首页 > 最新文献

ACS Infectious Diseases最新文献

英文 中文
Phenome-wide associations of human aging uncover sex-specific dynamics 人类衰老的全貌关联揭示了性别特异性动态变化。
IF 17 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-05 DOI: 10.1038/s43587-024-00734-9
Lee Reicher, Noam Bar, Anastasia Godneva, Yotam Reisner, Liron Zahavi, Nir Shahaf, Raja Dhir, Adina Weinberger, Eran Segal
Aging varies significantly among individuals of the same chronological age, indicating that biological age (BA), estimated from molecular and physiological biomarkers, may better reflect aging. Prior research has often ignored sex-specific differences in aging patterns and mainly focused on aging biomarkers from a single data modality. Here we analyze a deeply phenotyped longitudinal cohort (10K project, Israel) of 10,000 healthy individuals aged 40–70 years that includes clinical, physiological, behavioral, environmental and multiomic parameters. Follow-up visits are scheduled every 2 years for a total of 25 years. We devised machine learning models of chronological age and computed biological aging scores that represented diverse physiological systems, revealing different aging patterns among sexes. Higher BA scores were associated with a higher prevalence of age-related medical conditions, highlighting the clinical relevance of these scores. Our analysis revealed system-specific aging dynamics and the potential of deeply phenotyped cohorts to accelerate improvements in our understanding of chronic diseases. Our findings present a more holistic view of the aging process, and lay the foundation for personalized medical prevention strategies. The authors analyzed data from a deeply phenotyped longitudinal cohort to uncover sex-specific aging patterns. They found that biological age scores, derived from diverse biomarkers, correlate with age-related diseases, providing insights for personalized medical interventions.
同一年龄段的个体之间的衰老差异很大,这表明根据分子和生理生物标志物估算的生物年龄(BA)可以更好地反映衰老。之前的研究往往忽视了衰老模式中的性别差异,并主要关注来自单一数据模式的衰老生物标志物。在这里,我们分析了一个由 10,000 名 40-70 岁健康人组成的深度表型纵向队列(10K 项目,以色列),其中包括临床、生理、行为、环境和多组学参数。每两年进行一次随访,共持续 25 年。我们设计了计时年龄的机器学习模型,并计算了代表不同生理系统的生物衰老分数,揭示了不同性别的衰老模式。生物衰老评分越高,与年龄相关的疾病发病率越高,这突出表明了这些评分的临床意义。我们的分析揭示了特定系统的衰老动态,以及深度表型队列在加速改善我们对慢性疾病的理解方面所具有的潜力。我们的研究结果提出了一个更全面的衰老过程视角,为个性化医疗预防策略奠定了基础。
{"title":"Phenome-wide associations of human aging uncover sex-specific dynamics","authors":"Lee Reicher, Noam Bar, Anastasia Godneva, Yotam Reisner, Liron Zahavi, Nir Shahaf, Raja Dhir, Adina Weinberger, Eran Segal","doi":"10.1038/s43587-024-00734-9","DOIUrl":"10.1038/s43587-024-00734-9","url":null,"abstract":"Aging varies significantly among individuals of the same chronological age, indicating that biological age (BA), estimated from molecular and physiological biomarkers, may better reflect aging. Prior research has often ignored sex-specific differences in aging patterns and mainly focused on aging biomarkers from a single data modality. Here we analyze a deeply phenotyped longitudinal cohort (10K project, Israel) of 10,000 healthy individuals aged 40–70 years that includes clinical, physiological, behavioral, environmental and multiomic parameters. Follow-up visits are scheduled every 2 years for a total of 25 years. We devised machine learning models of chronological age and computed biological aging scores that represented diverse physiological systems, revealing different aging patterns among sexes. Higher BA scores were associated with a higher prevalence of age-related medical conditions, highlighting the clinical relevance of these scores. Our analysis revealed system-specific aging dynamics and the potential of deeply phenotyped cohorts to accelerate improvements in our understanding of chronic diseases. Our findings present a more holistic view of the aging process, and lay the foundation for personalized medical prevention strategies. The authors analyzed data from a deeply phenotyped longitudinal cohort to uncover sex-specific aging patterns. They found that biological age scores, derived from diverse biomarkers, correlate with age-related diseases, providing insights for personalized medical interventions.","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":"4 11","pages":"1643-1655"},"PeriodicalIF":17.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Demonstrated Consent for Biobanking with Blockchain and Generative AI. 利用区块链和生成式人工智能实现生物银行的示范同意。
IF 17 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-05 DOI: 10.1080/15265161.2024.2416117
Caspar Barnes, Mateo Riobo Aboy, Timo Minssen, Jemima Winifred Allen, Brian D Earp, Julian Savulescu, Sebastian Porsdam Mann

Participation in research is supposed to be voluntary and informed. Yet it is difficult to ensure people are adequately informed about the potential uses of their biological materials when they donate samples for future research. We propose a novel consent framework which we call "demonstrated consent" that leverages blockchain technology and generative AI to address this problem. In a demonstrated consent model, each donated sample is associated with a unique non-fungible token (NFT) on a blockchain, which records in its metadata information about the planned and past uses of the sample in research, and is updated with each use of the sample. This information is accessible to a large language model (LLM) customized to present this information in an understandable and interactive manner. Thus, our model uses blockchain and generative AI technologies to track, make available, and explain information regarding planned and past uses of donated samples.

参与研究应该是自愿和知情的。然而,要确保人们在为未来研究捐赠样本时充分了解其生物材料的潜在用途却很困难。我们提出了一个新颖的同意框架,我们称之为 "展示同意",它利用区块链技术和生成式人工智能来解决这个问题。在 "证明同意 "模型中,每个捐赠样本都与区块链上唯一的不可篡改代币(NFT)相关联,该代币的元数据中记录了样本在研究中的计划用途和过去用途的信息,并随着样本的每次使用而更新。这些信息可通过定制的大型语言模型(LLM)获取,以可理解和交互的方式呈现这些信息。因此,我们的模型使用区块链和生成式人工智能技术来跟踪、提供和解释有关捐赠样本的计划用途和过去用途的信息。
{"title":"Enabling Demonstrated Consent for Biobanking with Blockchain and Generative AI.","authors":"Caspar Barnes, Mateo Riobo Aboy, Timo Minssen, Jemima Winifred Allen, Brian D Earp, Julian Savulescu, Sebastian Porsdam Mann","doi":"10.1080/15265161.2024.2416117","DOIUrl":"https://doi.org/10.1080/15265161.2024.2416117","url":null,"abstract":"<p><p>Participation in research is supposed to be voluntary and informed. Yet it is difficult to ensure people are adequately informed about the potential uses of their biological materials when they donate samples for future research. We propose a novel consent framework which we call \"demonstrated consent\" that leverages blockchain technology and generative AI to address this problem. In a demonstrated consent model, each donated sample is associated with a unique non-fungible token (NFT) on a blockchain, which records in its metadata information about the planned and past uses of the sample in research, and is updated with each use of the sample. This information is accessible to a large language model (LLM) customized to present this information in an understandable and interactive manner. Thus, our model uses blockchain and generative AI technologies to track, make available, and explain information regarding planned and past uses of donated samples.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1-16"},"PeriodicalIF":17.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A decoy receptor derived from alternative splicing fine-tunes cytokinin signaling in Arabidopsis. 拟南芥中由替代剪接产生的诱饵受体可微调细胞分裂素信号。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 DOI: 10.1016/j.molp.2024.11.001
Michaela Králová, Ivona Kubalová, Jakub Hajný, Karolina Kubiasová, Karolína Vagaská, Zengxiang Ge, Michelle Gallei, Hana Semerádová, Anna Kuchařová, Martin Hönig, Aline Monzer, Martin Kovačik, Jiří Friml, Ondřej Novák, Eva Benková, Yoshihisa Ikeda, David Zalabák

Hormone perception and signaling pathways play a fundamental regulatory function in the physiological processes of plants. Cytokinins, plant hormones, regulate cell division and meristem maintenance. The cytokinin signaling pathway is well-established in model plant Arabidopsis. Several negative feedback mechanisms, tightly controlling the cytokinin signaling output, were described previously. Here, we identified a new feedback mechanism executed through an alternative splicing of the cytokinin receptor AHK4/CRE1. A novel splicing variant named CRE1int7 results from seventh intron retention, introducing a premature termination codon in the transcript. We show that CRE1int7 is translated in planta into a truncated receptor lacking the C-terminal receiver domain essential for signal transduction. The CRE1int7 can bind the cytokinin but cannot activate the downstream cascade. We present a novel negative feedback mechanism of the cytokinin signaling pathway facilitated by a decoy receptor, which can inactivate canonical cytokinin receptors via dimerization and compete with them for ligand binding. While a similar molecular mechanism is well-known in mammals, decoy receptors are rare in plants. Ensuring proper plant growth and development requires precise control of the cytokinin signaling pathway at several levels. The CRE1int7 represents a yet unknown mechanism for fine-tuning the cytokinin signaling pathway in Arabidopsis.

激素感知和信号通路在植物的生理过程中发挥着基本的调节功能。细胞分裂素是一种植物激素,可调节细胞分裂和分生组织的维持。细胞分裂素信号通路在模式植物拟南芥中已经得到了很好的证实。以前曾描述过几种严格控制细胞分裂素信号输出的负反馈机制。在这里,我们发现了一种通过细胞分裂素受体 AHK4/CRE1 的替代剪接执行的新反馈机制。一种名为 CRE1int7 的新型剪接变体产生于第七个内含子的保留,在转录本中引入了一个过早终止密码子。我们发现,CRE1int7 在植物体内被翻译成一个截短的受体,缺乏信号转导所必需的 C 端接收结构域。CRE1int7 能与细胞分裂素结合,但不能激活下游级联。我们提出了一种由诱饵受体促进的新型细胞分裂素信号通路负反馈机制,诱饵受体可以通过二聚化使典型的细胞分裂素受体失活,并与之竞争配体结合。类似的分子机制在哺乳动物中广为人知,但诱饵受体在植物中却很少见。要确保植物的正常生长和发育,需要在多个水平上对细胞分裂素信号途径进行精确控制。CRE1int7 代表了拟南芥细胞分裂素信号途径微调的一种未知机制。
{"title":"A decoy receptor derived from alternative splicing fine-tunes cytokinin signaling in Arabidopsis.","authors":"Michaela Králová, Ivona Kubalová, Jakub Hajný, Karolina Kubiasová, Karolína Vagaská, Zengxiang Ge, Michelle Gallei, Hana Semerádová, Anna Kuchařová, Martin Hönig, Aline Monzer, Martin Kovačik, Jiří Friml, Ondřej Novák, Eva Benková, Yoshihisa Ikeda, David Zalabák","doi":"10.1016/j.molp.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.molp.2024.11.001","url":null,"abstract":"<p><p>Hormone perception and signaling pathways play a fundamental regulatory function in the physiological processes of plants. Cytokinins, plant hormones, regulate cell division and meristem maintenance. The cytokinin signaling pathway is well-established in model plant Arabidopsis. Several negative feedback mechanisms, tightly controlling the cytokinin signaling output, were described previously. Here, we identified a new feedback mechanism executed through an alternative splicing of the cytokinin receptor AHK4/CRE1. A novel splicing variant named CRE1<sup>int7</sup> results from seventh intron retention, introducing a premature termination codon in the transcript. We show that CRE1<sup>int7</sup> is translated in planta into a truncated receptor lacking the C-terminal receiver domain essential for signal transduction. The CRE1<sup>int7</sup> can bind the cytokinin but cannot activate the downstream cascade. We present a novel negative feedback mechanism of the cytokinin signaling pathway facilitated by a decoy receptor, which can inactivate canonical cytokinin receptors via dimerization and compete with them for ligand binding. While a similar molecular mechanism is well-known in mammals, decoy receptors are rare in plants. Ensuring proper plant growth and development requires precise control of the cytokinin signaling pathway at several levels. The CRE1<sup>int7</sup> represents a yet unknown mechanism for fine-tuning the cytokinin signaling pathway in Arabidopsis.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-based protein engineering: A novel strategy for enhancing broad-spectrum plant resistance. 基于人工智能的蛋白质工程:增强广谱植物抗性的新策略。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 Epub Date: 2024-10-05 DOI: 10.1016/j.molp.2024.10.004
Jinhong Yuan, Qianqian Li, Xia Li, Chao Su
{"title":"AI-based protein engineering: A novel strategy for enhancing broad-spectrum plant resistance.","authors":"Jinhong Yuan, Qianqian Li, Xia Li, Chao Su","doi":"10.1016/j.molp.2024.10.004","DOIUrl":"10.1016/j.molp.2024.10.004","url":null,"abstract":"","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1648-1650"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontal diseases in Africa. 非洲的牙周病。
IF 17.5 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 DOI: 10.1111/prd.12617
Mojisola Olujitan, Patricia O Ayanbadejo, Kehinde Umeizudike, Afolabi Oyapero, Christopher Okunseri, Azeez Butali

Periodontal diseases, a group of complex conditions marked by an excessive immune response and periodontal tissue destruction, are a global health concern. Since 1990, the incidence of these diseases has doubled, with Western sub-Saharan Africa experiencing the highest burden. Accurate diagnosis and case identification are crucial for understanding the etiology, features of disease, research, treatment and prevention. Modern perspectives on periodontal disease classification are based on commonality among those affected. However, current literature is often plagued by methodological inconsistencies and focused on disease mechanisms in European populations. Health inequalities in low- and middle-income countries (LMICs) are exacerbated by these challenges, with sub-Saharan Africa, and Nigeria specifically, facing unique difficulties such as clinical personnel shortages and limited research infrastructure. This review explored disparities in periodontal disease research, care and outcomes in African populations. We highlighted these disparities and identified the factors contributing to inequities in periodontal health outcomes. We further demonstrated the critical need for inclusive and equitable healthcare and research practices tailored to the unique challenges faced by diverse populations and regions with limited resources. Addressing these disparities is essential for ensuring that advancements in healthcare are accessible to all, thereby improving global oral health and general health.

牙周病是一组以过度免疫反应和牙周组织破坏为特征的复杂疾病,是一个全球健康问题。自 1990 年以来,这些疾病的发病率翻了一番,其中撒哈拉以南非洲西部的发病率最高。准确的诊断和病例鉴定对于了解病因、疾病特征、研究、治疗和预防至关重要。牙周病分类的现代观点是基于患者的共性。然而,目前的文献往往受到方法不一致的困扰,并且侧重于欧洲人群的疾病机制。这些挑战加剧了中低收入国家(LMICs)的健康不平等,撒哈拉以南非洲地区,特别是尼日利亚,面临着独特的困难,如临床人员短缺和研究基础设施有限。本综述探讨了非洲人口在牙周病研究、护理和结果方面的差距。我们强调了这些差距,并确定了造成牙周健康结果不平等的因素。我们进一步表明,针对资源有限的不同人群和地区所面临的独特挑战,亟需采取包容性和公平的医疗保健和研究措施。要确保所有人都能享受到医疗保健的进步,从而改善全球口腔健康和总体健康状况,解决这些差距至关重要。
{"title":"Periodontal diseases in Africa.","authors":"Mojisola Olujitan, Patricia O Ayanbadejo, Kehinde Umeizudike, Afolabi Oyapero, Christopher Okunseri, Azeez Butali","doi":"10.1111/prd.12617","DOIUrl":"https://doi.org/10.1111/prd.12617","url":null,"abstract":"<p><p>Periodontal diseases, a group of complex conditions marked by an excessive immune response and periodontal tissue destruction, are a global health concern. Since 1990, the incidence of these diseases has doubled, with Western sub-Saharan Africa experiencing the highest burden. Accurate diagnosis and case identification are crucial for understanding the etiology, features of disease, research, treatment and prevention. Modern perspectives on periodontal disease classification are based on commonality among those affected. However, current literature is often plagued by methodological inconsistencies and focused on disease mechanisms in European populations. Health inequalities in low- and middle-income countries (LMICs) are exacerbated by these challenges, with sub-Saharan Africa, and Nigeria specifically, facing unique difficulties such as clinical personnel shortages and limited research infrastructure. This review explored disparities in periodontal disease research, care and outcomes in African populations. We highlighted these disparities and identified the factors contributing to inequities in periodontal health outcomes. We further demonstrated the critical need for inclusive and equitable healthcare and research practices tailored to the unique challenges faced by diverse populations and regions with limited resources. Addressing these disparities is essential for ensuring that advancements in healthcare are accessible to all, thereby improving global oral health and general health.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":17.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontal disease: A systemic condition. 牙周病:一种全身性疾病。
IF 17.5 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 DOI: 10.1111/prd.12616
German E M Villoria, Ricardo G Fischer, Eduardo M B Tinoco, Joerg Meyle, Bruno G Loos

For decades, periodontitis has been considered to be a local inflammatory disease of the periodontal tissues in the oral cavity. Initially, associations of periodontitis with a multitude of noncommunicable diseases were each studied separately, and relationships were shown. The associations of periodontitis with morbidities, such as cardiovascular diseases, rheumatoid arthritis, diabetes mellitus, respiratory diseases, have been demonstrated. As most such studies were cross-sectional in nature, questions about causality cannot be univocally answered. And periodontitis as an independent risk factor for one systemic disease, becomes even more difficult to assess since recently periodontitis has also been associated with multimorbidity. Periodontitis and many systemic diseases share environmental, lifestyle and genetic risk factors, and share immunopathology. Moreover, suffering from one common noncommunicable disease may increase the susceptibility for another such chronic disease; the systemic effects of one condition may be one of various risk factors for another such disease. The overarching effect of any systemic disease is it causing a pro-inflammatory state in the individual; this has also been shown for periodontitis. Moreover, in periodontitis a prothrombotic state and elevated immunological activity have been shown. As such, when we consider periodontal disease as another systemic disease, it can affect the susceptibility and progression of other systemic diseases, and importantly, vice versa. And with this, it is not surprising that periodontitis is associated with a variety of other noncommunicable diseases. The medical definition of a systemic disease includes diseases that affect different organs and systems. Thus, the aim of this opinion paper is to propose that periodontitis should be considered a systemic disease in its own right and that it affects the individual's systemic condition and wellbeing. The dental and medical profession and researchers alike, should adapt this paradigm shift, advancing periodontal disease out of its isolated anatomical location into the total of chronic noncommunicable diseases, being for some conditions a comorbid disease and, vice versa, comorbidities can affect initiation and progression of periodontal disease.

几十年来,牙周炎一直被认为是口腔牙周组织的局部炎症性疾病。起初,人们分别研究了牙周炎与多种非传染性疾病的关系,并显示了两者之间的关系。牙周炎与心血管疾病、类风湿性关节炎、糖尿病、呼吸系统疾病等疾病的关系已经得到证实。由于这些研究大多是横断面研究,因此无法明确回答因果关系问题。而牙周炎作为一种全身性疾病的独立危险因素,就更加难以评估了,因为近来牙周炎也与多疾病相关。牙周炎和许多系统性疾病都有共同的环境、生活方式和遗传风险因素,并且有共同的免疫病理学。此外,罹患一种常见的非传染性疾病可能会增加对另一种慢性疾病的易感性;一种疾病的系统性影响可能是另一种疾病的各种风险因素之一。任何全身性疾病的主要影响都是导致个人处于促炎症状态;牙周炎也是如此。此外,牙周炎还会导致血栓形成和免疫活性升高。因此,当我们将牙周病视为另一种全身性疾病时,它可能会影响其他全身性疾病的易感性和进展,重要的是,反之亦然。因此,牙周炎与其他各种非传染性疾病相关也就不足为奇了。根据医学定义,全身性疾病包括影响不同器官和系统的疾病。因此,本文旨在提出牙周炎本身应被视为一种系统性疾病,它影响着个人的系统状况和健康。牙科和医学界以及研究人员都应适应这种范式的转变,将牙周病从孤立的解剖学位置推进到慢性非传染性疾病的范畴,在某些情况下,牙周病是一种合并症,反之亦然,合并症也会影响牙周病的发生和发展。
{"title":"Periodontal disease: A systemic condition.","authors":"German E M Villoria, Ricardo G Fischer, Eduardo M B Tinoco, Joerg Meyle, Bruno G Loos","doi":"10.1111/prd.12616","DOIUrl":"https://doi.org/10.1111/prd.12616","url":null,"abstract":"<p><p>For decades, periodontitis has been considered to be a local inflammatory disease of the periodontal tissues in the oral cavity. Initially, associations of periodontitis with a multitude of noncommunicable diseases were each studied separately, and relationships were shown. The associations of periodontitis with morbidities, such as cardiovascular diseases, rheumatoid arthritis, diabetes mellitus, respiratory diseases, have been demonstrated. As most such studies were cross-sectional in nature, questions about causality cannot be univocally answered. And periodontitis as an independent risk factor for one systemic disease, becomes even more difficult to assess since recently periodontitis has also been associated with multimorbidity. Periodontitis and many systemic diseases share environmental, lifestyle and genetic risk factors, and share immunopathology. Moreover, suffering from one common noncommunicable disease may increase the susceptibility for another such chronic disease; the systemic effects of one condition may be one of various risk factors for another such disease. The overarching effect of any systemic disease is it causing a pro-inflammatory state in the individual; this has also been shown for periodontitis. Moreover, in periodontitis a prothrombotic state and elevated immunological activity have been shown. As such, when we consider periodontal disease as another systemic disease, it can affect the susceptibility and progression of other systemic diseases, and importantly, vice versa. And with this, it is not surprising that periodontitis is associated with a variety of other noncommunicable diseases. The medical definition of a systemic disease includes diseases that affect different organs and systems. Thus, the aim of this opinion paper is to propose that periodontitis should be considered a systemic disease in its own right and that it affects the individual's systemic condition and wellbeing. The dental and medical profession and researchers alike, should adapt this paradigm shift, advancing periodontal disease out of its isolated anatomical location into the total of chronic noncommunicable diseases, being for some conditions a comorbid disease and, vice versa, comorbidities can affect initiation and progression of periodontal disease.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":17.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Architecture of the ATP-driven motor for protein import into chloroplasts. 叶绿体中蛋白质输入的 ATP 驱动马达的结构。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 Epub Date: 2024-09-25 DOI: 10.1016/j.molp.2024.09.010
Ning Wang, Jiale Xing, Xiaodong Su, Junting Pan, Hui Chen, Lifang Shi, Long Si, Wenqiang Yang, Mei Li

Thousands of nuclear-encoded proteins are transported into chloroplasts through the TOC-TIC translocon that spans the chloroplast envelope membranes. A motor complex pulls the translocated proteins out of the TOC-TIC complex into the chloroplast stroma by hydrolyzing ATP. The Orf2971-FtsHi complex has been suggested to serve as the ATP-hydrolyzing motor in Chlamydomonas reinhardtii, but little is known about its architecture and assembly. Here, we report the 3.2-Å resolution structure of the Chlamydomonas Orf2971-FtsHi complex. The 20-subunit complex spans the chloroplast inner envelope, with two bulky modules protruding into the intermembrane space and stromal matrix. Six subunits form a hetero-hexamer that potentially provides the pulling force through ATP hydrolysis. The remaining subunits, including potential enzymes/chaperones, likely facilitate the complex assembly and regulate its proper function. Taken together, our results provide the structural foundation for a mechanistic understanding of chloroplast protein translocation.

数以千计的核编码蛋白质通过横跨叶绿体包膜的 TOC-TIC 易位体运输到叶绿体中。一个马达复合物通过水解 ATP 将转运蛋白从 TOC-TIC 复合物中拉出,进入叶绿体基质。Orf2971-FtsHi 复合物被认为是衣藻中的 ATP 水解马达,但人们对其结构和组装知之甚少。在此,我们报告了衣藻 Orf2971-FtsHi 复合物的 3.2 Å 分辨率结构。这个由 20 个亚基组成的复合体横跨叶绿体内包膜,其中两个大模块突出到膜间隙和基质中。六个亚基组成一个异质六聚体,可能通过 ATP 水解提供拉力。其余的亚基,包括潜在的酶/伴侣,可能会促进复合体的组装并调节其正常功能。我们的研究结果为从机理上理解叶绿体蛋白质的转运提供了结构基础。
{"title":"Architecture of the ATP-driven motor for protein import into chloroplasts.","authors":"Ning Wang, Jiale Xing, Xiaodong Su, Junting Pan, Hui Chen, Lifang Shi, Long Si, Wenqiang Yang, Mei Li","doi":"10.1016/j.molp.2024.09.010","DOIUrl":"10.1016/j.molp.2024.09.010","url":null,"abstract":"<p><p>Thousands of nuclear-encoded proteins are transported into chloroplasts through the TOC-TIC translocon that spans the chloroplast envelope membranes. A motor complex pulls the translocated proteins out of the TOC-TIC complex into the chloroplast stroma by hydrolyzing ATP. The Orf2971-FtsHi complex has been suggested to serve as the ATP-hydrolyzing motor in Chlamydomonas reinhardtii, but little is known about its architecture and assembly. Here, we report the 3.2-Å resolution structure of the Chlamydomonas Orf2971-FtsHi complex. The 20-subunit complex spans the chloroplast inner envelope, with two bulky modules protruding into the intermembrane space and stromal matrix. Six subunits form a hetero-hexamer that potentially provides the pulling force through ATP hydrolysis. The remaining subunits, including potential enzymes/chaperones, likely facilitate the complex assembly and regulate its proper function. Taken together, our results provide the structural foundation for a mechanistic understanding of chloroplast protein translocation.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1702-1718"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. Mirids分泌一种TOPLESS靶向蛋白,以增强JA介导的防御和棉酚积累,从而对抗棉花植株上的棉铃虫。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 Epub Date: 2024-09-24 DOI: 10.1016/j.molp.2024.09.008
Yu-Pei Mu, Dian-Yang Chen, Yu-Jie Liu, Ming-Yu Zhu, Xian Zhang, Yin Tang, Jia-Ling Lin, Mu-Yang Wang, Xiao-Xia Shangguan, Xiao-Ya Chen, Chengshu Wang, Ying-Bo Mao

Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.

与植物上的单一物种相比,大多数共存的昆虫物种都表现出生长迟缓。这种现象反映了一种种间拮抗作用,引起了广泛关注,但其潜在的机制在很大程度上仍不为人所知。棉铃虫(Helicoverpa armigera)和棉蚜(Apolygus lucorum)是棉田中常见的两种害虫。我们从棉铃虫的口腔分泌物中发现了一种分泌蛋白 ASP1,这种蛋白存在于被棉铃虫侵染的棉花叶片的细胞核中。ASP1特异性地靶向转录核心抑制因子TOPLESS(TPL),抑制NINJA介导的TPL招募,从而促进植物防御反应和棉酚在棉花腺体中的积累。ASP1 增强的防御能力可抑制棉铃虫在棉花植株上的生长,但对蚜虫的影响很小。中叶取食的特性使蚜虫能够避开大多数棉花腺体,从而使棉花防御失效。我们的研究揭示了蜃虫利用棉花防御选择性抑制棉铃虫取食的分子机制。
{"title":"Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants.","authors":"Yu-Pei Mu, Dian-Yang Chen, Yu-Jie Liu, Ming-Yu Zhu, Xian Zhang, Yin Tang, Jia-Ling Lin, Mu-Yang Wang, Xiao-Xia Shangguan, Xiao-Ya Chen, Chengshu Wang, Ying-Bo Mao","doi":"10.1016/j.molp.2024.09.008","DOIUrl":"10.1016/j.molp.2024.09.008","url":null,"abstract":"<p><p>Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1687-1701"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease. 玉米WAK-SnRK1α2-WRKY模块调节养分供应以抵御头烟粉病。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 Epub Date: 2024-10-01 DOI: 10.1016/j.molp.2024.09.013
Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu

Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.

固着型生物营养体依赖于活的宿主获取养分来完成其生命周期,然而宿主限制病原体获得养分的机制在很大程度上仍不为人所知。真菌病原体 Sporisorium reilianum 会感染玉米幼苗,并在成熟期导致花序发生头疫病,而细胞壁相关激酶 ZmWAK 可提供对其的定量抗性。在这里,我们证明 S. reilianum 能迅速激活 ZmWAK 激酶的活性,该活性由并膜结构域中的第 407 个苏氨酸残基维持,使其能与 ZmSnRK1α2 (一种保守的蔗糖不发酵相关激酶 α 亚基)相互作用并使其磷酸化。活化的 ZmSnRK1α2 从细胞质转移到细胞核,在细胞核中磷酸化并破坏转录因子 ZmWRKY53 的稳定性。ZmWRKY53 丰度的降低导致参与跨膜运输和碳水化合物代谢的基因下调,从而导致 S. reilianum 在细胞凋亡期的营养饥饿。我们的研究揭示了玉米中的 WAK-SnRK1α2-WRKY53 信号模块,该模块将磷酸化级联从质膜传递到细胞核,从而赋予玉米抗头疫病的能力,对作物管理和应用具有深远影响。
{"title":"A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease.","authors":"Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu","doi":"10.1016/j.molp.2024.09.013","DOIUrl":"10.1016/j.molp.2024.09.013","url":null,"abstract":"<p><p>Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1654-1671"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jazzin' up nodules: The groovy role of jasmonic acid during nodulation. 茉莉酸在结球过程中的奇妙作用茉莉酸在结瘤过程中的奇妙作用。
IF 17.1 2区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 Epub Date: 2024-10-04 DOI: 10.1016/j.molp.2024.10.001
Sophia Müller, Wouter Kohlen
{"title":"Jazzin' up nodules: The groovy role of jasmonic acid during nodulation.","authors":"Sophia Müller, Wouter Kohlen","doi":"10.1016/j.molp.2024.10.001","DOIUrl":"10.1016/j.molp.2024.10.001","url":null,"abstract":"","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"1639-1641"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Infectious Diseases
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1