A. Attaf, R. Messemeche, H. Saidi, B. Youcef, M. Aida, O. Benkhetta
Photocatalytic application has been of large interest due to its new technology for organic pollution. Among the photocatalyst, titanium dioxide thin film is known as a photocatalyst for the elimination of organic pollutants. In this research, the structural and optical properties of TiO2 thin films prepared on glass substrates were studied, using a sol-gel (spin coating) technique. TiO2 thin films were deposited with molar ratio y between [TTIP] and [AcAc] concentration, which varied from 0.5 to 2. Photocatalytic properties of TiO2 thin films are studied by using sunlight and photodegradation of methylene blue as a water pollutant evaluated until the photocatalytic process enhances with the molar ratio. Absorbance spectra were measured using a spectrophotometer. Test results showed that the photocatalytic sunlight /TiO2 thin film is a promising method for treating wastewater. The quantity of acetylacetone in the precursor solution had no significant effect on the optical and structural properties of the TiO2 thin films. Films consisted of the anatase phase, with a band gap in the range of 3.38–3.51 eV and thickness in the range of 534–618 nm. However, the molar ratio effect on photocatalytic preperties, the best photodegradation rate reaches to 94% in y = 0.66 at t = 180 min.
{"title":"Characterization and photocatalytic activity of different molar ratios of TiO2 thin films prepared by Sol-Gel process","authors":"A. Attaf, R. Messemeche, H. Saidi, B. Youcef, M. Aida, O. Benkhetta","doi":"10.3233/mgc-210140","DOIUrl":"https://doi.org/10.3233/mgc-210140","url":null,"abstract":"Photocatalytic application has been of large interest due to its new technology for organic pollution. Among the photocatalyst, titanium dioxide thin film is known as a photocatalyst for the elimination of organic pollutants. In this research, the structural and optical properties of TiO2 thin films prepared on glass substrates were studied, using a sol-gel (spin coating) technique. TiO2 thin films were deposited with molar ratio y between [TTIP] and [AcAc] concentration, which varied from 0.5 to 2. Photocatalytic properties of TiO2 thin films are studied by using sunlight and photodegradation of methylene blue as a water pollutant evaluated until the photocatalytic process enhances with the molar ratio. Absorbance spectra were measured using a spectrophotometer. Test results showed that the photocatalytic sunlight /TiO2 thin film is a promising method for treating wastewater. The quantity of acetylacetone in the precursor solution had no significant effect on the optical and structural properties of the TiO2 thin films. Films consisted of the anatase phase, with a band gap in the range of 3.38–3.51 eV and thickness in the range of 534–618 nm. However, the molar ratio effect on photocatalytic preperties, the best photodegradation rate reaches to 94% in y = 0.66 at t = 180 min.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89348444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bharat R. Paghadar, J. B. Sainani, K.M. Samith, S. Tantry, Poornima Bhagavath
Various classes of molecules like diethers, succinates, diesters, amido esters are currently being used as internal donors on MgCl2 supported titanium catalysts for isotactic polypropylene as an alternative to phthalate donors owing to their potential health risk laid down by REACH legislation. In the present paper, design and synthesis of a few novel amido ester internal donors with single chiral center (7–11) by mimicking the model amido ester 3 having two chiral centers; and their catalyst preparation method were described. Further preliminary polymerization tests with newly synthesized donor molecules were investigated and results revealed that by structurally mimicking 3 with one chiral center and also with varied substitutional patterns in ester/amido moiety decline the polypropylene activity as well as isotacticity. These donor molecules are ineffective for appropriate coordination on MgCl2 sites on inducing steric hindrance for improved isotacticity; nevertheless also induces poisoning effect for the active Ti centers leading to catalyst fouling in many cases.
{"title":"Effect of novel amido ester internal donor on the performance of Ziegler Natta catalyst for propylene polymerization","authors":"Bharat R. Paghadar, J. B. Sainani, K.M. Samith, S. Tantry, Poornima Bhagavath","doi":"10.3233/mgc-210126","DOIUrl":"https://doi.org/10.3233/mgc-210126","url":null,"abstract":"Various classes of molecules like diethers, succinates, diesters, amido esters are currently being used as internal donors on MgCl2 supported titanium catalysts for isotactic polypropylene as an alternative to phthalate donors owing to their potential health risk laid down by REACH legislation. In the present paper, design and synthesis of a few novel amido ester internal donors with single chiral center (7–11) by mimicking the model amido ester 3 having two chiral centers; and their catalyst preparation method were described. Further preliminary polymerization tests with newly synthesized donor molecules were investigated and results revealed that by structurally mimicking 3 with one chiral center and also with varied substitutional patterns in ester/amido moiety decline the polypropylene activity as well as isotacticity. These donor molecules are ineffective for appropriate coordination on MgCl2 sites on inducing steric hindrance for improved isotacticity; nevertheless also induces poisoning effect for the active Ti centers leading to catalyst fouling in many cases.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78393060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Bencharef, A. Chala, R. Messemeche, Y. Benkhetta
Undoped and Mn-doped Co3O4 films were deposited on heated glasses substrates (TS = 400°C) using a homemade pneumatic spray method (PSM). The solution concentration and deposition time are 0.1 M and 4 min respectively. The effect of manganese doping concentration on structural, optical and electrical properties of cobalt oxide were investigated. The elaborated films were characterized by X-ray diffraction, UV-Vis spectroscopy, atomic force microscopy (AFM) the three-dimensional (3D), energy dispersive spectroscopy (EDS), and four points probe measurements. The XRD study showed that all films were polycrystalline consisting with spinel cubic phase orientated along to (111) plane. The lattice strain and crystallite size were estimated by Williamson-Hall method. The morphology of Mn-doped Co3O4 thin films shows a homogeneous surface with straight acicular nanorods (SANRs). EDS analysis showed the presence of peaks associated with Co, O and Mn elements which confirm the composition of the thin films. The optical band gaps varies from 1.42±0.07 to 1.47±0.07 eV of Egop1and Egop2 varies from 1.87±0.10 to 2.11±0.11 eV. In addition, the electrical measurement show a maximum electrical conductivity (σ= 15.54±0.78 (Ω.cm) - 1) at 6% wt of Mn.
{"title":"The physical properties of spinel cubic Co3O4 thin films prepared by a PSM","authors":"Z. Bencharef, A. Chala, R. Messemeche, Y. Benkhetta","doi":"10.3233/mgc-210090","DOIUrl":"https://doi.org/10.3233/mgc-210090","url":null,"abstract":"Undoped and Mn-doped Co3O4 films were deposited on heated glasses substrates (TS = 400°C) using a homemade pneumatic spray method (PSM). The solution concentration and deposition time are 0.1 M and 4 min respectively. The effect of manganese doping concentration on structural, optical and electrical properties of cobalt oxide were investigated. The elaborated films were characterized by X-ray diffraction, UV-Vis spectroscopy, atomic force microscopy (AFM) the three-dimensional (3D), energy dispersive spectroscopy (EDS), and four points probe measurements. The XRD study showed that all films were polycrystalline consisting with spinel cubic phase orientated along to (111) plane. The lattice strain and crystallite size were estimated by Williamson-Hall method. The morphology of Mn-doped Co3O4 thin films shows a homogeneous surface with straight acicular nanorods (SANRs). EDS analysis showed the presence of peaks associated with Co, O and Mn elements which confirm the composition of the thin films. The optical band gaps varies from 1.42±0.07 to 1.47±0.07 eV of Egop1and Egop2 varies from 1.87±0.10 to 2.11±0.11 eV. In addition, the electrical measurement show a maximum electrical conductivity (σ= 15.54±0.78 (Ω.cm) - 1) at 6% wt of Mn.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83766593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Aroua, Ahmed N. Al-hakimi, M. Abdulghani, S. K. Alhag
A novel series of urea Schiff base derivatives were synthesized via the condensation of o-phenylenediamine, naphthyl isocyanate and appropriate aryl aldehyde. The results of the in vitro cytotoxic activities of compounds 5a–h against cancer cells lines PC3, SKOV-3 and HeLa, revealed that almost all compounds exhibited good to moderate activities Compound 5g owing bromine atom at p-position displayed higher activity compared to homolog 5b possessing chlorine atom due to adequate diameter of bromine which is more favourable than chlorine for the inhibition activity. In addition, compound 5h is the best candidate of this series exhibiting excellent activity for three cancer cells lines. Compound 5h demonstrated also an excellent activity with IC50 value of 0.6±0.3μg/mL for prostate cancer cell line PC3 and it is considered more effective than the standard drug doxorubicin Dox (IC50 = 2.6±0.03μg/mL). The most active compound 5h displayed the best activity against ovarian cancer cell line SKOV3 with IC50 = 1.8±0.2μg/mL. This results are higher than clinically used drug Dox (IC50. 2.2±0.02μg/mL). The results of screening activities cytotoxic effect toward cervix cancer cell line HeLa, affirm that compound 5h manifest an activity with IC50 value of 2.2±0.4μg/mL comparable to Dox (IC50. 1.9±0.04μg/mL). In the current study, in vivo acute oral toxicity assessment of urea Schiff base hybrid compounds 5a – h indicated that there was no mortality on treated female mice during 14 days assessment test compared with the vehicle-treated group confirming the safety with LD50 greater than 2000 mg/kg. In the actual study, the results affirmed that compounds 5a–h manifested in vivo no toxicity to saint cells, the compounds 5b, 5g and 5h presented higher anticancer activities against three cancer cells which authorizes promoters to use them as candidate anticancer agents.
{"title":"Elaboration of novel urea bearing schiff bases as potent in vitro anticancer candidates with low in vivo acute oral toxicity","authors":"L. Aroua, Ahmed N. Al-hakimi, M. Abdulghani, S. K. Alhag","doi":"10.3233/mgc-220019","DOIUrl":"https://doi.org/10.3233/mgc-220019","url":null,"abstract":"A novel series of urea Schiff base derivatives were synthesized via the condensation of o-phenylenediamine, naphthyl isocyanate and appropriate aryl aldehyde. The results of the in vitro cytotoxic activities of compounds 5a–h against cancer cells lines PC3, SKOV-3 and HeLa, revealed that almost all compounds exhibited good to moderate activities Compound 5g owing bromine atom at p-position displayed higher activity compared to homolog 5b possessing chlorine atom due to adequate diameter of bromine which is more favourable than chlorine for the inhibition activity. In addition, compound 5h is the best candidate of this series exhibiting excellent activity for three cancer cells lines. Compound 5h demonstrated also an excellent activity with IC50 value of 0.6±0.3μg/mL for prostate cancer cell line PC3 and it is considered more effective than the standard drug doxorubicin Dox (IC50 = 2.6±0.03μg/mL). The most active compound 5h displayed the best activity against ovarian cancer cell line SKOV3 with IC50 = 1.8±0.2μg/mL. This results are higher than clinically used drug Dox (IC50. 2.2±0.02μg/mL). The results of screening activities cytotoxic effect toward cervix cancer cell line HeLa, affirm that compound 5h manifest an activity with IC50 value of 2.2±0.4μg/mL comparable to Dox (IC50. 1.9±0.04μg/mL). In the current study, in vivo acute oral toxicity assessment of urea Schiff base hybrid compounds 5a – h indicated that there was no mortality on treated female mice during 14 days assessment test compared with the vehicle-treated group confirming the safety with LD50 greater than 2000 mg/kg. In the actual study, the results affirmed that compounds 5a–h manifested in vivo no toxicity to saint cells, the compounds 5b, 5g and 5h presented higher anticancer activities against three cancer cells which authorizes promoters to use them as candidate anticancer agents.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85726852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arctium lappa (A. lappa) is one of the most significant edible medicinal plants with high antibacterial effects, in which it could be supposed to grow with more beneficial effects under administration by salicylic acid and chitosan based biofertilizers. Accordingly, the effects of salicylic acid, chitosan, and 50% moisture discharge were investigated in this work to see the antimicrobial treatments of some foodborne pathogens effects by A. lappa. To this aim, plants were cultivated based on different concentrations of salicylic acid and chitosan with/without drought stress, in which their extracted essential oils were examined for showing the antimicrobial effect against different bacterial agents. The results indicated that the salicylic acid and chitosan administrated A. lappa could work with improved inhibitory functions. Comparing with referenced antibiotics showed even higher antimicrobial effects of A. lappa against the targeted bacterial agents, in which the species with 14 mmol of salicylic acid and 2 g/l of chitosan was a distinguished one for approaching the purpose. Consequently, the achievements of this work could be further investigated for producing novel antibiotic drug agents.
{"title":"Antimicrobial effects of Arctium lappa against infectious bacteria: Experimental in vitro analysis","authors":"Asghar Bahramian, M. A. Kachoie, E. Rahimi","doi":"10.3233/mgc-220002","DOIUrl":"https://doi.org/10.3233/mgc-220002","url":null,"abstract":"Arctium lappa (A. lappa) is one of the most significant edible medicinal plants with high antibacterial effects, in which it could be supposed to grow with more beneficial effects under administration by salicylic acid and chitosan based biofertilizers. Accordingly, the effects of salicylic acid, chitosan, and 50% moisture discharge were investigated in this work to see the antimicrobial treatments of some foodborne pathogens effects by A. lappa. To this aim, plants were cultivated based on different concentrations of salicylic acid and chitosan with/without drought stress, in which their extracted essential oils were examined for showing the antimicrobial effect against different bacterial agents. The results indicated that the salicylic acid and chitosan administrated A. lappa could work with improved inhibitory functions. Comparing with referenced antibiotics showed even higher antimicrobial effects of A. lappa against the targeted bacterial agents, in which the species with 14 mmol of salicylic acid and 2 g/l of chitosan was a distinguished one for approaching the purpose. Consequently, the achievements of this work could be further investigated for producing novel antibiotic drug agents.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86767898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a simple method was proposed to obtain hydroxyapatite (HA) and hydroxyapatite/partially hydrolysed polyacrylamide (HA/AD37) composite materials which where applied to lead retention from aqueous solution by means of the batch method. The characterization of the materials verified that the presence of AD37 created interconnected porosity in the composite HA/AD37 giving it a good swelling properties that conducted to an easy separation of the material from aqueous solutions. Retention experiments carried out by varying the dose of lead and the contact time between adsorbent and adsorbate showed that the maximum adsorption capacity (Qmax) obtained for 2072.2 mg/L as initial concentration of Pb2 + was equal to 984.63 mg/g for HA and 924.50 mg/g for HA/AD37. Furthermore, AD37 used alone cannot retain Pb2 + ions. Indeed, the calculated Qmax of AD37 part of the composite was of 806.57 mg/g. The obtained Qmax values was elevated more than the reported values in many literatures. Based on the correlation coefficient, the kinetic study proved that pseudo-second order model agrees well with the obtained experimental data for Pb2+ retention by both HA and HA/AD37. Also, isotherm study explored that adsorption of lead was best fitted by Langmuir model for HA and Temkin model for HA/AD37. At last, the mechanism of retention was probed by characterizing the adsorbents after contact with lead ions by XRD and SEM. The results showed the transformation of calcium-hydroxyapatite to different structures of lead hydroxyapatite confirming the presence of ion exchange mechanism between Ca2+ and Pb2+.
{"title":"Removal of Pb2+ from synthetic aqueous solution using hydroxyapatite and hydroxyapatite@AD37 composite materials","authors":"Hanane Mahroug, S. Belkaid, K. Medjahed","doi":"10.3233/mgc-210167","DOIUrl":"https://doi.org/10.3233/mgc-210167","url":null,"abstract":"In this paper, a simple method was proposed to obtain hydroxyapatite (HA) and hydroxyapatite/partially hydrolysed polyacrylamide (HA/AD37) composite materials which where applied to lead retention from aqueous solution by means of the batch method. The characterization of the materials verified that the presence of AD37 created interconnected porosity in the composite HA/AD37 giving it a good swelling properties that conducted to an easy separation of the material from aqueous solutions. Retention experiments carried out by varying the dose of lead and the contact time between adsorbent and adsorbate showed that the maximum adsorption capacity (Qmax) obtained for 2072.2 mg/L as initial concentration of Pb2 + was equal to 984.63 mg/g for HA and 924.50 mg/g for HA/AD37. Furthermore, AD37 used alone cannot retain Pb2 + ions. Indeed, the calculated Qmax of AD37 part of the composite was of 806.57 mg/g. The obtained Qmax values was elevated more than the reported values in many literatures. Based on the correlation coefficient, the kinetic study proved that pseudo-second order model agrees well with the obtained experimental data for Pb2+ retention by both HA and HA/AD37. Also, isotherm study explored that adsorption of lead was best fitted by Langmuir model for HA and Temkin model for HA/AD37. At last, the mechanism of retention was probed by characterizing the adsorbents after contact with lead ions by XRD and SEM. The results showed the transformation of calcium-hydroxyapatite to different structures of lead hydroxyapatite confirming the presence of ion exchange mechanism between Ca2+ and Pb2+.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90345826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarvenaz Moradikhou, Hossein Sakhaeinia, A. Alihosseini
Geopolymers are inorganic alumina-silicate materials produced from raw materials, rich in silica (SiO2) and alumina (Al2O3), in combination with an alkaline activator solution. In this study, geopolymer of class C flay ash in ambient curing condition were used form geopolymer mortar and effects of different alkaline activator solutions and variations of associated parameters, were investigated. The obtained results indicated that in ambient curing condition (23±2°C), using sodium hydroxide and sodium silicate as an alkaline activator solution, result in higher 7- and 28-day compressive strength of geopolymer mortar compared to potassium-based (potassium hydroxide and potassium silicate) and combination of sodium and potassium-based alkaline activator solutions, approximately 49% and 145%, respectively. But, in term of 90°C curing condition, potassium-based alkaline activator subject to higher 7- and 28-day compressive strengths. Additionally, simultaneous inclusion of NaOH and KOH led to decline the compressive strength. Also, obtained results of experimental data show that optimal ratio 1.5–2 of SiO2/Na2O were highest compressive strength.
{"title":"Effective of alkaline additives on the geopolymer cements properties as alternative to Portland cement in order to protect environment","authors":"Sarvenaz Moradikhou, Hossein Sakhaeinia, A. Alihosseini","doi":"10.3233/mgc-210122","DOIUrl":"https://doi.org/10.3233/mgc-210122","url":null,"abstract":"Geopolymers are inorganic alumina-silicate materials produced from raw materials, rich in silica (SiO2) and alumina (Al2O3), in combination with an alkaline activator solution. In this study, geopolymer of class C flay ash in ambient curing condition were used form geopolymer mortar and effects of different alkaline activator solutions and variations of associated parameters, were investigated. The obtained results indicated that in ambient curing condition (23±2°C), using sodium hydroxide and sodium silicate as an alkaline activator solution, result in higher 7- and 28-day compressive strength of geopolymer mortar compared to potassium-based (potassium hydroxide and potassium silicate) and combination of sodium and potassium-based alkaline activator solutions, approximately 49% and 145%, respectively. But, in term of 90°C curing condition, potassium-based alkaline activator subject to higher 7- and 28-day compressive strengths. Additionally, simultaneous inclusion of NaOH and KOH led to decline the compressive strength. Also, obtained results of experimental data show that optimal ratio 1.5–2 of SiO2/Na2O were highest compressive strength.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81908739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achieving adequate, healthy and nutritious food is emphasized as one of the basic rights of individuals in society in all the world countries. In this regard, the agricultural sector is committed to approach the necessary capability in establishing food security and self-reliance on basic products. Soil is very important as a basic source and bed of production, so that food safety mainly depends on soil security and to enlighten thoughts. Due to climate changes, lack of organic matters, and soil conditions, soil fertility management and nutrition of wheat plant are important. To this aim, knowing information about the soils and providing required nutrients could help to approach desired levels of wheat production in quantity and quality. Instead of chemical fertilizers, biological fertilizers have been seen useful for approaching the purposes. However, lack of enough information besides negative sights of view by the farmers are those the most important limiting factors. Therefore, investigating various aspects of biological fertilizers is very important for reaching a point of optimum usage of biological fertilizers for sustainable agricultural systems especially for the wheat production.
{"title":"A quick review of advantages and limitations of biological fertilizers in wheat cultivation","authors":"P. Sharifi","doi":"10.3233/mgc-210171","DOIUrl":"https://doi.org/10.3233/mgc-210171","url":null,"abstract":"Achieving adequate, healthy and nutritious food is emphasized as one of the basic rights of individuals in society in all the world countries. In this regard, the agricultural sector is committed to approach the necessary capability in establishing food security and self-reliance on basic products. Soil is very important as a basic source and bed of production, so that food safety mainly depends on soil security and to enlighten thoughts. Due to climate changes, lack of organic matters, and soil conditions, soil fertility management and nutrition of wheat plant are important. To this aim, knowing information about the soils and providing required nutrients could help to approach desired levels of wheat production in quantity and quality. Instead of chemical fertilizers, biological fertilizers have been seen useful for approaching the purposes. However, lack of enough information besides negative sights of view by the farmers are those the most important limiting factors. Therefore, investigating various aspects of biological fertilizers is very important for reaching a point of optimum usage of biological fertilizers for sustainable agricultural systems especially for the wheat production.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84217751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed N. Al-hakimi, S. K. Alhag, M. Abdulghani, L. Aroua, J. Mahyoub
Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were fabricated using Plumeria alba leaf extracts to control the mosquito Aedes aegypti. Synthesized AgNPs and AuNPs were characterized by ultraviolet-visible spectroscopy, Fourier-Transform Infrared Radiation (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscope (TEM) analysis. Susceptibility levels of Ae. aegypti mosquito larvae to the plant extract P.alba and its silver nanoparticles (AgNPs) and gold nanoparticles were determined. The AgNPs and AuNPs spectra displayed their maximum absorption at 300 nm and 500 nm, respectively. The larval mortality of AgNPs and AuNPs were highly effective LC50 were 69.9592 ppm and 88.2635 ppm compared to the aqueous leaf extract of P. alba LC50 was 178.4713 ppm. Furthermore, no significant effects of nanoparticle preparations of P. alba extract 10,000 ppm dose up to one week revealed neither toxic signs nor death within seven days of administration. However, there were no apparent signs of delayed toxicity when the rats were observed for an additional seven days. Current studies revealed that the P. alba leaf extract, AgNPs and AuNPs are biologically safe on animals and eco-friendly for control of Aedes aegypti mosquito.
{"title":"Evaluation of synthesized inorganic nanomaterials Plumeria alba against Aedes aegypti and in vivo toxicity","authors":"Ahmed N. Al-hakimi, S. K. Alhag, M. Abdulghani, L. Aroua, J. Mahyoub","doi":"10.3233/mgc-220003","DOIUrl":"https://doi.org/10.3233/mgc-220003","url":null,"abstract":"Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were fabricated using Plumeria alba leaf extracts to control the mosquito Aedes aegypti. Synthesized AgNPs and AuNPs were characterized by ultraviolet-visible spectroscopy, Fourier-Transform Infrared Radiation (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscope (TEM) analysis. Susceptibility levels of Ae. aegypti mosquito larvae to the plant extract P.alba and its silver nanoparticles (AgNPs) and gold nanoparticles were determined. The AgNPs and AuNPs spectra displayed their maximum absorption at 300 nm and 500 nm, respectively. The larval mortality of AgNPs and AuNPs were highly effective LC50 were 69.9592 ppm and 88.2635 ppm compared to the aqueous leaf extract of P. alba LC50 was 178.4713 ppm. Furthermore, no significant effects of nanoparticle preparations of P. alba extract 10,000 ppm dose up to one week revealed neither toxic signs nor death within seven days of administration. However, there were no apparent signs of delayed toxicity when the rats were observed for an additional seven days. Current studies revealed that the P. alba leaf extract, AgNPs and AuNPs are biologically safe on animals and eco-friendly for control of Aedes aegypti mosquito.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74201303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The finding of potent anticancer agents with low toxicity and high selectivity has remained valuable for human health. Thiourea derivatives are the most significant organic compounds with integral and typical characteristics of numerous varieties of natural products and pharmaceutical agents. It exhibits various pharmacological properties, and its analogues confer a great deal of structural diversity that was proven to be the most advantageous in the search for novel therapeutic agents. Thiourea derivatives, which show beneficial antitumor activities, are typically considered the central core in various anticancer derivatives. They also have broad-ranging biological activities such as anti-inflammatory, antibacterial, antifungal, antitubercular, antihypertensive, antihistaminic, and antiviral activities. Several FDA-approved drugs of thiourea derivatives and their analogues in the market, currently in progress through various registration statuses or clinical stages, indicating that thiourea derivatives are the most promising drugs. The current review is intended to systematically provide comprehensive evidence in the recent developments of thiourea to treat numerous types of cancer. Furthermore, we hope that this review will be helpful for novel consideration in seeking rational designs of less toxic and more active drugs and more effective diagnostics agents.
{"title":"Advancement and recent trends in seeking less toxic and more active anti-cancer drugs: Insights into thiourea based molecules","authors":"W. Alharbi","doi":"10.3233/mgc-210183","DOIUrl":"https://doi.org/10.3233/mgc-210183","url":null,"abstract":"The finding of potent anticancer agents with low toxicity and high selectivity has remained valuable for human health. Thiourea derivatives are the most significant organic compounds with integral and typical characteristics of numerous varieties of natural products and pharmaceutical agents. It exhibits various pharmacological properties, and its analogues confer a great deal of structural diversity that was proven to be the most advantageous in the search for novel therapeutic agents. Thiourea derivatives, which show beneficial antitumor activities, are typically considered the central core in various anticancer derivatives. They also have broad-ranging biological activities such as anti-inflammatory, antibacterial, antifungal, antitubercular, antihypertensive, antihistaminic, and antiviral activities. Several FDA-approved drugs of thiourea derivatives and their analogues in the market, currently in progress through various registration statuses or clinical stages, indicating that thiourea derivatives are the most promising drugs. The current review is intended to systematically provide comprehensive evidence in the recent developments of thiourea to treat numerous types of cancer. Furthermore, we hope that this review will be helpful for novel consideration in seeking rational designs of less toxic and more active drugs and more effective diagnostics agents.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87832166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}