Positive research cultures provide the environment for scientists to explore ideas, grow as individuals, develop team science and create a positive impact on those around them. While positive research cultures need to grow from the kindness and integrity of team members, organization policy can either help or hinder this organic positive behavior. A focus on policies to enhance positive research culture can benefit even high-functioning organizations, by expanding and extending the benefits. Here we focus on key actionable areas to create and reinforce a positive research culture in your organization. We discuss the role of aligning staff recognition to the organization's missions, the influence of the organization unit and career structure on the research culture, the pyramid of building respectful interactions, the value of openness and transparency and the overarching goal of equality, diversity and inclusivity within the organization.
{"title":"Nurturing a positive research culture within your organization","authors":"Adrian Liston, Denise C Fitzgerald","doi":"10.1111/imcb.12795","DOIUrl":"10.1111/imcb.12795","url":null,"abstract":"<p>Positive research cultures provide the environment for scientists to explore ideas, grow as individuals, develop team science and create a positive impact on those around them. While positive research cultures need to grow from the kindness and integrity of team members, organization policy can either help or hinder this organic positive behavior. A focus on policies to enhance positive research culture can benefit even high-functioning organizations, by expanding and extending the benefits. Here we focus on key actionable areas to create and reinforce a positive research culture in your organization. We discuss the role of aligning staff recognition to the organization's missions, the influence of the organization unit and career structure on the research culture, the pyramid of building respectful interactions, the value of openness and transparency and the overarching goal of equality, diversity and inclusivity within the organization.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony Bertrand, Jamie Sugrue, Tianai Lou, Nollaig M Bourke, Lluis Quintana-Murci, Violaine Saint-André, Cliona O'Farrelly, Darragh Duffy, the Milieu Intérieur Consortium
Individuals with low socioeconomic status (SES) are at greater risk of contracting and developing severe disease compared with people with higher SES. Age, sex, host genetics, smoking and cytomegalovirus (CMV) serostatus are known to have a major impact on human immune responses and thus susceptibility to infection. However, the impact of SES on immune variability is not well understood or explored. Here, we used data from the Milieu Intérieur project, a study of 1000 healthy volunteers with extensive demographic and biological data, to examine the effect of SES on immune variability. We developed an Elo-rating system using socioeconomic features such as education, income and home ownership status to objectively rank SES in the 1000 donors. We observed sex-specific SES associations, such as females with a low SES having a significantly higher frequency of CMV seropositivity compared with females with high SES, and males with a low SES having a significantly higher frequency of active smoking compared with males with a high SES. Using random forest models, we identified specific immune genes which were significantly associated with SES in both baseline and immune challenge conditions. Interestingly, many of the SES associations were sex stimuli specific, highlighting the complexity of these interactions. Our study provides a new way of computing SES in human populations that can help identify novel SES associations and reinforces biological evidence for SES-dependent susceptibility to infection. This should serve as a basis for further understanding the molecular mechanisms behind SES effects on immune responses and ultimately disease.
与社会经济地位较高的人相比,社会经济地位较低的人感染严重疾病的风险更大。众所周知,年龄、性别、宿主遗传学、吸烟和巨细胞病毒(CMV)血清状态对人体免疫反应有重大影响,因此对感染的易感性也有重大影响。然而,人们对社会经济地位对免疫变异性的影响还不甚了解,也没有进行深入探讨。在此,我们利用 "内部空间"(Milieu Intérieur)项目的数据,研究了 SES 对免疫变异性的影响。我们开发了一个 Elo 评级系统,利用教育、收入和房屋所有权状况等社会经济特征对 1000 名捐献者的 SES 进行客观排名。我们观察到了性别特异性的 SES 关联,例如与高 SES 女性相比,低 SES 女性的 CMV 血清阳性频率明显更高;与高 SES 男性相比,低 SES 男性的主动吸烟频率明显更高。利用随机森林模型,我们确定了在基线和免疫挑战条件下与社会经济地位显著相关的特定免疫基因。有趣的是,许多 SES 关联都具有性别刺激的特异性,这凸显了这些相互作用的复杂性。我们的研究提供了一种计算人类社会经济地位的新方法,有助于发现新的社会经济地位关联,并加强了社会经济地位依赖性感染易感性的生物学证据。这将为进一步了解社会经济地位对免疫反应和最终疾病的影响背后的分子机制奠定基础。
{"title":"Impact of socioeconomic status on healthy immune responses in humans","authors":"Anthony Bertrand, Jamie Sugrue, Tianai Lou, Nollaig M Bourke, Lluis Quintana-Murci, Violaine Saint-André, Cliona O'Farrelly, Darragh Duffy, the Milieu Intérieur Consortium","doi":"10.1111/imcb.12789","DOIUrl":"10.1111/imcb.12789","url":null,"abstract":"<p>Individuals with low socioeconomic status (SES) are at greater risk of contracting and developing severe disease compared with people with higher SES. Age, sex, host genetics, smoking and cytomegalovirus (CMV) serostatus are known to have a major impact on human immune responses and thus susceptibility to infection. However, the impact of SES on immune variability is not well understood or explored. Here, we used data from the <i>Milieu Intérieur</i> project, a study of 1000 healthy volunteers with extensive demographic and biological data, to examine the effect of SES on immune variability. We developed an Elo-rating system using socioeconomic features such as education, income and home ownership status to objectively rank SES in the 1000 donors. We observed sex-specific SES associations, such as females with a low SES having a significantly higher frequency of CMV seropositivity compared with females with high SES, and males with a low SES having a significantly higher frequency of active smoking compared with males with a high SES. Using random forest models, we identified specific immune genes which were significantly associated with SES in both baseline and immune challenge conditions. Interestingly, many of the SES associations were sex stimuli specific, highlighting the complexity of these interactions. Our study provides a new way of computing SES in human populations that can help identify novel SES associations and reinforces biological evidence for SES-dependent susceptibility to infection. This should serve as a basis for further understanding the molecular mechanisms behind SES effects on immune responses and ultimately disease.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to characterize immune cells and explore the molecular interactions that govern their functions has never been greater, fueled in recent years by the revolutionary advance of single-cell analysis platforms. However, precisely how immune cells respond to different stimuli and where differentiation processes and effector functions operate remain incompletely understood. Inferring cellular fate within single-cell transcriptomic analyses is now omnipresent, despite the assumptions typically required in such analyses. Recently developed experimental models support dynamic analyses of the immune response, providing insights into the temporal changes that occur within cells and the tissues in which such transitions occur. Here we will review these approaches and discuss how these can be combined with single-cell technologies to develop a deeper understanding of the immune responses that should support the development of better therapeutic options for patients.
{"title":"Decoding changes in tumor-infiltrating leukocytes through dynamic experimental models and single-cell technologies","authors":"Colin YC Lee, Menna R Clatworthy, David R Withers","doi":"10.1111/imcb.12787","DOIUrl":"10.1111/imcb.12787","url":null,"abstract":"<p>The ability to characterize immune cells and explore the molecular interactions that govern their functions has never been greater, fueled in recent years by the revolutionary advance of single-cell analysis platforms. However, precisely how immune cells respond to different stimuli and where differentiation processes and effector functions operate remain incompletely understood. Inferring cellular fate within single-cell transcriptomic analyses is now omnipresent, despite the assumptions typically required in such analyses. Recently developed experimental models support dynamic analyses of the immune response, providing insights into the temporal changes that occur within cells and the tissues in which such transitions occur. Here we will review these approaches and discuss how these can be combined with single-cell technologies to develop a deeper understanding of the immune responses that should support the development of better therapeutic options for patients.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12787","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Curtis Cai, Elizabeth Keoshkerian, Kristof Wing, Jerome Samir, Manuel Effenberger, Kilian Schober, Rowena A Bull, Andrew R Lloyd, Dirk H Busch, Fabio Luciani
CD8+ T cells recognizing their cognate antigen are typically recruited as a polyclonal population consisting of multiple clonotypes with varying T-cell receptor (TCR) affinity to the target peptide–major histocompatibility complex (pMHC) complex. Advances in single-cell sequencing have increased accessibility toward identifying TCRs with matched antigens. Here we present the discovery of a monoclonal CD8+ T-cell population with specificity for a hepatitis C virus (HCV)–derived human leukocyte antigen (HLA) class I epitope (HLA-B*07:02 GPRLGVRAT) which was isolated directly ex vivo from an individual with an episode of acutely resolved HCV infection. This population was absent before infection and underwent expansion and stable maintenance for at least 2 years after infection as measured by HLA-multimer staining. Furthermore, the monoclonal clonotype was characterized by an unusually long dissociation time (half-life = 794 s and koff = 5.73 × 10−4) for its target antigen when compared with previously published results. A comparison with related populations of HCV-specific populations derived from the same individual and a second individual suggested that high-affinity TCR–pMHC interactions may be inherent to epitope identity and shape the phenotype of responses which has implications for rational TCR selection and design in the age of personalized immunotherapies.
{"title":"Discovery of a monoclonal, high-affinity CD8+ T-cell clone following natural hepatitis C virus infection","authors":"Curtis Cai, Elizabeth Keoshkerian, Kristof Wing, Jerome Samir, Manuel Effenberger, Kilian Schober, Rowena A Bull, Andrew R Lloyd, Dirk H Busch, Fabio Luciani","doi":"10.1111/imcb.12791","DOIUrl":"10.1111/imcb.12791","url":null,"abstract":"<p>CD8<sup>+</sup> T cells recognizing their cognate antigen are typically recruited as a polyclonal population consisting of multiple clonotypes with varying T-cell receptor (TCR) affinity to the target peptide–major histocompatibility complex (pMHC) complex. Advances in single-cell sequencing have increased accessibility toward identifying TCRs with matched antigens. Here we present the discovery of a monoclonal CD8<sup>+</sup> T-cell population with specificity for a hepatitis C virus (HCV)–derived human leukocyte antigen (HLA) class I epitope (HLA-B*07:02 <i>GPRLGVRAT</i>) which was isolated directly <i>ex vivo</i> from an individual with an episode of acutely resolved HCV infection. This population was absent before infection and underwent expansion and stable maintenance for at least 2 years after infection as measured by HLA-multimer staining. Furthermore, the monoclonal clonotype was characterized by an unusually long dissociation time (half-life = 794 s and k<sub>off</sub> = 5.73 × 10<sup>−4</sup>) for its target antigen when compared with previously published results. A comparison with related populations of HCV-specific populations derived from the same individual and a second individual suggested that high-affinity TCR–pMHC interactions may be inherent to epitope identity and shape the phenotype of responses which has implications for rational TCR selection and design in the age of personalized immunotherapies.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article for the Highlights of 2023 Series, significant advancements in pediatric immunology are discussed, focusing on new diagnostic and therapeutic approaches. Key studies include the integration of genomic and proteomic profiling for better diagnosis of inborn errors of immunity, the impact of nongenetic factors such as autoantibodies on immune responses, the promising use of Janus kinase inhibitors and chimeric antigen receptor-T cell therapy for treating immune deficiencies and autoimmune diseases and the potential for a curative approach using prime editing. These developments mark a shift toward personalized and precision medicine in pediatric immunology.