首页 > 最新文献

Immunology & Cell Biology最新文献

英文 中文
The multiple roles of macrophages in peritoneal adhesion 巨噬细胞在腹膜粘连中的多重作用
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-29 DOI: 10.1111/imcb.12831
Shangwei Yang, Yanhe Zheng, Zhenjun Pu, Hongyu Nian, Junliang Li

Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.

腹膜粘连(PA)是指腹盆腔手术、腹腔感染或腹膜炎症引起的腹膜与腹膜本身或与组织器官的异常粘连。PA 与多种临床并发症有关,如腹痛和腹胀、肠梗阻、胃肠功能紊乱和女性不孕,并对患者的生活质量产生不利影响。巨噬细胞对 PA 的形成至关重要,可极化为经典活化巨噬细胞(M1)和另类活化巨噬细胞(M2),后者受腹膜微环境的影响。M1 巨噬细胞通过释放促炎细胞因子和活性氧,促进腹膜炎症反应和粘连的形成。相反,M2 巨噬细胞分泌抗炎细胞因子和生长因子,抑制 PA 的形成,促进腹膜组织的修复和愈合,从而发挥重要的抗炎作用。本综述全面探讨了巨噬细胞及其亚型在 PA 形成过程中的功能和机制,从而深入了解基于巨噬细胞调节的 PA 预防和治疗方法。
{"title":"The multiple roles of macrophages in peritoneal adhesion","authors":"Shangwei Yang,&nbsp;Yanhe Zheng,&nbsp;Zhenjun Pu,&nbsp;Hongyu Nian,&nbsp;Junliang Li","doi":"10.1111/imcb.12831","DOIUrl":"10.1111/imcb.12831","url":null,"abstract":"<p>Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 1","pages":"31-44"},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12831","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strive, Thrive & Survive: embracing challenges in pursuit of passion 努力、成长和生存:迎接挑战,追求激情。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1111/imcb.12827
Abolaji Samson Olagunju

Challenges don’t last; embracing them is crucial to growth and success. Knowing and absorbing this is very important for students in any program and at any level in the academic world. I have my bachelor’s and master’s degrees from Ladoke Akintola University of Technology and University of Ibadan, Nigeria, respectively. Currently, I am a doctorate student at the Department of Immunology, University of Sao Paulo, Brazil. This article discusses my adaptation to a new environment, overcoming challenges, and the importance of support systems.

挑战不会长久,迎接挑战才是成长和成功的关键。了解和吸收这一点,对于学术界任何专业、任何层次的学生都非常重要。我分别在尼日利亚拉多克-阿金托拉理工大学和伊巴丹大学获得学士和硕士学位。目前,我在巴西圣保罗大学免疫学系攻读博士学位。这篇文章讨论了我对新环境的适应、克服挑战以及支持系统的重要性。
{"title":"Strive, Thrive & Survive: embracing challenges in pursuit of passion","authors":"Abolaji Samson Olagunju","doi":"10.1111/imcb.12827","DOIUrl":"10.1111/imcb.12827","url":null,"abstract":"<p>Challenges don’t last; embracing them is crucial to growth and success. Knowing and absorbing this is very important for students in any program and at any level in the academic world. I have my bachelor’s and master’s degrees from Ladoke Akintola University of Technology and University of Ibadan, Nigeria, respectively. Currently, I am a doctorate student at the Department of Immunology, University of Sao Paulo, Brazil. This article discusses my adaptation to a new environment, overcoming challenges, and the importance of support systems.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 1","pages":"19-21"},"PeriodicalIF":3.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunology & Cell Biology Publication of the Year Awards 2023 免疫学与细胞生物学》2023 年度出版物奖。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/imcb.12830
Adrian Liston

The Immunology & Cell Biology Publication of the Year Awards have been established for outstanding studies submitted by first authors who are financial members of the Australian & New Zealand Society for Immunology Inc. in the year of the article's publication. Articles vying for these awards can come from any of the journal categories including Original Articles, Outstanding Observations, Perspectives or Short Communications. The Journal undertakes rigorous review to identify the most outstanding original research articles based on scientific excellence. The winner of the Chris and Bhama Parish ICB Publication of the Year Award is awarded an AU$1000 scholarship provided by Wiley and the runner-up is awarded an AU$500 scholarship provided by Miltenyi.

Every year, an outstanding series of papers are submitted for consideration for the prizes and 2023 was no different, with an exceptional standard of science reported in the papers. It is a great pleasure to announce the winners of the awards for 2023 as follows:

The award-winning papers by Drs Kedzierski and von Borstel highlight the outstanding quality of the work published in Immunology & Cell Biology. My very best congratulations are extended to the awardees on their success. I also thank our sponsor Miltenyi for their support of outstanding science and scientists and the journal. It is hoped that the outstanding quality of these awarded publications will also encourage others to consider Immunology & Cell Biology as a key journal for their cutting-edge research.

免疫学与细胞生物学》年度出版物奖是为文章发表当年身为澳大利亚与新西兰免疫学会(Australian & New Zealand Society for Immunology Inc.角逐这些奖项的文章可以来自期刊的任何类别,包括原创文章、杰出观察、展望或短篇通讯。期刊会进行严格审查,根据科学卓越性评选出最杰出的原创研究文章。克里斯-帕里什和巴马-帕里什国际科学理事会年度出版物奖 "的获奖者将获得由 Wiley 公司提供的 1000 澳元奖学金,亚军将获得由 Miltenyi 公司提供的 500 澳元奖学金。我们非常高兴地宣布2023年度的获奖者名单如下:Kedzierski博士和von Borstel博士的获奖论文彰显了《免疫学与amp; 细胞生物学》杂志所发表论文的卓越质量。我衷心祝贺获奖者的成功。我还要感谢我们的赞助商 Miltenyi,感谢他们对杰出科学、科学家和期刊的支持。希望这些获奖论文的杰出质量也能鼓励其他人将《免疫学与细胞生物学》作为他们进行前沿研究的重要期刊。
{"title":"Immunology & Cell Biology Publication of the Year Awards 2023","authors":"Adrian Liston","doi":"10.1111/imcb.12830","DOIUrl":"10.1111/imcb.12830","url":null,"abstract":"<p>The <i>Immunology &amp; Cell Biology</i> Publication of the Year Awards have been established for outstanding studies submitted by first authors who are financial members of the Australian &amp; New Zealand Society for Immunology Inc. in the year of the article's publication. Articles vying for these awards can come from any of the journal categories including Original Articles, Outstanding Observations, Perspectives or Short Communications. The Journal undertakes rigorous review to identify the most outstanding original research articles based on scientific excellence. The winner of the Chris and Bhama Parish ICB Publication of the Year Award is awarded an AU$1000 scholarship provided by Wiley and the runner-up is awarded an AU$500 scholarship provided by Miltenyi.</p><p>Every year, an outstanding series of papers are submitted for consideration for the prizes and 2023 was no different, with an exceptional standard of science reported in the papers. It is a great pleasure to announce the winners of the awards for 2023 as follows:</p><p>The award-winning papers by Drs Kedzierski and von Borstel highlight the outstanding quality of the work published in <i>Immunology &amp; Cell Biology</i>. My very best congratulations are extended to the awardees on their success. I also thank our sponsor Miltenyi for their support of outstanding science and scientists and the journal. It is hoped that the outstanding quality of these awarded publications will also encourage others to consider <i>Immunology &amp; Cell Biology</i> as a key journal for their cutting-edge research.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"866-867"},"PeriodicalIF":3.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of cellular and molecular immune components of the painted white sea urchin Lytechinus pictus in response to bacterial infection 绘白海胆(Lytechinus pictus)对细菌感染的细胞和分子免疫成分的特征。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/imcb.12828
Katherine T Nesbit, Alexis Cody Hargadon, Gloria D Renaudin, Nicholas D Kraieski, Katherine M Buckley, Emily Darin, Yoon Lee, Amro Hamdoun, Catherine S Schrankel

Sea urchins are basal deuterostomes that share key molecular components of innate immunity with vertebrates. They are a powerful model for the study of innate immune system evolution and function, especially during early development. Here we characterize the morphology and associated molecular markers of larval immune cell types in a newly developed model sea urchin, Lytechinus pictus. We then challenge larvae through infection with an established pathogenic Vibrio and characterize phenotypic and molecular responses. We contrast these to the previously described immune responses of the purple sea urchin Strongylocentrotus purpuratus. The results revealed shared cellular morphologies and homologs of known pigment cell immunocyte markers (PKS, srcr142) but a striking absence of subsets of perforin-like macpf genes in blastocoelar cell immunocytes. We also identified novel patterning of cells expressing a scavenger receptor cysteine rich (SRCR) gene in the coelomic pouches of the larva (the embryonic stem cell niche). The SRCR signal becomes further enriched in both pouches in response to bacterial infection. Collectively, these results provide a foundation for the study of immune responses in L. pictus. The characterization of the larval immune system of this rapidly developing and genetically enabled sea urchin species will facilitate more sophisticated studies of innate immunity and the crosstalk between the immune system and development.

海胆是基底半脊椎动物,与脊椎动物共享先天性免疫的关键分子成分。它们是研究先天性免疫系统演化和功能的强大模型,尤其是在早期发育过程中。在这里,我们描述了新开发的模型海胆(Lytechinus pictus)幼体免疫细胞类型的形态和相关分子标记。然后,我们用一种已确定的致病弧菌感染幼体,对其进行挑战,并描述表型和分子反应的特征。我们将这些反应与之前描述的紫海胆(Strongylocentrotus purpuratus)的免疫反应进行了对比。结果发现了共同的细胞形态和已知色素细胞免疫细胞标志物(PKS、srcr142)的同源物,但在胚层细胞免疫细胞中明显缺乏穿孔素样 macpf 基因亚群。我们还在幼虫的腹腔(胚胎干细胞龛)中发现了表达富含清道夫受体半胱氨酸(SRCR)基因的细胞的新模式。当细菌感染时,SCR信号会在这两个小囊中进一步富集。总之,这些结果为研究象鼻蝠的免疫反应奠定了基础。对这一快速发育且具有遗传能力的海胆物种的幼体免疫系统进行鉴定,将有助于对先天性免疫以及免疫系统与发育之间的相互关系进行更深入的研究。
{"title":"Characterization of cellular and molecular immune components of the painted white sea urchin Lytechinus pictus in response to bacterial infection","authors":"Katherine T Nesbit,&nbsp;Alexis Cody Hargadon,&nbsp;Gloria D Renaudin,&nbsp;Nicholas D Kraieski,&nbsp;Katherine M Buckley,&nbsp;Emily Darin,&nbsp;Yoon Lee,&nbsp;Amro Hamdoun,&nbsp;Catherine S Schrankel","doi":"10.1111/imcb.12828","DOIUrl":"10.1111/imcb.12828","url":null,"abstract":"<p>Sea urchins are basal deuterostomes that share key molecular components of innate immunity with vertebrates. They are a powerful model for the study of innate immune system evolution and function, especially during early development. Here we characterize the morphology and associated molecular markers of larval immune cell types in a newly developed model sea urchin, <i>Lytechinus pictus</i>. We then challenge larvae through infection with an established pathogenic <i>Vibrio</i> and characterize phenotypic and molecular responses. We contrast these to the previously described immune responses of the purple sea urchin <i>Strongylocentrotus purpuratus</i>. The results revealed shared cellular morphologies and homologs of known pigment cell immunocyte markers (<i>PKS, srcr142</i>) but a striking absence of subsets of perforin-like <i>macpf</i> genes in blastocoelar cell immunocytes. We also identified novel patterning of cells expressing a scavenger receptor cysteine rich (SRCR) gene in the coelomic pouches of the larva (the embryonic stem cell niche). The SRCR signal becomes further enriched in both pouches in response to bacterial infection. Collectively, these results provide a foundation for the study of immune responses in <i>L. pictus</i>. The characterization of the larval immune system of this rapidly developing and genetically enabled sea urchin species will facilitate more sophisticated studies of innate immunity and the crosstalk between the immune system and development.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 1","pages":"45-59"},"PeriodicalIF":3.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors ADAM10 可调节 T 细胞介导的实体瘤疗法的疗效。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-17 DOI: 10.1111/imcb.12826
Ahmed ME Abdalla, Yu Miao, Ning Ming, Chenxi Ouyang

T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.

T 细胞介导的治疗策略是癌症免疫疗法中最有效的效应因子。然而,这种疗法在实体瘤中的一个重要障碍是破坏了抗癌免疫反应、癌症免疫循环、T 细胞启动、贩运和 T 细胞细胞毒性能力。因此,需要加强抗癌免疫反应,以提高 T 细胞介导疗法的有效性。肿瘤相关蛋白酶ADAM10、内皮细胞(EC)和细胞毒性CD8+ T细胞通过粘附、迁移和趋化机制进行复杂的交流,以促进抗癌免疫反应。ADAM10 对这些相互作用的复杂机制的确切影响仍不清楚。本文广泛探讨了ADAM10如何通过不同途径影响T细胞介导疗法的疗效。ADAM10 可裂解 CD8+ T 细胞靶向基因并影响其表达和特异性。此外,ADAM10 还介导粘附分子与 T 细胞的相互作用,并影响 CD8+ T 细胞的活性和迁移。因此,了解 ADAM10 在这些事件中的作用可能会为推进 T 细胞介导的疗法带来创新策略。
{"title":"ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors","authors":"Ahmed ME Abdalla,&nbsp;Yu Miao,&nbsp;Ning Ming,&nbsp;Chenxi Ouyang","doi":"10.1111/imcb.12826","DOIUrl":"10.1111/imcb.12826","url":null,"abstract":"<p>T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8<sup>+</sup> T cells engage in complex communication <i>via</i> adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8<sup>+</sup> T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8<sup>+</sup> T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"907-923"},"PeriodicalIF":3.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12826","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune repertoire profiling in myasthenia gravis 重症肌无力的免疫反应谱分析
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-13 DOI: 10.1111/imcb.12825
Ting He, Kangzhi Chen, Qian Zhou, Haobing Cai, Huan Yang

Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T–B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.

重症肌无力(MG)是最常见的免疫介导的神经系统疾病,以波动性肌无力为特征。T细胞受体(TCR)和B细胞受体(BCR)对自身抗原的特异性识别,加上T-B细胞的相互作用,激活B细胞产生自身抗体,这对肌无力症的发生和持续至关重要。免疫复合物包括个体在特定时间点的所有功能各异的 T 细胞和 B 细胞,反映了免疫选择性的本质。通过对 TCR 和 BCR 的核苷酸序列进行测序,可以追踪单个 T 细胞和 B 细胞克隆。这篇综述深入探讨了 MG 中自身反应性 TCR 和 BCR 的产生,并全面探讨了免疫复合物测序在了解疾病发病机制、开发诊断和预后标记物以及为靶向治疗提供信息方面的应用。我们还讨论了这种方法目前的局限性和未来的潜力。
{"title":"Immune repertoire profiling in myasthenia gravis","authors":"Ting He,&nbsp;Kangzhi Chen,&nbsp;Qian Zhou,&nbsp;Haobing Cai,&nbsp;Huan Yang","doi":"10.1111/imcb.12825","DOIUrl":"10.1111/imcb.12825","url":null,"abstract":"<p>Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T–B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"891-906"},"PeriodicalIF":3.2,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolving role of mast cells in wound healing: insights from recent research and diverse models 肥大细胞在伤口愈合中不断演变的作用:最新研究和各种模型的启示。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-08 DOI: 10.1111/imcb.12824
Colin Guth, Nathachit Limjunyawong, Priyanka Pundir

Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell–derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.

慢性伤口给全世界的医疗保健系统造成了沉重负担,需要新的策略来缓解其影响。人们对伤口愈合的许多生理过程进行了深入研究,但对肥大细胞的作用仍存在争议。肥大细胞是先天性免疫细胞,通过诱导炎症来保护宿主免受化学刺激和感染等,在屏障功能中发挥着重要作用。许多肥大细胞衍生的介质都被认为在伤口愈合中发挥作用;然而,使用小鼠模型进行的体内证据却产生了相互矛盾的结果。最近,涉及感染伤口、糖尿病伤口和心理压力下伤口愈合等更复杂伤口模型的研究表明,肥大细胞在这些过程中发挥着关键作用。本综述简要总结了有关正常伤口中肥大细胞的现有文献,以及出现矛盾结果的潜在原因。重点将放在研究过去 5 年中出现的更多最新研究成果上,这些成果探讨了肥大细胞在更复杂的伤口愈合系统中的作用,包括感染、心理压力和糖尿病,并讨论了这些发现可能对该领域未来的工作产生的启发。
{"title":"The evolving role of mast cells in wound healing: insights from recent research and diverse models","authors":"Colin Guth,&nbsp;Nathachit Limjunyawong,&nbsp;Priyanka Pundir","doi":"10.1111/imcb.12824","DOIUrl":"10.1111/imcb.12824","url":null,"abstract":"<p>Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell–derived mediators have proposed roles in wound healing; however, <i>in vivo</i> evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"878-890"},"PeriodicalIF":3.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in the germinal center response revealed by genetically diverse mouse strains 基因不同的小鼠品系揭示了生殖中心反应的变异。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-09-24 DOI: 10.1111/imcb.12823
Anne-Marie Aubin, Daria Vdovenko, Roxanne Collin, Lois Balmer, Lise Coderre, Grant Morahan, Félix Lombard-Vadnais, Sylvie Lesage

The humoral response is complex and involves multiple cellular populations and signaling pathways. Bacterial and viral infections, as well as immunization regimens, can trigger this type of response, promoting the formation of microanatomical cellular structures called germinal centers (GCs). GCs formed in secondary lymphoid organs support the differentiation of high-affinity plasma cells and memory B cells. There is growing evidence that the quality of the humoral response is influenced by genetic variants. Using 12 genetically divergent mouse strains, we assessed the impact of genetics on GC cellular traits. At steady state, in the spleen, lymph nodes and Peyer's patches, we quantified GC B cells, plasma cells and follicular helper T cells. These traits were also quantified in the spleen of mice following immunization with a foreign antigen, namely, sheep red blood cells, in addition to the number and size of GCs. We observed both strain- and organ-specific variations in cell type abundance, as well as for GC number and size. Moreover, we find that some of these traits are highly heritable. Importantly, the results of this study inform on the impact of genetic diversity in shaping the GC response and identify the traits that are the most impacted by genetic background.

体液反应非常复杂,涉及多个细胞群和信号通路。细菌和病毒感染以及免疫接种方案都会触发这类反应,促进形成称为生殖中心(GCs)的微解剖细胞结构。在次级淋巴器官中形成的生殖中心支持高亲和性浆细胞和记忆 B 细胞的分化。越来越多的证据表明,体液反应的质量受基因变异的影响。我们利用 12 个基因不同的小鼠品系,评估了遗传对 GC 细胞特征的影响。在稳定状态下,我们对脾脏、淋巴结和派尔斑块中的GC B细胞、浆细胞和滤泡辅助T细胞进行了量化。在小鼠脾脏免疫外来抗原(即绵羊红细胞)后,除了GC的数量和大小外,我们还对这些特征进行了量化。我们观察到了细胞类型丰度以及 GC 数量和大小的菌株和器官特异性变化。此外,我们还发现其中一些性状具有高度遗传性。重要的是,这项研究的结果说明了遗传多样性对形成 GC 反应的影响,并确定了受遗传背景影响最大的性状。
{"title":"Variations in the germinal center response revealed by genetically diverse mouse strains","authors":"Anne-Marie Aubin,&nbsp;Daria Vdovenko,&nbsp;Roxanne Collin,&nbsp;Lois Balmer,&nbsp;Lise Coderre,&nbsp;Grant Morahan,&nbsp;Félix Lombard-Vadnais,&nbsp;Sylvie Lesage","doi":"10.1111/imcb.12823","DOIUrl":"10.1111/imcb.12823","url":null,"abstract":"<p>The humoral response is complex and involves multiple cellular populations and signaling pathways. Bacterial and viral infections, as well as immunization regimens, can trigger this type of response, promoting the formation of microanatomical cellular structures called germinal centers (GCs). GCs formed in secondary lymphoid organs support the differentiation of high-affinity plasma cells and memory B cells. There is growing evidence that the quality of the humoral response is influenced by genetic variants. Using 12 genetically divergent mouse strains, we assessed the impact of genetics on GC cellular traits. At steady state, in the spleen, lymph nodes and Peyer's patches, we quantified GC B cells, plasma cells and follicular helper T cells. These traits were also quantified in the spleen of mice following immunization with a foreign antigen, namely, sheep red blood cells, in addition to the number and size of GCs. We observed both strain- and organ-specific variations in cell type abundance, as well as for GC number and size. Moreover, we find that some of these traits are highly heritable. Importantly, the results of this study inform on the impact of genetic diversity in shaping the GC response and identify the traits that are the most impacted by genetic background.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"935-948"},"PeriodicalIF":3.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the transition to Principal Investigator 向首席研究员过渡的导航。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-09-16 DOI: 10.1111/imcb.12821
Alerie G de la Fuente

As the result of many years of training, becoming a Principal Investigator (PI) is an exciting but also stressful and intimidating career transition step. While navigating this transition we quickly find out that the skills we have crafted throughout our scientific training do not necessarily cover those required to successfully run a research group. Although there is not a common path to ensure success for all new PIs, many of us encounter similar hurdles. The aim of this article is to reflect on my recent experience and mistakes 2 years after initiating this transition, in the hope of highlighting some key aspects that may be beneficial for future new PIs.

经过多年的培训,成为一名首席研究员(PI)是一个令人兴奋但也充满压力和恐惧的职业转型步骤。在经历这一转变的过程中,我们很快就会发现,我们在科学培训中所掌握的技能并不一定涵盖成功管理研究小组所需的技能。虽然没有一条共同的道路可以确保所有新任首席科学家都能取得成功,但我们中的很多人都会遇到类似的障碍。本文旨在反思我最近的经历,以及开始这一转变 2 年后的失误,希望能突出一些关键方面,对未来的新首席研究员有所帮助。
{"title":"Navigating the transition to Principal Investigator","authors":"Alerie G de la Fuente","doi":"10.1111/imcb.12821","DOIUrl":"10.1111/imcb.12821","url":null,"abstract":"<p>As the result of many years of training, becoming a Principal Investigator (PI) is an exciting but also stressful and intimidating career transition step. While navigating this transition we quickly find out that the skills we have crafted throughout our scientific training do not necessarily cover those required to successfully run a research group. Although there is not a common path to ensure success for all new PIs, many of us encounter similar hurdles. The aim of this article is to reflect on my recent experience and mistakes 2 years after initiating this transition, in the hope of highlighting some key aspects that may be beneficial for future new PIs.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 9","pages":"766-774"},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12821","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A scalable, spin-free approach to generate enhanced induced pluripotent stem cell–derived natural killer cells for cancer immunotherapy 一种可扩展的无自旋方法,可生成用于癌症免疫疗法的增强型诱导多能干细胞衍生自然杀伤细胞。
IF 3.2 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-09-13 DOI: 10.1111/imcb.12820
Gustavo R Rossi, Jane Sun, Cheng-Yu Lin, Joshua KM Wong, Louisa Alim, Pui Yeng Lam, Kiarash Khosrotehrani, Ernst Wolvetang, Seth W Cheetham, Emily B Derrick, Akwasi Amoako, Christoph Lehner, Andrew J Brooks, Paul A Beavis, Fernando Souza-Fonseca-Guimaraes

Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, in vitro expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental–derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.

自然杀伤(NK)细胞在先天性免疫中发挥着重要作用,在癌症免疫疗法中大有可为。传统的 NK 细胞来源(如外周血)受到可用性和供体变异性的限制。此外,体外扩增可能导致功能耗竭和基因编辑难题。本研究旨在利用诱导多能干细胞(iPSC)技术,提供稳定、可扩展的NK细胞来源,克服传统来源的局限性,提高癌症免疫疗法的应用潜力。我们利用重编程技术开发了人类胎盘iPSC系。随后,我们引入了一个优化的两步分化方案来生成高纯度的NK细胞。首先,利用无旋胚状体(EB)将iPSC分化成造血类干细胞。iPSC 衍生的 NK(iNK)细胞在 RNA 和蛋白质水平上都表达常见的 NK 细胞标记(NKp46、NKp30、NKp44、CD16 和 eomesodermin)。嵌合抗原受体(CAR)构建体的加入进一步增强了它们的细胞毒性潜力。这项研究证明了生成具有高纯度和增强功能的 iNK 细胞的可行性,它们对冷冻保存的适应性得到了改善,并有可能通过 CAR 表达增强细胞毒性。我们的研究结果为开发潜在的细胞免疫疗法提供了一条前景广阔的途径,凸显了 iPSC 技术在克服传统 NK 细胞来源相关挑战方面的关键作用。
{"title":"A scalable, spin-free approach to generate enhanced induced pluripotent stem cell–derived natural killer cells for cancer immunotherapy","authors":"Gustavo R Rossi,&nbsp;Jane Sun,&nbsp;Cheng-Yu Lin,&nbsp;Joshua KM Wong,&nbsp;Louisa Alim,&nbsp;Pui Yeng Lam,&nbsp;Kiarash Khosrotehrani,&nbsp;Ernst Wolvetang,&nbsp;Seth W Cheetham,&nbsp;Emily B Derrick,&nbsp;Akwasi Amoako,&nbsp;Christoph Lehner,&nbsp;Andrew J Brooks,&nbsp;Paul A Beavis,&nbsp;Fernando Souza-Fonseca-Guimaraes","doi":"10.1111/imcb.12820","DOIUrl":"10.1111/imcb.12820","url":null,"abstract":"<p>Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, <i>in vitro</i> expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental–derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 10","pages":"924-934"},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12820","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Immunology & Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1