Jessica G Borger, Rhea J Longley, Megan F Taylor, Ruben Motrich, Jennifer AE Payne, Roslyn A Kemp
The discourse surrounding gender equity has intensified recently, amplified by the impacts of the COVID-19 pandemic, highlighting the critical underrepresentation of women in leadership roles across various sectors including the media and healthcare. In medical research, this disparity is particularly pronounced, with women often excluded from senior positions despite their substantial presence in the workforce. This review seeks to explore the multifaceted issue of gender inequity in medical research leadership, examining the systemic barriers that women face, the socioeconomic factors that compound these challenges and the global variations in leadership representation of women. Diverse leadership teams are essential for fostering medical innovation, improving patient outcomes and ensuring that clinical trials and medical research are effective, inclusive and representative. The underrepresentation of women in leadership roles is not merely a matter of gender bias; it is intricately linked to socioeconomic factors that hinder their advancement. Women from lower socioeconomic backgrounds face additional obstacles, such as limited access to education and professional networks, which further exacerbate their underrepresentation in leadership positions. Moreover, cultural and societal norms play a significant role in shaping the career trajectories of women. As a group of immunologists, including representatives of the International Union of Immunological Sciences (IUIS) Gender Equity Committee, we review the causes of these inequities. We examine the impact of gender-diverse leadership on pre-clinical and medical research, emphasizing the need for inclusive leadership to drive progress in medical research and resulting healthcare. Finally, the review proposes strategies for improving gender equity in medical research leadership, including policy changes, organizational initiatives and societal shifts. By addressing these critical issues, this review contributes to the ongoing efforts to promote gender equity in medical research, ultimately enhancing the quality and inclusiveness of scientific inquiry and its impact on healthcare delivery.
{"title":"Global perspectives to enhance strategies for advancing women in healthcare and STEMM leadership","authors":"Jessica G Borger, Rhea J Longley, Megan F Taylor, Ruben Motrich, Jennifer AE Payne, Roslyn A Kemp","doi":"10.1111/imcb.12854","DOIUrl":"10.1111/imcb.12854","url":null,"abstract":"<p>The discourse surrounding gender equity has intensified recently, amplified by the impacts of the COVID-19 pandemic, highlighting the critical underrepresentation of women in leadership roles across various sectors including the media and healthcare. In medical research, this disparity is particularly pronounced, with women often excluded from senior positions despite their substantial presence in the workforce. This review seeks to explore the multifaceted issue of gender inequity in medical research leadership, examining the systemic barriers that women face, the socioeconomic factors that compound these challenges and the global variations in leadership representation of women. Diverse leadership teams are essential for fostering medical innovation, improving patient outcomes and ensuring that clinical trials and medical research are effective, inclusive and representative. The underrepresentation of women in leadership roles is not merely a matter of gender bias; it is intricately linked to socioeconomic factors that hinder their advancement. Women from lower socioeconomic backgrounds face additional obstacles, such as limited access to education and professional networks, which further exacerbate their underrepresentation in leadership positions. Moreover, cultural and societal norms play a significant role in shaping the career trajectories of women. As a group of immunologists, including representatives of the International Union of Immunological Sciences (IUIS) Gender Equity Committee, we review the causes of these inequities. We examine the impact of gender-diverse leadership on pre-clinical and medical research, emphasizing the need for inclusive leadership to drive progress in medical research and resulting healthcare. Finally, the review proposes strategies for improving gender equity in medical research leadership, including policy changes, organizational initiatives and societal shifts. By addressing these critical issues, this review contributes to the ongoing efforts to promote gender equity in medical research, ultimately enhancing the quality and inclusiveness of scientific inquiry and its impact on healthcare delivery.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"234-250"},"PeriodicalIF":3.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12854","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we discuss a recent study, where autosomal monoallelic expression of genes underlying Inborn Errors of Immunity were investigated. About 2-10% of genes are predominantly transcribed from a single allele leading to autosomal random monoallelic expression (I). If this is skewed in a cell population from an individual with an autosomal dominant inborn error of immunity, this can lead to a mild to no phenotype (incomplete penetrance) if the wildtype allele is favored (II), or to more severe disease presentation if the variant allele is favored (III).
{"title":"A potential role for monoallelic expression in penetrance of autosomal dominant inborn errors of immunity","authors":"Emily SJ Edwards, Menno C van Zelm","doi":"10.1111/imcb.12856","DOIUrl":"10.1111/imcb.12856","url":null,"abstract":"<p>In this article, we discuss a recent study, where autosomal monoallelic expression of genes underlying Inborn Errors of Immunity were investigated. About 2-10% of genes are predominantly transcribed from a single allele leading to autosomal random monoallelic expression (I). If this is skewed in a cell population from an individual with an autosomal dominant inborn error of immunity, this can lead to a mild to no phenotype (incomplete penetrance) if the wildtype allele is favored (II), or to more severe disease presentation if the variant allele is favored (III).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 4","pages":"333-336"},"PeriodicalIF":3.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we discuss a recent article by Jia et al., where high OLAH expression was detected in severe and fatal respiratory disease which was associated with a number of processes and responses. These include high abundance of oleic acid, excessive cytokine release, high viral titres and lipid droplets and increased presence of lung-associated innate cells.
{"title":"Increased fatty acid production and macrophage-driven inflammation as key drivers of severe respiratory disease","authors":"Emily M Eriksson, Ivo Mueller","doi":"10.1111/imcb.12852","DOIUrl":"https://doi.org/10.1111/imcb.12852","url":null,"abstract":"<p>In this article, we discuss a recent article by Jia <i>et al.</i>, where high <i>OLAH</i> expression was detected in severe and fatal respiratory disease which was associated with a number of processes and responses. These include high abundance of oleic acid, excessive cytokine release, high viral titres and lipid droplets and increased presence of lung-associated innate cells.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"224-227"},"PeriodicalIF":3.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12852","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indrani Nayak, Rosalba Biondo, William C Stewart, Rebecca J Fulton, Nina Möker, Congcong Zhang, Salim I Khakoo, Jayajit Das
Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with mathematical modeling using feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy of activated STATs and NF-κB transcription factors between priming and post-priming phases. The use of IL-21 in solution in the priming of NK cell culture resulted in an improved NK cell proliferation, without compromising cytotoxicity potential or interferon gamma secretion against hepatocellular carcinoma cell lines. Our work provides an integrative framework for interrogating NK cell proliferation and activation for cancer immunotherapy.
自然杀伤(NK)细胞是新兴的癌症治疗药物。有几种不同的细胞因子可用于产生NK细胞,用于采纳性免疫疗法,包括溶液中的白细胞介素(IL)-2、IL-12、IL-15和IL-18,以及膜结合的IL-21。这些细胞因子通过信号转导和转录激活因子(STAT)与核因子-卡巴B(NF-κB)途径的整合来驱动NK细胞的活化,这两种途径会重叠并产生协同作用,因此预测细胞因子的最佳增殖和细胞毒性组合具有挑战性。我们将多种细胞因子组合培养的 NK 细胞的功能测试与使用特征选择和机理回归模型的数学建模相结合。我们的回归模型成功预测了不同细胞因子组合的 NK 细胞增殖情况,并显示了激活的 STAT 和 NF-κB 转录因子在引物阶段和引物后阶段之间的协同作用。在 NK 细胞培养的启动阶段使用溶液中的 IL-21 可改善 NK 细胞的增殖,同时不影响细胞毒性潜力或针对肝细胞癌细胞系的伽马干扰素分泌。我们的工作提供了一个综合框架,可用于研究癌症免疫疗法中的 NK 细胞增殖和活化。
{"title":"Modeling the response to interleukin-21 to inform natural killer cell immunotherapy","authors":"Indrani Nayak, Rosalba Biondo, William C Stewart, Rebecca J Fulton, Nina Möker, Congcong Zhang, Salim I Khakoo, Jayajit Das","doi":"10.1111/imcb.12848","DOIUrl":"10.1111/imcb.12848","url":null,"abstract":"<p>Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with mathematical modeling using feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy of activated STATs and NF-κB transcription factors between priming and post-priming phases. The use of IL-21 in solution in the priming of NK cell culture resulted in an improved NK cell proliferation, without compromising cytotoxicity potential or interferon gamma secretion against hepatocellular carcinoma cell lines. Our work provides an integrative framework for interrogating NK cell proliferation and activation for cancer immunotherapy.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 2","pages":"192-212"},"PeriodicalIF":3.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaja Karaś, Joanna Pastwińska, Anna Sałkowska, Iwona Karwaciak, Rafał A Bachorz, Marcin Ratajewski
AT7519, which inhibits multiple cyclin-dependent kinases, has been extensively investigated in various types of cancer cells. Previous studies have demonstrated the ability of this molecule to suppress the expression of the nuclear receptor retinoic acid–related orphan receptor gamma (RORγ) and several genes involved in hepatocellular carcinoma progression. In this study, we identified a distinct agonistic effect of AT7519 on RORγt, an isoform expressed by various immune cells, including T helper 17 lymphocytes. These immune cells play pivotal roles in shaping the tumor microenvironment and promoting the anticancer response of the immune system. After exposure to AT7519 during differentiation, primary human CD4+ T cells presented increased expression of IL17A/F, IFNG and GZMB and decreased expression of PDCD1 and CTLA4. These findings elucidate a previously unrecognized facet of AT7519 activity and suggest the potential incorporation of this molecule into immune therapies to augment the effectiveness of diverse anticancer strategies involving anti–programmed cell death protein 1 (anti–PD-1) and anti–cytotoxic T-lymphocyte antigen 4 (anti–CTLA4) regimens.
{"title":"The cyclin-dependent kinase inhibitor AT7519 is a human RORγt agonist","authors":"Kaja Karaś, Joanna Pastwińska, Anna Sałkowska, Iwona Karwaciak, Rafał A Bachorz, Marcin Ratajewski","doi":"10.1111/imcb.12851","DOIUrl":"10.1111/imcb.12851","url":null,"abstract":"<p>AT7519, which inhibits multiple cyclin-dependent kinases, has been extensively investigated in various types of cancer cells. Previous studies have demonstrated the ability of this molecule to suppress the expression of the nuclear receptor retinoic acid–related orphan receptor gamma (RORγ) and several genes involved in hepatocellular carcinoma progression. In this study, we identified a distinct agonistic effect of AT7519 on RORγt, an isoform expressed by various immune cells, including T helper 17 lymphocytes. These immune cells play pivotal roles in shaping the tumor microenvironment and promoting the anticancer response of the immune system. After exposure to AT7519 during differentiation, primary human CD4<sup>+</sup> T cells presented increased expression of <i>IL17A/F</i>, <i>IFNG</i> and <i>GZMB</i> and decreased expression of <i>PDCD1</i> and <i>CTLA4</i>. These findings elucidate a previously unrecognized facet of AT7519 activity and suggest the potential incorporation of this molecule into immune therapies to augment the effectiveness of diverse anticancer strategies involving anti–programmed cell death protein 1 (anti–PD-1) and anti–cytotoxic T-lymphocyte antigen 4 (anti–<i>CTLA4</i>) regimens.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"317-327"},"PeriodicalIF":3.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Correction to: Immunology & Cell Biology 2024; https://doi.10.1111/imcb.12826
The name of one of the authors is incorrect. Ning Ming should be Ning Meng. The correct spelling of this author's name appears in the title above.
{"title":"ADAM10 modulates the efficacy of T-cell mediated therapy in solid tumors","authors":"Ahmed ME Abdalla, Yu Miao, Ning Meng, Chenxi Ouyang","doi":"10.1111/imcb.12855","DOIUrl":"10.1111/imcb.12855","url":null,"abstract":"<p><i>Immunology & Cell Biology</i> 2025; <b>103</b>: 213; https://doi.org/10.1111/imcb.12855</p><p>Correction to: <i>Immunology & Cell Biology</i> 2024; https://doi.10.1111/imcb.12826</p><p>The name of one of the authors is incorrect. Ning Ming should be Ning Meng. The correct spelling of this author's name appears in the title above.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 2","pages":"213"},"PeriodicalIF":3.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).
{"title":"An X-tra role for NFκB in gene regulation?","authors":"Sara Berent, Rhys S Allan","doi":"10.1111/imcb.12850","DOIUrl":"10.1111/imcb.12850","url":null,"abstract":"<p>In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"220-223"},"PeriodicalIF":3.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12850","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Penny Hawkins, James Dooley, Jessica Rodda, Colin Gilbert
This report presents findings from a group of UK-based researchers with expertise in the use of animal models for bone marrow ablation and reconstitution. The primary aim is to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Bone marrow ablation and reconstitution procedures are performed for a number of different purposes and conducted predominantly in mice. These procedures can induce significant suffering, classified as "severe", Category E or Category D/E under European, US and Canadian legislation, respectively. Although severity categorization is not mandated in countries such as Australia and New Zealand, legislation still requires that the level of animal suffering must be minimized to the greatest extent possible. This report identifies specific animal welfare issues and proposes practical measures aimed at reducing both animal use and suffering.
{"title":"Refining bone marrow ablation and reconstitution in mice","authors":"Penny Hawkins, James Dooley, Jessica Rodda, Colin Gilbert","doi":"10.1111/imcb.12847","DOIUrl":"10.1111/imcb.12847","url":null,"abstract":"<p>This report presents findings from a group of UK-based researchers with expertise in the use of animal models for bone marrow ablation and reconstitution. The primary aim is to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Bone marrow ablation and reconstitution procedures are performed for a number of different purposes and conducted predominantly in mice. These procedures can induce significant suffering, classified as \"severe\", Category E or Category D/E under European, US and Canadian legislation, respectively. Although severity categorization is not mandated in countries such as Australia and New Zealand, legislation still requires that the level of animal suffering must be minimized to the greatest extent possible. This report identifies specific animal welfare issues and proposes practical measures aimed at reducing both animal use and suffering.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"293-306"},"PeriodicalIF":3.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pursuing an international scientific career is a fantastic opportunity for personal and professional growth, but it also poses unique challenges, which can be particularly daunting for researchers coming from resource-limited countries. Drawing from personal experience, this article provides insights into navigating the transition to working abroad in academia and developing a sustainable career while integrating into a new culture. From predeparture preparations to achieving career independence, I discuss practical aspects of crafting tailored applications to contact potential advisers, contemplating visa-related challenges, establishing collaborations and emphasizing the value of finding appropriate mentorship to help you adapt to new cultural and professional environments. The article also underscores the importance of resilience, adaptability and redefining career success as a dynamic, nonlinear process. I present an original perspective on career planning, inspired by maritime voyage planning, to address the complexities of balancing personal and professional life, particularly during transitional periods. This approach, which combines four key stages of planning, namely, appraisal, planning, execution and monitoring, serves as a model for early-career researchers to navigate the unpredictable tides of academic work and personal life abroad with the goal of sustaining progress and well-being. These reflections aim to empower scientists preparing for or adapting to international research environments, fostering resilience and adaptability for long-term success abroad.
{"title":"Learnings from ten years away from “home” as a South American immunologist in Ireland","authors":"Natalia Muñoz-Wolf","doi":"10.1111/imcb.12849","DOIUrl":"10.1111/imcb.12849","url":null,"abstract":"<p>Pursuing an international scientific career is a fantastic opportunity for personal and professional growth, but it also poses unique challenges, which can be particularly daunting for researchers coming from resource-limited countries. Drawing from personal experience, this article provides insights into navigating the transition to working abroad in academia and developing a sustainable career while integrating into a new culture. From predeparture preparations to achieving career independence, I discuss practical aspects of crafting tailored applications to contact potential advisers, contemplating visa-related challenges, establishing collaborations and emphasizing the value of finding appropriate mentorship to help you adapt to new cultural and professional environments. The article also underscores the importance of resilience, adaptability and redefining career success as a dynamic, nonlinear process. I present an original perspective on career planning, inspired by maritime voyage planning, to address the complexities of balancing personal and professional life, particularly during transitional periods. This approach, which combines four key stages of planning, namely, appraisal, planning, execution and monitoring, serves as a model for early-career researchers to navigate the unpredictable tides of academic work and personal life abroad with the goal of sustaining progress and well-being. These reflections aim to empower scientists preparing for or adapting to international research environments, fostering resilience and adaptability for long-term success abroad.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 3","pages":"270-274"},"PeriodicalIF":3.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12849","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>In this exceptionally elegant and far-reaching study, the Arpaia lab at Columbia University engineer a probiotic <i>Escherichia coli</i> strain to eliminate cancer.<span><sup>1</sup></span></p><p>Working in two mouse models of cancer, CT26 colorectal cancer and B16F10 melanoma, Redenti <i>et al</i>.<span><sup>1</sup></span> start by identifying cancer-specific sequences. From these, they choose peptides containing (linked) MHCI and MHC II epitopes (about 25–30 amino acids long). They find that encoding a series of these in a plasmid, concatenated, but separated by five glycine-serine repeats, provides good expression of the neoantigens by <i>E. coli</i>.</p><p>They then turned to engineering EcN, a strain of <i>E. coli</i> isolated by Professor Alfred Nissle in 1917 from a young soldier resistant to infectious diarrhea.<span><sup>2</sup></span> Nissle marketed his discovery as a probiotic (Mutaflor®, still commercially available). Thus, Redenti <i>et al</i>. start with a safe, non-pathogenic <i>E. coli</i>, already extensively studied and widely used in humans (albeit orally).</p><p>Finding that their neoantigen plasmids express better in <i>E. coli</i> BL21 than in EcN, they set about modifying EcN to resemble BL21. Curing EcN of cryptic plasmids allows increased expression of the neoantigen-encoding plasmid. They then engineer deletions of two proteases: OmpT, which has roles in biofilm formation and the degradation of complement; and Lon which has pleiotropic roles within the bacterial cell, including oxygen-sensing.<span><sup>3</sup></span> Hence, deleting these proteases, not only reduced degradation of the neoantigen peptides, but also attenuates EcN. Although not discussed by the authors, deletion of the Lon protease may impede the survival of EcN in normal tissues more than in the anoxic core of the tumor, further reducing potential off-target effects. Overall, the authors show that their engineered EcN bacteria show an 80-fold increase in expression of the neoantigen peptides compared with the original EcN, and a 1000-fold increased susceptibility to phagocytosis and clearance from the blood.</p><p>In another stroke of genius, the authors next insert the gene for Listeriolysin O (LLO), a pore-forming protein which allows <i>Listeria</i> to escape into the cytosol after phagocytosis. This has two benefits: improved loading of neoantigen epitopes on MHC class I, and skewing towards a T<sub>H</sub>1 immune response after the sensing of intracytoplasmic bacteria.</p><p>The authors then turn to <i>in vivo</i> experiments to test their neoantigen-expressing, cryptic-plasmid cured, OmpT<sup>−</sup>, Lon<sup>−</sup>, LLO<sup>+</sup> EcN.</p><p>In both of the tumor models, EcN injected i.v. could consistently be cultured from tumors (3–4 days after injection), but could not be cultured from any of the other tissues tested, including the tumor-draining lymph node (TdLN). Despite this, i.v. injection of the EcN bacteria in the CT26 model was sho
{"title":"Tumor-seeking bacterial missiles","authors":"George Cavic, Aude M Fahrer","doi":"10.1111/imcb.12844","DOIUrl":"10.1111/imcb.12844","url":null,"abstract":"<p>In this exceptionally elegant and far-reaching study, the Arpaia lab at Columbia University engineer a probiotic <i>Escherichia coli</i> strain to eliminate cancer.<span><sup>1</sup></span></p><p>Working in two mouse models of cancer, CT26 colorectal cancer and B16F10 melanoma, Redenti <i>et al</i>.<span><sup>1</sup></span> start by identifying cancer-specific sequences. From these, they choose peptides containing (linked) MHCI and MHC II epitopes (about 25–30 amino acids long). They find that encoding a series of these in a plasmid, concatenated, but separated by five glycine-serine repeats, provides good expression of the neoantigens by <i>E. coli</i>.</p><p>They then turned to engineering EcN, a strain of <i>E. coli</i> isolated by Professor Alfred Nissle in 1917 from a young soldier resistant to infectious diarrhea.<span><sup>2</sup></span> Nissle marketed his discovery as a probiotic (Mutaflor®, still commercially available). Thus, Redenti <i>et al</i>. start with a safe, non-pathogenic <i>E. coli</i>, already extensively studied and widely used in humans (albeit orally).</p><p>Finding that their neoantigen plasmids express better in <i>E. coli</i> BL21 than in EcN, they set about modifying EcN to resemble BL21. Curing EcN of cryptic plasmids allows increased expression of the neoantigen-encoding plasmid. They then engineer deletions of two proteases: OmpT, which has roles in biofilm formation and the degradation of complement; and Lon which has pleiotropic roles within the bacterial cell, including oxygen-sensing.<span><sup>3</sup></span> Hence, deleting these proteases, not only reduced degradation of the neoantigen peptides, but also attenuates EcN. Although not discussed by the authors, deletion of the Lon protease may impede the survival of EcN in normal tissues more than in the anoxic core of the tumor, further reducing potential off-target effects. Overall, the authors show that their engineered EcN bacteria show an 80-fold increase in expression of the neoantigen peptides compared with the original EcN, and a 1000-fold increased susceptibility to phagocytosis and clearance from the blood.</p><p>In another stroke of genius, the authors next insert the gene for Listeriolysin O (LLO), a pore-forming protein which allows <i>Listeria</i> to escape into the cytosol after phagocytosis. This has two benefits: improved loading of neoantigen epitopes on MHC class I, and skewing towards a T<sub>H</sub>1 immune response after the sensing of intracytoplasmic bacteria.</p><p>The authors then turn to <i>in vivo</i> experiments to test their neoantigen-expressing, cryptic-plasmid cured, OmpT<sup>−</sup>, Lon<sup>−</sup>, LLO<sup>+</sup> EcN.</p><p>In both of the tumor models, EcN injected i.v. could consistently be cultured from tumors (3–4 days after injection), but could not be cultured from any of the other tissues tested, including the tumor-draining lymph node (TdLN). Despite this, i.v. injection of the EcN bacteria in the CT26 model was sho","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 2","pages":"98-100"},"PeriodicalIF":3.2,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}