles during convalescence accompanied by contrasting transcriptome patterns indicative of the acquisition of follicular helper T cells versus the loss of regulatory T cells. Additionally, repopulation of germinal center-like B cells was observed in the medullary niche with accumulating plasma cells along with enhanced transcriptional expression of B cell-activating factor receptor over the course of reinfection. The spatial transcriptome atlas produced herein enhances our understanding of germinal center formation with immune cell dynamics during COVID-19 convalescence and lymphoid structural recovery with transcriptome dynamics following reinfection. These findings have the potential to inform the optimization of vaccine strategies and the development of precise therapeutic interventions in the spatial context.</div></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"105 1","pages":"Article 102180"},"PeriodicalIF":5.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.labinv.2024.102181
Pernille Heimdal Holm , Kristine Boisen Olsen , Richard Denis Maxime De Mets , Jytte Banner
Sudden death can be the first symptom of cardiac disease, and establishing a precise postmortem diagnosis is crucial for genetic testing and follow-up of relatives. Arrhythmogenic cardiomyopathy is a structural cardiomyopathy that can be challenging to diagnose postmortem because of differences in structural findings and propagation of the disease at the time of death. Cases can have minimal or no structural findings and later be diagnosed according to genotype, known as concealed cardiomyopathy. Postmortem diagnosis often lacks clinical information, whereas antemortem diagnosis is based on paraclinical investigations that cannot be performed after death. However, the entire substrate is available, which is unique to postmortem diagnosis and research and can provide valuable insights when adding new methods. Reactive changes in the heart, such as myocardial fibrosis and fat, are significant findings. The patterns of these changes in various diseases are not yet fully understood and may be limited by sampling material and conventional microscopic diagnostics. We demonstrate an automated pipeline in QuPath for quantifying postmortem picrosirius red cardiac tissue for collagen, residual myocardium, and adipocytes by integrating Cellpose into a versatile pipeline. This method was developed and tested using cardiac tissues from autopsied individuals. Cases diagnosed with arrhythmogenic cardiomyopathy and age-matched controls were used for validation and testing. This approach is free and easy to implement by other research groups using this paper as a template. This can potentially lead to the development of quantitative diagnostic criteria for postmortem cardiac diseases, eliminating the need to rely on diagnostic criteria from endomyocardial biopsies that are not applicable to postmortem specimens. We propose that this approach serves as a template for creating a more efficient process for evaluating postmortem cardiac measurements in an unbiased manner, particularly for rare cardiac diseases.
{"title":"Quantifying Cardiac Tissue Composition Using QuPath and Cellpose: An Accessible Approach to Postmortem Diagnosis","authors":"Pernille Heimdal Holm , Kristine Boisen Olsen , Richard Denis Maxime De Mets , Jytte Banner","doi":"10.1016/j.labinv.2024.102181","DOIUrl":"10.1016/j.labinv.2024.102181","url":null,"abstract":"<div><div>Sudden death can be the first symptom of cardiac disease, and establishing a precise postmortem diagnosis is crucial for genetic testing and follow-up of relatives. Arrhythmogenic cardiomyopathy is a structural cardiomyopathy that can be challenging to diagnose postmortem because of differences in structural findings and propagation of the disease at the time of death. Cases can have minimal or no structural findings and later be diagnosed according to genotype, known as concealed cardiomyopathy. Postmortem diagnosis often lacks clinical information, whereas antemortem diagnosis is based on paraclinical investigations that cannot be performed after death. However, the entire substrate is available, which is unique to postmortem diagnosis and research and can provide valuable insights when adding new methods. Reactive changes in the heart, such as myocardial fibrosis and fat, are significant findings. The patterns of these changes in various diseases are not yet fully understood and may be limited by sampling material and conventional microscopic diagnostics. We demonstrate an automated pipeline in QuPath for quantifying postmortem picrosirius red cardiac tissue for collagen, residual myocardium, and adipocytes by integrating Cellpose into a versatile pipeline. This method was developed and tested using cardiac tissues from autopsied individuals. Cases diagnosed with arrhythmogenic cardiomyopathy and age-matched controls were used for validation and testing. This approach is free and easy to implement by other research groups using this paper as a template. This can potentially lead to the development of quantitative diagnostic criteria for postmortem cardiac diseases, eliminating the need to rely on diagnostic criteria from endomyocardial biopsies that are not applicable to postmortem specimens. We propose that this approach serves as a template for creating a more efficient process for evaluating postmortem cardiac measurements in an unbiased manner, particularly for rare cardiac diseases.</div></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"105 1","pages":"Article 102181"},"PeriodicalIF":5.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}